0

0
0

文字

分享

0
0
0

該怎麼知道黑洞長怎樣?塑造《星際效應》裡的「巨人」形象 ─《星際效應》

azothbooks_96
・2015/05/22 ・6517字 ・閱讀時間約 13 分鐘 ・SR值 553 ・八年級

黑洞不會發光,因此想看到「巨人」,只能從它如何影響其他物體發出的光來觀測。《星際效應》片中出現的其他物體有:一個吸積盤(第九章)和它棲身的星系,以及星系中的星雲、多采多姿的星場。為求簡單起見,這裡讓我們只把恆星納入討論。

螢幕截圖 2015-05-22 13.10.15

「巨人」在這個星場上投落一個黑影,還偏折了每顆恆星發出的光線,扭曲了照相機鏡頭見到的星空樣式。這種扭曲現象就是第三章討論過的重力透鏡效應。

圖8.1 顯示星場前方有一顆快速自旋的黑洞( 讓我們稱它為「巨人」)。從它的模樣看來,你應該是從「巨人」的赤道面上進行觀測。

「巨人」的陰影是一片全黑的區域。緊貼著陰影外緣,有一道非常細窄、被稱為「火環」的星光環圈。這裡我做了一點強化處理,使暗影邊緣更為明顯。

圈環之外,我們看到一片繁密星空呈同心殼層的圖樣─重力透鏡效應造成的結果。

當照相機環繞「巨人」軌道運行,恆星場看起來也隨之移動。這種運動與透鏡效應結合,便造成光線急遽變動的圖樣。有些區域的星光以高速川流而過,另有些區域的星光緩緩地飄移,還有些區域的星光滯留不前。參見本書網頁

我會在本章內說明這所有的特徵,從陰影和它的火環開始,接著會說明《星際效應》片中的黑洞影像是如何製作出來的。

我在本章描繪的「巨人」影像是一顆快速自旋的黑洞,因為它必須快速自旋,才會產生「永續號」隊員所經歷的(相對於地球的)時間極大量流失現象(第六章)。

然而,如果「巨人」高速自旋,陰影的左緣就會出現扁平現象(圖8.1),恆星流的軌跡和吸積盤也會出現某些怪異的特徵,可能會因此令廣大觀眾困惑不解,因此克里斯多福.諾蘭和保羅.富蘭克林決定:讓電影中的「巨人」影像呈現較小幅度的自旋─最大值的六成。參見第九章最後一段。

警告:下面三個小節的內容有可能相當耗費腦力,但各位也可以選擇略過,不會因此跟不上本書其餘的篇幅。不用擔心!

黑洞的陰影和外緣火環

光殼(第六章)是產生「巨人」陰影和周邊火環的關鍵要素。圖8.2中,光殼是環繞「巨人」的紫色區域,含括險些受困之光子的軌跡(光線),如右上方的小圖所示。

螢幕截圖 2015-05-22 13.10.53

假設你位於黃點的位置。白色光線A、B與其他同類光線會為你帶來火環的影像,黑色光線A和B則為你帶來陰影邊緣的影像。舉例來說,白色光線A是從距離「巨人」很遠的某顆恆星發出的,光線向內行進,困陷在「巨人」赤道面上之光殼的內緣,在那裡被空間旋轉帶動,一圈圈地飛繞,然後才逸出並進入你的眼簾。

同樣標示為A的黑色光線發自「巨人」的事件視界,它向外行進,同樣困陷在光殼的內緣,在那裡繞了一圈又一圈,之後才逸出並與白色光線a 一併傳抵你的眼簾。白色光線為你帶來細環的片段影像,黑色光線則帶來陰影邊緣的片段影像。光殼是促使兩種光線合併行進的功臣,還能引導它們朝你的雙眼射來。

黑、白色光線B的情況也雷同,但它們是困陷在順時針旋轉(奮力對抗著空間旋轉)的光殼之外緣,而光線A是困陷在逆時針旋轉(被空間旋轉帶動)的光殼之內緣。

圖8.1 的陰影左緣出現扁平現象,右緣則變得渾圓,這是由於(左緣的)光線A是發自光殼內緣非常接近視界的位置,而(右緣的)光線B是發自光殼外緣的非常外側之處。

圖8.2 的黑色光線C和D起點位於視界,向外行進並困陷在光殼的非赤道軌道上,然後逸出受困軌道,射向你的眼簾,也把位於赤道面外側之陰影邊緣的片段影像傳送過來。光線D的受困軌道如右上方小圖所示。

白色光線C和D(圖中未顯示)都來自遙遠的恆星,和黑色光線C和D一起受困,然後一同向你的雙眼射來,一併帶來火環的片段影像和陰影邊緣的片段影像。

不自旋黑洞的透鏡效應

下面要說明位於陰影外的恆星在重力透鏡影響下呈現的模式,了解它們在照相機移動下表現的流動形態。首先讓我們從不自旋黑洞開始,選一顆恆星檢視它發出的光線(圖8.3)。

螢幕截圖 2015-05-22 13.11.04

恆星發出兩束光線向照相機行進。它們在黑洞翹曲空間各盡己能沿著最筆直路線行進,但都受到翹曲作用影響而偏向彎折。一束偏折光線繞過黑洞左側向照相機射來;另一束則從右側繞過來。兩束光線都將自身的恆星影像傳給照相機。照相機鏡頭接收到的兩個影像如圖8.3 小圖所示。我用紅圈將兩個影像框起來,將它們與照相機可見的其他恆星區隔開來。

注意:和左方的恆星影像相比,右方影像和黑洞陰影之間的距離近上了許多。

這是由於它的偏折光線是從比較靠近黑洞事件視界的地方通過所致。其他恆星也都在這張照片中出現了兩次,分別位於黑洞陰影的兩側。你能不能找出其中幾對?

