0

0
0

文字

分享

0
0
0

該怎麼知道黑洞長怎樣?塑造《星際效應》裡的「巨人」形象 ─《星際效應》

azothbooks_96
・2015/05/22 ・6517字 ・閱讀時間約 13 分鐘 ・SR值 553 ・八年級

黑洞不會發光,因此想看到「巨人」,只能從它如何影響其他物體發出的光來觀測。《星際效應》片中出現的其他物體有:一個吸積盤(第九章)和它棲身的星系,以及星系中的星雲、多采多姿的星場。為求簡單起見,這裡讓我們只把恆星納入討論。

螢幕截圖 2015-05-22 13.10.15

「巨人」在這個星場上投落一個黑影,還偏折了每顆恆星發出的光線,扭曲了照相機鏡頭見到的星空樣式。這種扭曲現象就是第三章討論過的重力透鏡效應。

圖8.1 顯示星場前方有一顆快速自旋的黑洞( 讓我們稱它為「巨人」)。從它的模樣看來,你應該是從「巨人」的赤道面上進行觀測。

「巨人」的陰影是一片全黑的區域。緊貼著陰影外緣,有一道非常細窄、被稱為「火環」的星光環圈。這裡我做了一點強化處理,使暗影邊緣更為明顯。

-----廣告,請繼續往下閱讀-----

圈環之外,我們看到一片繁密星空呈同心殼層的圖樣─重力透鏡效應造成的結果。

當照相機環繞「巨人」軌道運行,恆星場看起來也隨之移動。這種運動與透鏡效應結合,便造成光線急遽變動的圖樣。有些區域的星光以高速川流而過,另有些區域的星光緩緩地飄移,還有些區域的星光滯留不前。參見本書網頁

我會在本章內說明這所有的特徵,從陰影和它的火環開始,接著會說明《星際效應》片中的黑洞影像是如何製作出來的。

我在本章描繪的「巨人」影像是一顆快速自旋的黑洞,因為它必須快速自旋,才會產生「永續號」隊員所經歷的(相對於地球的)時間極大量流失現象(第六章)。

-----廣告,請繼續往下閱讀-----

然而,如果「巨人」高速自旋,陰影的左緣就會出現扁平現象(圖8.1),恆星流的軌跡和吸積盤也會出現某些怪異的特徵,可能會因此令廣大觀眾困惑不解,因此克里斯多福.諾蘭和保羅.富蘭克林決定:讓電影中的「巨人」影像呈現較小幅度的自旋─最大值的六成。參見第九章最後一段。

警告:下面三個小節的內容有可能相當耗費腦力,但各位也可以選擇略過,不會因此跟不上本書其餘的篇幅。不用擔心!

黑洞的陰影和外緣火環

光殼(第六章)是產生「巨人」陰影和周邊火環的關鍵要素。圖8.2中,光殼是環繞「巨人」的紫色區域,含括險些受困之光子的軌跡(光線),如右上方的小圖所示。

螢幕截圖 2015-05-22 13.10.53

假設你位於黃點的位置。白色光線A、B與其他同類光線會為你帶來火環的影像,黑色光線A和B則為你帶來陰影邊緣的影像。舉例來說,白色光線A是從距離「巨人」很遠的某顆恆星發出的,光線向內行進,困陷在「巨人」赤道面上之光殼的內緣,在那裡被空間旋轉帶動,一圈圈地飛繞,然後才逸出並進入你的眼簾。

-----廣告,請繼續往下閱讀-----

同樣標示為A的黑色光線發自「巨人」的事件視界,它向外行進,同樣困陷在光殼的內緣,在那裡繞了一圈又一圈,之後才逸出並與白色光線a 一併傳抵你的眼簾。白色光線為你帶來細環的片段影像,黑色光線則帶來陰影邊緣的片段影像。光殼是促使兩種光線合併行進的功臣,還能引導它們朝你的雙眼射來。

黑、白色光線B的情況也雷同,但它們是困陷在順時針旋轉(奮力對抗著空間旋轉)的光殼之外緣,而光線A是困陷在逆時針旋轉(被空間旋轉帶動)的光殼之內緣。

圖8.1 的陰影左緣出現扁平現象,右緣則變得渾圓,這是由於(左緣的)光線A是發自光殼內緣非常接近視界的位置,而(右緣的)光線B是發自光殼外緣的非常外側之處。

圖8.2 的黑色光線C和D起點位於視界,向外行進並困陷在光殼的非赤道軌道上,然後逸出受困軌道,射向你的眼簾,也把位於赤道面外側之陰影邊緣的片段影像傳送過來。光線D的受困軌道如右上方小圖所示。

-----廣告,請繼續往下閱讀-----

白色光線C和D(圖中未顯示)都來自遙遠的恆星,和黑色光線C和D一起受困,然後一同向你的雙眼射來,一併帶來火環的片段影像和陰影邊緣的片段影像。

不自旋黑洞的透鏡效應

下面要說明位於陰影外的恆星在重力透鏡影響下呈現的模式,了解它們在照相機移動下表現的流動形態。首先讓我們從不自旋黑洞開始,選一顆恆星檢視它發出的光線(圖8.3)。

螢幕截圖 2015-05-22 13.11.04

恆星發出兩束光線向照相機行進。它們在黑洞翹曲空間各盡己能沿著最筆直路線行進,但都受到翹曲作用影響而偏向彎折。一束偏折光線繞過黑洞左側向照相機射來;另一束則從右側繞過來。兩束光線都將自身的恆星影像傳給照相機。照相機鏡頭接收到的兩個影像如圖8.3 小圖所示。我用紅圈將兩個影像框起來,將它們與照相機可見的其他恆星區隔開來。