照片中可見黑洞的陰影區,所有朝這裡射去的光線,都無法進入照相機鏡頭;參見上圖標示「陰影」的三角形區域。所有「想要」進入陰影區的光線,都會被黑洞逮住並吞噬。

當照相機沿著軌道向右運行(圖8.3),鏡頭所見的星光形態也隨之改變,如圖8.4 所示。

螢幕截圖 2015-05-22 13.11.16

這張圖裡有兩顆恆星被特別標示出來。一顆用紅圈框起來(就是圖8.3 中那一顆)。另一顆用黃色方框標示。每顆恆星我們各看到兩幅影像:一幅位於粉紅圓圈之外,另一幅位於圈內。我們稱這道粉紅色圓圈為「愛因斯坦環」(einstein ring)。

當照相機向右移動,影像就沿著黃色和紅色曲線移動。愛因斯坦環之外的恆星影像(讓我們稱它們為「主影像」)移動方式一如預期:從左到右平順行進,但移動時會偏離黑洞。(各位能不能想出來:為什麼不是朝向黑洞而是偏離?)

然而,位於愛因斯坦環內的「次級影像」,卻以出乎意料的方式移動:它們看來是從陰影右緣出現,在陰影和愛因斯坦環之間的環形區域向外移動,往左繞過陰影,然後回頭朝陰影邊緣下行。

回頭再看一次圖8.3 上方圖,你就可以明白了。

右方的光線從黑洞近處通過,因此右方恆星影像會位於黑洞陰影的近處。當照相機早先比較靠近左方時,右方光線必須從更靠近黑洞的區域通過、更大幅地彎曲,才能射抵照相機,因此右方的影像非常靠近陰影的邊緣。相對地,在稍早之前,左方光線是從離黑洞相當遠的區域通過,因此它近乎筆直,產生的影像也離黑洞相當遙遠。

現在,如果你準備好了,請往下完整地想一遍這些影像的後續運動,如圖8.4 所示。

快速自旋黑洞的透鏡效應:以「巨人」為例

「巨人」以非常高速的自旋帶動空間旋轉,改變了重力透鏡效應。圖8.1(「巨人」)的星光形態和圖8.4(不自旋黑洞)的星光形態看來有點不同,但流動模式的差別還更大。

螢幕截圖 2015-05-22 13.11.59

就「巨人」來說,流動模式中(圖8.5)可以看到兩個愛因斯坦環,如粉紅色曲線所示。外環外側的星群朝右流動(例如,沿著兩條紅色曲線移動),圖8.4 的不自旋黑洞也出現相同情況。不過,空間的旋轉將星群流動匯聚成沿著黑洞陰影後緣分布的高速窄小條帶(strip),而這些條帶在赤道一帶大幅度急遽彎曲。此外,空間的旋轉還讓流動產生渦流(紅色封閉曲線)。

各恆星的次級影像分別出現在兩道愛因斯坦環之間,各幅次級影像則分別沿著一條封閉曲線(如圖示的兩條黃色曲線)循環運行,而且循環方向和外環外側的紅色流動運動相反。

「巨人」的天空有兩顆非常特別的恆星,重力透鏡效應對它們不起作用。其中一顆位於「巨人」北極正上方,另一顆位於「巨人」南極正下方。兩顆都可以跟位於地球北極正上方的北極星相提並論。我在「巨人」這兩顆極星的主影像(紅色)和次級影像(黃色)位置都畫上了星形符號。

由於我們人類是由地球的旋轉帶著一起轉動,因此地球天空的恆星看起來全都繞著北極星循環運行。同理,當照相機沿著繞「巨人」軌道運行之時,這個黑洞的所有恆星主影像也都繞著紅色極星影像循環運行,但它們的循環路徑(如圖示那兩道紅色渦流曲線)都受到空間旋轉和重力透鏡效應影響而嚴重扭曲。再同理,恆星的次影像也全都繞著黃色極星影像循環運行(如圖示那兩道扭曲的黃色曲線)。

為什麼不自旋黑洞(圖8.4)的次級影像,看來就像從黑洞的陰影浮現,繞行黑洞,然後調頭下行進入陰影,而不像「巨人」(圖8.5)那樣沿著一條閉合曲線循環繞行?

事實上,不自旋黑洞的次級影像,正是沿著閉合曲線循環繞行,只是閉合曲線的內緣十分貼近陰影邊緣,我們看不到它而已。至於「巨人」,它的自旋帶動了空間旋轉,空間旋轉又帶動愛因斯坦內環向外移動,使次級影像的完整循環模式顯露出來(圖8.5的黃色曲線),也顯露出愛因斯坦內環。

愛因斯坦內環以內的流動形態則比較複雜。這個區域裡的恆星,是這個宇宙內所有恆星的三級影像和更高級別影像─跟位於愛因斯坦外環以外之主影像和位於兩道愛因斯坦環間之次級影像所代表的那些恆星是一樣的。

我在圖8.6 列出了「巨人」赤道面的五幅小圖,其中「巨人」本身以黑色描繪,照相機的軌道以紫色曲線表示,並以紅色代表光線。光線將藍色箭頭尖端位置上的恆星影像傳給照相機,而照相機是順時針方向環繞「巨人」運行。

螢幕截圖 2015-05-22 13.13.20

各位可以自行逐一審視這些小圖,將能從中更深入領會重力透鏡效應。要注意的是:恆星的實際方位,是朝上偏右(見紅色光線的外側端點)。照相機,以及各束光線的起點,都指朝恆星影像。

第十級影像非常靠近陰影的左緣,右側那幅次級影像則很靠近右緣;比對照相機拍攝這兩幅影像時的指向,我們可以看出,陰影對向角約為一百五十度朝上。

但事實上,照相機對著「巨人」中心的真正方向是朝左並朝著上方。透鏡效應讓陰影相對於「巨人」的實際方向出現了位移。

打造《星際效應》片中的黑洞和蟲洞視覺特效

克里斯希望「巨人」的樣子,就如同實際貼近觀察自旋黑洞所看到的真實模樣,因此他要保羅和我交換意見。

保羅安排我聯絡他的視覺特效工作室「雙重否定」在倫敦籌組的《星際效應》團隊。到後來,我和他們的首席科學家奧利弗.詹姆斯建立起密切的合作關係。奧利弗和我用電話和Skype 聯繫,透過電郵和電子檔案來交換意見,也曾在洛杉磯或他的倫敦辦公室見面商討。奧利弗在大學主修光學和原子物理學,理解愛因斯坦的相對論定律,因此我們能用相同的技術語言溝通。

我有好幾位物理學家同僚已經做過相關的電腦模擬,包括環繞黑洞軌道運行時,甚至墜入黑洞之後會見到的景象。這方面的頂尖專家有巴黎天文物理學研究院(institut d’astrophysiquede Paris)的阿蘭.雷佐羅(alain riazuelo),以及科羅拉多大學波德分校(University of colorado in Boulder)的安德魯.漢密爾頓(andrewhamilton)。安德魯拍攝過黑洞的電影,在世界各地的天象館放映;阿蘭則是曾經模擬過像「巨人」這種轉速非常、非常高的黑洞。

所以,本來我一開始是打算讓奧利弗聯絡阿蘭、安德魯兩人,請他們提供必要的輸入程式。但這決定讓我遲疑了好幾天,最終改變了心意。

投入物理學研究半個世紀以來,我一直致力於發掘新創見,也努力指導學生研究與發現。我問自己,為什麼不能來點改變,做點好玩的事,即便已經有人比我更早做過那件事?於是我真的親自投入其中,結果證實它確實很有趣,而且出乎我的意料,它還衍生出了「副產品」:一些(不大不小的)新發現。

我用愛因斯坦的物理學相對論定律,也大幅仰賴其他人業已完成的研究,尤其是法國宇宙理論實驗室(laboratoire Univers etTheories)的布蘭登.卡特(Brandon carter),以及哥倫比亞大學(columbia University)的珍娜.萊文(Janna levin)兩人的成果,成功寫出了奧利弗需要的方程式。

這組方程式能算出光線的軌跡,描繪它們如何從光源,例如一顆遙遠恆星,向內偏轉、穿越「巨人」翹曲的空間和時間,最後射入照相機。接著,我的方程式從這些光線算出照相機看到的影像,而且不只考慮到光源和「巨人」對空間和時間造成的翹曲,還把照相機環繞「巨人」的運動也納入考量。

方程式寫好後,我將它們導入一種非常便利、名為Mathematica的電腦計算軟體。然後,我拿我的Mathematica 代碼做出來的影像和雷佐羅的影像進行對照比較,結果兩邊相符,讓我非常振奮。寫下這組方程式的詳細說明後,我將它們連同我的Mathematica代碼寄給在倫敦的奧利弗。我的代碼跑得非常慢,解析度也很低。奧利弗的挑戰就是,要把我的方程式轉換成能夠產出電影所需的超高品質iMaX 影像電腦指令碼。

奧利弗和我按部就班進行下去。我們從一顆不自旋黑洞和一台不移動的照相機開始。接著,我們添上黑洞的自旋,然後又增添了照相機的運動:先環繞圓形軌道運行,然後一頭栽入一個黑洞裡。接下來我們轉向處理一台環繞蟲洞的照相機。

進行到這裡,奧利弗丟給我一枚迷你炸彈:在模擬更精密的效果時,光靠能描述光線軌跡的方程式是不夠的,他還需要能夠描述當一束光線行進通過黑洞之時,其截面尺寸、形狀如何改變的方程式。

這問題該怎麼解決,我多少有點概念,只是那組方程式實在複雜到稱得上恐怖,而我很怕自己會犯錯。

於是我搜尋技術文獻,結果發現在一九七七年,多倫多大學(University of Toronto)的瑟奇.皮諾特(Serge Pineault)和羅勃.羅德爾(rob roeder)已經導出必要的方程式,而且和我需要的形式幾乎是一致的。我花了三個星期處理他們的方程式,奮力克服我自己的愚鈍,做出完全符合必需形式的成果,接著再次導入Mathematica 並為奧利弗寫下說明,讓他將成果併入他自己的電腦指令碼。

最後,他的電腦指令碼終於可以產出電影所需的高品質影像,但是在「雙重否定」這邊,奧利弗的指令碼只是個起點而已。

他將指令碼交給歐吉妮.馮.騰澤爾曼領導的藝術小組,由他們加上一個吸積盤(第九章),並設計出背景星系,當中的星群和星雲受到「巨人」的透鏡效應所影響。接著,她的小組再將「永續號」、「漫遊者號」和登陸艇,以及照相機動畫(它的變換運動、方向和視野等)添加上去,再將這些影像塑造為極逼真的形式:片中實際呈現的精彩場景。更深入討論請見第九章。

在此同時,我看著奧利弗和歐吉妮寄給我的高解析度影片段落不斷思索,努力想破解為什麼這些影像會呈現這個樣子,以及恆星場為什麼是這樣流動。

對我個人來說,這些影片鏡頭就如同實驗資料:它們揭露了一些事,例如前面我為圖8.5 和8.6 所做的說明;要不是有這些模擬成果,單憑我自己是永遠想不透的。我們計畫發表一、兩篇技術論文來說明我們從中學到的新知識。

重力彈弓效應成像作業

螢幕截圖 2015-05-22 13.14

儘管克里斯多福決定不在《星際效應》片中呈現重力彈弓效應的鏡頭,但我還是很想知道:當庫柏駕著「漫遊者號」飛向米勒的星球時,他看到的是什麼景象?於是我用我的方程式和Mathematica來模擬這些情況,並製作成影像,但因為我的電腦碼相當緩慢,因此影像解析度遠低於奧利弗和歐吉妮的作品。

圖8.7 的一連串畫面顯示,當庫柏駕駛「漫遊者號」繞過一顆中等質量黑洞、準備往米勒的星球下降時,他眼中看見的景象─這是我就《星際效應》提出的科學家詮釋。事實上,這正是圖7.2 所描繪的彈弓效應。

最上幅的影像中,「巨人」位於背景,中等質量黑洞從它的前方通過。中等質量黑洞逮住發自遙遠恆星射向「巨人」的光線,使它繞過自己,再將光線拋向照相機。這就能解釋,為什麼中等質量黑洞陰影的周圍會出現狀似甜甜圈的星光。

另外,儘管這顆中等質量黑洞的尺寸只有「巨人」的千分之一,但它和「漫遊者號」之間的距離,比「巨人」和「漫遊者號」之間近得多,因此看來只稍小一些。

 

而由於照相機是隨著彈弓助推作業運行,從鏡頭看來,中等質量黑洞是朝右運行,因此它會隨之脫離「巨人」映襯背側的主陰影(圖8.7 中圖),同時將「巨人」陰影的一個次級影像向前推。

這兩個影像,完全可以和一顆恆星受黑洞重力透鏡影響產生的主影像和次級影像相提並論,只是這裡是「巨人」的陰影受到中等質量黑洞的透鏡效應所影響。

在最底下的影像中,次級陰影的尺寸隨著中等質量黑洞向前行進而逐漸縮小。這時候,彈弓助推作業已經快要完成了,「漫遊者號」搭載的照相機也鏡頭朝下,指向米勒的星球。

儘管這些都是令人嘆服的影像,卻只能從中等質量黑洞和「巨人」的近距離位置觀看,從地球遙望是看不到的。對地球上的天文學家來說,巨型黑洞最令人嘆服的景象,是從黑洞向外凸伸的噴流,以及環繞黑洞的燦爛熱氣圓盤。接下來我們就來討論這些現象。

0217信任本文摘自泛科學2015五月選書《星際效應:電影幕後的科學事實、推測與想像》,漫遊者文化出版。

文章難易度
azothbooks_96
38 篇文章 ・ 11 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

1
0

文字

分享

0
1
0
為什麼花錢買票看贗品?每分鐘都有一位傻 B 誕生
寒波_96
・2022/11/18 ・2454字 ・閱讀時間約 5 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

造假是人類複雜心智的一大產物,歷史上各式各樣的作假、贗品層出不窮。作家 Kristine De Abreu 在 ExplorersWeb 網站的文章[參考資料1],整理歷史上的 6 起贗品案例,時過境遷後回顧,這些造假頗有趣味。

龐貝石碑

6 起案例最早的是龐貝石碑。這個「龐貝」不是義大利那個龐貝城,在紐約。公元 1820 年有人找到一塊石碑,上頭有看似陌生的圖像、文字,但是無人能釐清來歷。此後衍生出不少相關的假說與討論。

1894 年,工程師史威特(John Edison Sweet)出面宣稱那是他叔叔的惡作劇。這類藍色窗簾的案例十分普通,也很常見。

龐貝石碑,現在擺在當地的地方小博物館展示。圖/參考資料1

卡迪夫巨人

1868 年,當時某些基督教信徒根據「創世記」,主張世界上曾經有巨人漫步。美國的無神論者胡爾(George Hull)設局惡搞,製作石頭巨人誆騙信徒,希望藉此證明他們是一群盲信的傻B。

惡搞產品身高 3 公尺,重 1350 公斤,成本 2600 美金(約現在的 54000 元)。本來想運到墨西哥,但是太重,最後埋在紐約的卡迪夫親戚家,1869 年「發現」後被稱為卡迪夫巨人(Cardiff Giant)。

假巨人騙到一些人,不過也很快被識破。後來有人以 23000 美金收購(約現在的 50 萬元)。不論當初意圖是否達到,胡爾都大撈一筆。

當時有位東搞西搞的掮客……沒禮貌,是知名經紀人巴納姆(P.T Barnum) 想買卻被拒絕。於是巴納姆也製作自己的巨人,還宣稱那才是真正的假貨 XDDD

假巨人當時興起一股熱潮,許多觀眾付費參觀。對於這些花錢看假貨的觀眾,有人表示:「每分鐘都有一位傻 B 誕生(There’s a sucker born every minute)」。這句流傳頗廣的話,到底是誰講的其實沒有定論,不過江湖傳言就是巴納姆自己。

卡迪夫巨人 1869 年的照片。圖/New York State Historical Association Library

伊特拉斯坎勇士雕像

美國的里卡狄兄弟(Pio Riccardi 和 Alfonso Riccardi)與其兒子們,有一門獨特的家族事業:偽造雕像。他們在 1915 到 1918 年製作 3 具 2 公尺高的伊特拉斯坎勇士雕像(Etruscan Terracotta Warriors),並成功賣給紐約的大都會博物館。

伊特拉斯坎文化位於義大利,年代早於羅馬帝國,歷史應該超過 2000 年,可是雕像狀態太好,有人懷疑是假的。1960 年代費歐拉凡提(Alfredo Fioravanti)出面承認,他當初協助兩兄弟造假。

一群當年世界頂尖的專家,散發滿身的權威感,架勢十足地檢視皮爾當人,卻沒人察覺這批「化石」是徹徹底底的偽物。圖/John Cooke 作於 1915 年

皮爾當人

前幾起贗品案都無傷大雅,但是皮爾當人(Piltdown Man)深深地傷害學術。它可謂人類演化研究史上,最大的造假醜聞。

1912 年,名字和達爾文(Charles Darwin)有點像的英國業餘研究者道森(Charles Dawson)宣稱,在薩塞克斯發現古人類的化石,引發一陣轟動。他在 1915 年又宣布找到化石,這批化石後來合稱「皮爾當人」。

當時一些學者認為,皮爾當人可以填補演化史上,人與猿的缺失環節。英國出土的化石,也支持大英帝國在人類演化史上的地位。業餘人士道森一心想躋身上流,加入英國皇家學會,最終卻沒有如願,在 1916 年去世。

一直有人懷疑皮爾當人的真實性。終於在 1953 年證實皮爾當人分別具有人與猿的特徵,根本是因為皮爾當人不是一個人,而是由猿和人的骨頭拼裝而成。

偽造的伽利略手稿。圖/密西根大學

伽利略手稿

美國的密西根大學 1934 年購入一份「伽利略手稿」,據說是伽利略本人 1609 年的手筆。造假兼打假專家威爾丁(Nick Wilding)在 2022 年 8 月證實,那是假的。決定性的證據來自紙張上的 BMO 水印,它要等到 1770 年才出現,遠遠晚於伽利略的年代。

推測這份假貨來自造假名人尼可查(Tobia Nicotra),他在 1930 年代復刻哥倫布、莫札特、林肯等等名人,製作超過 600 件贗品。

偽造的維京人文蘭地圖。圖/耶魯大學

維京人的文蘭地圖

有些贗品花費數十年破解,有些則一開始就知道是假的,後來再漸漸補足證據。就像某些偵探故事,一開始就知道誰是兇手,後來才釐清作案過程,可謂證明題。

美國的耶魯大學 1960 年代取得一份 15 世紀地圖,上頭繪有文蘭(Vinland),也就是維京人在美洲的殖民地。幾乎一開始就判斷這份地圖是假的,不過做證明題也有意思,圍繞其衍伸出有趣的議題。現在知道,此圖字體不符合年代以外,使用墨水含有天然的鈦,證實這是晚於 1920 年代的字跡。

至於維京人是否曾經抵達美洲?1960 年代在這份贗品地圖出現不久後,考古學家於加拿大東北部的紐芬蘭,尋獲蘭塞奧茲牧草地遺址(L’Anse aux Meadows),證實維京人確實在美洲留下足跡。只是文蘭在哪裡,仍是謎題。

參考資料

  1. Why Did They Do It? Six Archaeological Forgeries and the People Behind Them
  2. Analysis unlocks secret of the Vinland Map — it’s a fake

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
178 篇文章 ・ 703 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

0
1

文字

分享

0
0
1
重力塌縮是什麼?──《跟著怪咖物理學家一起跳進黑洞》
聯經出版_96
・2016/04/10 ・2326字 ・閱讀時間約 4 分鐘 ・SR值 486 ・五年級

重力塌縮是什麼?

按照一般的想法,與地球同樣質量,但半徑只有 8.9mm 的星球──物質緊密的塞到那種地步的終極重星,應該是不可能存在吧?很多人會想,這畢竟只是空想出來的理論。

但是在第二次世界大戰開始的一九三九那年。科學家羅伯特.歐本海默(Julius Oppenheimer)發表了「星球應該因為重力崩塌而誕生」的理論。歐本海默是製造出原子彈的人,美國羅沙拉摩斯國立研究所所長,曼哈頓計畫負責人。他是個理論物理學家,所以也研究星球的一生。

所謂的重力塌縮是這樣的:

【P47-圖9】跟著怪咖物理學家一起跳進黑洞!

太陽在這裡(圖 9),太陽因為核融合而燃燒,內部製造出極為驚人的能量(大家就是靠著這個能量才能像現在這樣生活),為了製造驚人的能量,類似這種太陽的恆星,會發生不斷向外擴張、再擴張的力量。

另一方面,太陽擁有極大的質量,因為它的質量,也產生向中心落下、再落下的重力。那種「向外擴張、再擴張的力量(能量)」和「往內側落下的力量(重力)」一般會達到平衡狀態。科學家說, 像太陽那樣的星球, 大概可以活到 100 億歲。太陽現在正好是中年,大約 50 億歲左右。它幾乎── 90 億年以上都會維持這樣的安定。向外擴大的力量和因重力而掉落的力量,一直保持在平衡狀態。

但是,物質一定有結束的一天。太陽的終點是什麼呢?就是燃料用盡。太陽燃燒氫(原子序數 1) —原子序數是原子核中,質子的數量—變成氦(2),進而氦與氦又會變成鈹(4),氫(1)與氦(2)融合就會變成鋰(3),周期表中的輕原子轉變成重原子──它們的原子核融合了—核融合最後將會停止在鐵(26)形成時。因為鐵原子不會再核融合,它是最安定的物質。

因為這個緣故,太陽漸漸年老,燃燒的物質燒完,向外擴張的能量變弱……在某一瞬間,重力贏過了能量,這就是星球的末日。重力獲勝,向中心塌縮的現象,就叫做「重力塌縮」。

所有的物質都變成十萬分之一大小

你能想像星球因為自己的重力而坍塌的樣子嗎?話說回頭,「物體坍塌」是什麼意思?比如說,這裡有個橡皮擦,就算我再怎麼用力捏,也不會把它壓扁,因為它很密實。星球的內部也相當密實,哪有什麼地方供它坍塌呢?其實是有的。

就是這個:

原子是由原子核與環繞它的電子構成。

中心的原子核非常非常小,大概是整個原子的 10 萬分之 1 大。假設原子有這個會場這麼大(幾十公尺),原子核大概只有自動鉛筆筆芯的直徑。原子的內部其實很空洞。像橡皮擦,外表看起來好像很密實,但它是由原子構成的,所以內部也很空,多的是塌縮的空間。其實它可以縮小成 10 萬分之 1 大小的空間。

那麼,為什麼壓不扁它呢?因為我的力量太弱。如果有恆星那種程度的重力,力量就很大,是可以把它壓扁的。至於塌縮是怎麼一回事呢?電子原本都在固定的軌道上,塌縮就表示它掉到原子核上。電子與原子核(的質子)黏在一起,就會變成中子

以太陽為例,它是由氫與氦等各種原子構成的,但如果所有的電子都落到它的原子核上的話,各種原子也都變成了中子。星球變成一大塊中子──稱之為中子星

【P49】跟著怪咖物理學家一起跳進黑洞!

到這時候,體積變得極小──10 萬分之 1 的尺寸,但質量還是同樣巨大的星球不就誕生了嗎?歐本海默這麼認為。

體重決定死法

各位,你們知道星球也有壽命吧。壽命到了盡頭,星球也會死的。就如剛才說的,當核融合結束的瞬間,星球就死亡了。相反的,「星球誕生」指的是核融合開始的時候。塵埃(粒子)因為重力吸引而聚集、開始核融合的那一刻—發出耀眼光線的那一刻,星球就誕生了。而像地球這種不會發生核融合的星球,從一開始就死了

而且,星球也像人一樣,有不同的死法。人有很多死法,而星的死法卻按體重的大小早就決定了。也就是說,輕和重的死法不相同。胖子快死的時候不太漂亮,相反的,瘦子可以死得很美。

超新星爆炸!

【P51-圖10】跟著怪咖物理學家一起跳進黑洞!

這裡畫的「紅巨星」,是快死的老人星(圖10),燃燒的物質不斷在減少。

一般人形容星球的大小,常用「太陽的幾倍」的說法。在太陽的 8 倍大以內都可以算是「瘦子」。這顆老人星如果是那種瘦子星的話,剛才說的重力塌縮會在半途停止。它不會完全塌縮,變成一塊中子,在氫和氦等「燃燒物質」還殘留的狀態停止重力塌縮。由於核融合還在繼續,所以會發出微弱的光,是一種美麗的死法,以這種方式死去的星,叫做「白矮星」(圖 10)。

但是,比太陽大 10 倍以上的胖子星會變成什麼樣呢?因為重力太大,它會以猛烈的力道塌縮。燃燒物質一用完,便急速收縮,因為力道太猛烈,物質激烈碰撞而產生爆炸。這種爆炸叫做「超新星」(super nova),聽過嗎?你也可以在「超新星」後加上爆炸, 叫它超新星爆炸。還沒有到﹁ 超﹂ 程度的爆炸,就叫「新星」(nova)。

順便一提,為什麼它明明要「死了」,卻叫做「新星」呢?因為從前並不知道這是星球死掉的狀態。它本來是一顆會發光的恆星,但是因為距離地球太遠了,我們看不見。但在它死掉的瞬間,因為爆炸而發出極為明亮的光,古代人看到時便說「啊,那裡有一顆新的星星!是新星啊!」於是就這麼取名了。其實它不是新生的星,而是死亡的星,但古代人不知道。它有這麼個歷史的緣由。


0010708410

 

 

你一定聽過黑洞、時間旅行、暗物質、蟲洞、希格斯粒子、空間扭曲、相對論……但你真的「知道」那是什麼嗎?快跟著《跟著怪咖物理學家一起跳進黑洞》吧!(本書由 聯經出版

聯經出版_96
27 篇文章 ・ 16 位粉絲
聯經出版公司創立於1974年5月4日,是一個綜合性的出版公司,為聯合報系關係企業之一。 三十多年來已經累積了近六千餘種圖書, 範圍包括人文、社會科學、科技以及小說、藝術、傳記、商業、工具書、保健、旅遊、兒童讀物等。

0

0
1

文字

分享

0
0
1
「巨人」的解剖構造─《星際效應》
azothbooks_96
・2015/05/22 ・5043字 ・閱讀時間約 10 分鐘 ・SR值 546 ・八年級

只要知道黑洞的質量和自旋速率,我們就能從愛因斯坦的相對論定律推導出它的其他特性:大小、重力的引力強度、它的事件視界受離心力影響在赤道附近向外伸展多遠,以及它的重力透鏡效應如何影響其背後的星體。一切的一切。

這實在非常神奇,跟我們的日常經驗是那麼不同。

這就好比只要知道我的體重,還有我能跑多快,就能夠推導出關於我的一切:我的眼珠是什麼顏色、鼻子有多長、智商有多高⋯⋯我的恩師惠勒─創造「黑洞」這個名稱的人─用「黑洞沒有毛」這句話來描述這一點:黑洞它別無其他獨立特性,除了質量和自旋之外。

所以,其實他應該說「黑洞只有兩根毛,而你可以從這兩根毛推導出關於它的一切」才對。但這句話實在不如「沒有毛」那麼順口,於是「沒有毛」這個用詞很快在黑洞這門學問和科學家的語彙中生根。

從《星際效應》片中所述米勒的星球所屬特性,懂得愛因斯坦相對論定律的物理學家,就能推導出「巨人」的質量和自旋,從而得知有關那個黑洞的其他所有特質。讓我們看看這是怎樣辦到的。

「巨人」的質量

05-22 12.27.19米勒的星球(第十七章會大篇幅討論它)和「巨人」貼得很近,只隔著一段讓它得以存續的最短可能距離。

我們會知道這一點,是因為庫柏一行人在這裡損失極大量的時間,這只有在非常靠近「巨人」的地方才可能發生。

在那麼近的距離下,「巨人」的潮汐重力作用(第四章)會特別強大。它拉扯著米勒的星球朝向與遠離「巨人」,並擠壓星球的側邊(圖6.1)。

這種拉伸和擠壓的力道,與「巨人」質量的平方成反比。為什麼?

當「巨人」的質量愈大,它的圓周也愈長,於是「巨人」作用於米勒星球各不同部位的重力強度也會比較相近,而這麼一來,潮汐力就會比較弱(見牛頓對潮汐力的觀點;圖4.8)。

經過許多精密的運算後,我推斷出:「巨人」的質量至少必須達到太陽質量的一億倍。「巨人」的質量若低於這個數值,它就會撕裂米勒的星球!

我在《星際效應》一片中提出的科學詮釋,全都是假設「巨人」的質量就是這麼大:相當於一億顆太陽。

比方說,第十七章談到「巨人」的潮汐力時,我就是設定它具有這種質量,據此說明它如何在米勒的星球上掀起滔天巨浪,向「漫遊者號」撲來。

黑洞事件視界的周長,與黑洞的質量成正比。以「巨人」相當於一億顆太陽的質量來計算,可得出視界的周長大約相當於地球的繞日軌道:十億公里左右。真的很大!

富蘭克林的視覺特效團隊和我商議後,採用了這個周長來打造《星際效應》片中的影像。

物理學家認為黑洞的半徑等於其視界周長除以2π( 約6.28)。由於黑洞的內部有極高度的翹曲現象,所以那並非黑洞的真正半徑─不是在我們這處宇宙中所測得的從視界到黑洞中心的真正距離,而是在「體」之中測得的事件視界半徑;見圖6.3 的下部。

在這種意義下,「巨人」的半徑約為一億五千萬公里,相當於地球繞日軌道的半徑。

「巨人」的自旋

當克里斯多福.諾蘭告訴我,他希望時間在米勒的星球上減速多少─他要那裡的一個小時等於老家地球上的七年─我聽了後整個傻眼。我覺得那是不可能的,所以我告訴克里斯多福辦不到。

但他堅決地表示:「沒有商量餘地。」於是我只能回家埋頭苦思(這不是頭一遭,也不是最後一次),用愛因斯坦的相對論方程式算了又算,終於想出一個辦法。

我發現,假如米勒的星球和「巨人」之間相隔的距離,約等於不會讓它墜入黑洞的最近距離,16 加上如果「巨人」自旋的速度夠快,則克里斯多福的「一小時等於七年」的時間減速作用是有可能辦到的。但「巨人」的轉速必須非常非常快。

黑洞的自旋速率有一個最大值。當自旋速率高於這個最大值,它的視界就會消失,使整個宇宙都看得到它裡面的奇異點;意思是,它整個裸露在外,一無遮掩─這恐怕不是物理定律所能容許的事(第二十六章)。

我發現,想達到克里斯多福的時間極度減速要求,「巨人」的轉速就必須逼近最大值,只比最大值低約百兆分之一。我在《星際效應》片中所做的科學詮釋,大多採用這個自旋速率。

當機器人塔斯墜入「巨人」時(圖6.2),18「永續號」的成員可以從非常、非常遙遠的地方直接觀測「巨人」的自旋速率。

從遠處看去,塔斯始終沒有跨入視界(因為當它跨入其中後,就無法把信號傳出黑洞)。事實上,塔斯的墜落速度看起來整個慢了下來,而且好像盤旋在視界的正上方一樣。當塔斯在盤旋時,從遠處看去,它也被捲進「巨人」的旋動空間,繞著「巨人」一圈圈打轉。而由於「巨人」的自旋速度非常接近可能的最大值,因此從遠處看去,塔斯的軌道周期約為一個小時。

2 12.34.25

你可以自己動手計算一下:環繞「巨人」運行的軌道距離為十億公里,塔斯只花一個小時就跨越那段距離,所以,從遠處測定的結果,塔斯的速度約為每小時十億公里,這已經接近光速了!

倘若「巨人」自旋速率高於最大值,塔斯就會快馬加鞭以超光速繞行黑洞,而這違反了愛因斯坦的速度限制。這樣思考下來,你就會明白為什麼黑洞的自旋速率要有一個可能的最大值。

我在一九七五年發現了一種大自然藉此防範黑洞自旋速率超過最大值的機制:當黑洞的自旋速率接近最大值時,它很難再捕獲繞軌方向與黑洞本身旋轉方向相同的物體,否則該物體一旦被捕獲,就會提高黑洞的自旋轉速。

但黑洞可以輕易捕獲繞軌方向與黑洞本身旋轉方向相反的物體,而該物體一旦被捕獲,就會減緩黑洞的自旋轉速。所以,當黑洞自旋速率接近最大值時,會很容易減緩下來。

我的這個發現,重點在討論一種盤狀氣體構造,有點像是土星環,而且和黑洞自旋以同方向繞軌運行。它叫做吸積盤(accretiondisk,第九章)。

吸積盤內的摩擦力,會導致氣體逐漸螺旋墜入黑洞中,並提高其轉速。摩擦還會使氣體升溫,使之放射出光子。黑洞周圍的空間旋轉作用會抓住與黑洞自旋同向行進的光子,將它們向外甩去,於是光子進不了黑洞。

相對地,空間旋轉也會抓住試圖與自旋反向行進的光子,將它們吸進黑洞,從而減緩自旋轉速。最後,當黑洞自旋達到最大值的0.998 倍時,就會達到一種均勢,這時候,被捕獲光子所造成的減速作用,正好抵銷了吸積氣體造成的加速作用。這種均勢看來還算穩健。就大多數天文物理環境來說,我認為黑洞的自旋都不會比最大值的0.998 倍左右還快。

但我可以想像在某些情況下─非常罕見,或永遠不會出現在真實宇宙,只是仍然有可能性─自旋可以極逼近這個最大值,甚至逼近到可以讓時間在米勒的星球上減速、達到克里斯多福的要求:比速率最大值只低了百兆分之一的自旋─這雖然不太可能,卻還是有可能。

要拍出好電影,高明的電影人經常得把事情推到極致。這在電影界是司空見慣的事。就《哈利波特》這類科學奇幻片來說,它的極致狀況遠遠踰越了科學可能性的邊界。至於科幻片的極致狀況,則一般都約束在可能性的範疇之內。

這就是科學奇幻片和科幻片的主要區別。《星際效應》是一部科幻片,不是科學奇幻片。「巨人」的最高自旋轉速,在科學上是有可能成真的。

「巨人」的解剖構造

決定「巨人」的質量和自旋速率之後,我再用愛因斯坦的方程式估算出它的構造。就像前一章的做法一樣,這裡我們只先專心討論外部構造,內部(尤其是「巨人」的奇異點)就留待第二十六和二十八章再討論。

圖6.3 的上半圖,顯示從「體」審視「巨人」赤道面時所見的形狀。它和圖5.5 非常相像,只是由於「巨人」的自旋轉速遠遠更為逼近可能之最大值(百兆分之一相對於圖5.5 的千分之二),因此「巨人」的咽喉也長了更多,向下延伸很大的長度才觸及視界。從「體」觀察它,視界附近看來就像個長形圓柱。圓柱形部份的長度,約兩倍於視界的周長,也就是二十億公里。

5.12

圖中的圓柱的截面都呈圓形,不過倘若我們移動脫離「巨人」的赤道面,恢復我們的「膜」的第三次元,那些截面就會變成壓扁的球面(球狀體)。

我在「巨人」的赤道面上標出好幾個特殊位置,它們全都含括在我對《星際效應》的科學詮釋之中,諸如:

  • 黑圈:「巨人」的事件視界;
  • 綠圈:臨界軌道─電影接近尾聲時,庫柏和塔斯就是從這裡墜入「巨人」(第二十七章);
  • 藍圈:「米勒的星球」的軌道(第十七章);
  • 黃圈:停駐軌道─庫柏一行人探訪米勒的星球時,「永續號」停駐在此;
  • 紫圈:「曼恩的星球」從非赤道面突伸進入「巨人」赤道面的片段軌道。

在這當中,由於「曼恩的星球」軌道的外側部份偏離「巨人」極遠(約相當於「巨人」半徑的六百倍或更遠;第十九章),因此我必須用大上許多的比例尺再另外畫一張圖來表現它(圖6.3 的下半圖),但儘管我已經這麼做了,還是沒有據實將它畫出來。我把它的外側部份畫在只跟「巨人」相隔一百倍半徑距離的位置上,事實上應該相隔六百倍半徑才對。

除了上述細節之外,還有一個紅圈,我標示為「光殼」,意指「火光殼層」(shell of fire, Sof);詳情請見下文。

我是怎麼決定這些位置的?這裡我先舉停駐軌道為例,之後再討論其他的位置。

庫柏在電影裡是這樣描述這個停駐軌道:「所以我們進入『巨人』一條比較大圈的軌道,跟米勒的星球平行,只是稍微偏外側一些。」他還希望這個停駐軌道能和「巨人」保持充分的距離,這樣才能「避開時間偏移」,意思是,和「巨人」保持一段「時間減速作用不會與地球時間相差過大」的距離。

這促使我最後選定「巨人」五倍半徑的距離(圖6.3 下半圖的黃圈)。「漫遊者號」從這條停駐軌道航向米勒的星球得花兩個半小時─這一點,也強化了我這個決定。

但是這個決定有個問題。在這個距離之下,「巨人」會看起來非常龐大;它會跨越「永續號」約五十度的天空。那景象,簡直令人歎為觀止。但這樣有氣魄的場景太早出現在電影裡─這可不是大家樂見的!於是克里斯多福和保羅決定,從停駐軌道看到的「巨人」尺寸必須大幅縮小,從五十度變成約兩度半,相當於我們從地球看月球所見尺寸的五倍大小─仍然相當可觀,但不至於大到嚇人。

光殼

「巨人」的附近,重力非常強大,空間和時間也翹曲得非常厲害,導致光線(光子)有可能被困在視界外側的軌道上,不斷環繞黑洞無數圈之後才逃逸散去。

這麼看來,視界外側的軌道其實是不穩定的,因為最後光子終究會逃逸。(相對地,視界內側被捕獲的光子就永遠出不來了)我習慣把這種短暫「受困」的光稱為「火光殼層」,簡稱「光殼」。它在構成《星際效應》片中「巨人」視覺外觀基礎的電腦模擬作業(第八章)上扮演非常重要的角色。

就不自旋黑洞來說,光殼是個球面,周長為視界周長的一.五倍。受困的光線在這個球面上,順著大圓(就像我們的地表恆定經線)一圈圈繞行;當中有些逸入黑洞中,其餘的向外流洩,遠離黑洞。當黑洞加速自旋,光殼也同時分別朝內、外擴展,從而擁有了一定的體積,而不只是一個球體的表面而已。

以「巨人」來說,由於它的自旋速率極高,赤道面的光殼於是從圖6.3 的底部紅圈,擴展到上方紅圈,規模大到連米勒的星球和臨界軌道都含括在內,甚至比這還更大更遠!

圖6.3 底部的紅圈是順著「巨人」自旋方向(順行)、一圈圈繞行「巨人」的一道光線(光子軌道),上方的紅圈則是與「巨人」自旋方向逆向運行(逆行)的光子軌道。很顯然的,空間旋動使順行光線與視界貼得很近─逆行光線則沒那麼靠近─又不至於落入黑洞。

.49.44

由此可見,空間旋動的影響是多麼巨大!赤道面上、下空間被光殼占據的範圍,如圖6.4 所示。這是一個很大的環形區域。這幅插圖省略了空間翹曲現象,因為呈現空間翹曲就無法畫出光殼完整的三個次元。

圖6.5 所示為暫時困在光殼中的光線(光子軌道)之幾個範例。黑洞就位於這些軌道的中央。最左側的軌道盤繞著一個較小球體的赤道區域,始終與「巨人」的自旋同向順行。它和圖6.3 底部與圖6.4 內側的紅圈幾乎完全相同。

圖6.5 中,左邊第二條軌道則環繞著一個稍大球體,行進方向接近兩極並稍微偏順行。第三條軌道的環繞範圍還更大,但方向為逆行,並接近兩極。第四條軌道非常貼近赤道並逆向行進,亦即與圖6.3 上方與6.4外側的紅色赤道軌道相似。

.52.01

這些軌道其實是彼此相互交疊的,這裡我將它們拆開來描繪以便檢視。

暫時困在光殼中的光子有些會向外逸出,螺旋行進脫離「巨人」黑洞;其餘的光子則向內螺旋行進逃向「巨人」,一頭栽入視界中。

那些險些受困但成功脫逃的光子,對《星際效應》片中「巨人」的視覺外觀有非常重大的影響:它們勾勒出「永續號」隊員眼中所見的「巨人」陰影邊緣,並在陰影邊緣製造了一道明亮的細線:「火環」(ring of fire)─我們在第八章會談到它。

0217信任本文摘自泛科學2015五月選書《星際效應:電影幕後的科學事實、推測與想像》,漫遊者文化出版。

azothbooks_96
38 篇文章 ・ 11 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。