注意:和左方的恆星影像相比,右方影像和黑洞陰影之間的距離近上了許多。

-----廣告,請繼續往下閱讀-----

這是由於它的偏折光線是從比較靠近黑洞事件視界的地方通過所致。其他恆星也都在這張照片中出現了兩次,分別位於黑洞陰影的兩側。你能不能找出其中幾對?

照片中可見黑洞的陰影區,所有朝這裡射去的光線,都無法進入照相機鏡頭;參見上圖標示「陰影」的三角形區域。所有「想要」進入陰影區的光線,都會被黑洞逮住並吞噬。

當照相機沿著軌道向右運行(圖8.3),鏡頭所見的星光形態也隨之改變,如圖8.4 所示。

螢幕截圖 2015-05-22 13.11.16

這張圖裡有兩顆恆星被特別標示出來。一顆用紅圈框起來(就是圖8.3 中那一顆)。另一顆用黃色方框標示。每顆恆星我們各看到兩幅影像:一幅位於粉紅圓圈之外,另一幅位於圈內。我們稱這道粉紅色圓圈為「愛因斯坦環」(einstein ring)。

-----廣告,請繼續往下閱讀-----

當照相機向右移動,影像就沿著黃色和紅色曲線移動。愛因斯坦環之外的恆星影像(讓我們稱它們為「主影像」)移動方式一如預期:從左到右平順行進,但移動時會偏離黑洞。(各位能不能想出來:為什麼不是朝向黑洞而是偏離?)

然而,位於愛因斯坦環內的「次級影像」,卻以出乎意料的方式移動:它們看來是從陰影右緣出現,在陰影和愛因斯坦環之間的環形區域向外移動,往左繞過陰影,然後回頭朝陰影邊緣下行。

回頭再看一次圖8.3 上方圖,你就可以明白了。

右方的光線從黑洞近處通過,因此右方恆星影像會位於黑洞陰影的近處。當照相機早先比較靠近左方時,右方光線必須從更靠近黑洞的區域通過、更大幅地彎曲,才能射抵照相機,因此右方的影像非常靠近陰影的邊緣。相對地,在稍早之前,左方光線是從離黑洞相當遠的區域通過,因此它近乎筆直,產生的影像也離黑洞相當遙遠。

-----廣告,請繼續往下閱讀-----

現在,如果你準備好了,請往下完整地想一遍這些影像的後續運動,如圖8.4 所示。

快速自旋黑洞的透鏡效應:以「巨人」為例

「巨人」以非常高速的自旋帶動空間旋轉,改變了重力透鏡效應。圖8.1(「巨人」)的星光形態和圖8.4(不自旋黑洞)的星光形態看來有點不同,但流動模式的差別還更大。

螢幕截圖 2015-05-22 13.11.59

就「巨人」來說,流動模式中(圖8.5)可以看到兩個愛因斯坦環,如粉紅色曲線所示。外環外側的星群朝右流動(例如,沿著兩條紅色曲線移動),圖8.4 的不自旋黑洞也出現相同情況。不過,空間的旋轉將星群流動匯聚成沿著黑洞陰影後緣分布的高速窄小條帶(strip),而這些條帶在赤道一帶大幅度急遽彎曲。此外,空間的旋轉還讓流動產生渦流(紅色封閉曲線)。

各恆星的次級影像分別出現在兩道愛因斯坦環之間,各幅次級影像則分別沿著一條封閉曲線(如圖示的兩條黃色曲線)循環運行,而且循環方向和外環外側的紅色流動運動相反。

「巨人」的天空有兩顆非常特別的恆星,重力透鏡效應對它們不起作用。其中一顆位於「巨人」北極正上方,另一顆位於「巨人」南極正下方。兩顆都可以跟位於地球北極正上方的北極星相提並論。我在「巨人」這兩顆極星的主影像(紅色)和次級影像(黃色)位置都畫上了星形符號。

由於我們人類是由地球的旋轉帶著一起轉動,因此地球天空的恆星看起來全都繞著北極星循環運行。同理,當照相機沿著繞「巨人」軌道運行之時,這個黑洞的所有恆星主影像也都繞著紅色極星影像循環運行,但它們的循環路徑(如圖示那兩道紅色渦流曲線)都受到空間旋轉和重力透鏡效應影響而嚴重扭曲。再同理,恆星的次影像也全都繞著黃色極星影像循環運行(如圖示那兩道扭曲的黃色曲線)。

為什麼不自旋黑洞(圖8.4)的次級影像,看來就像從黑洞的陰影浮現,繞行黑洞,然後調頭下行進入陰影,而不像「巨人」(圖8.5)那樣沿著一條閉合曲線循環繞行?

事實上,不自旋黑洞的次級影像,正是沿著閉合曲線循環繞行,只是閉合曲線的內緣十分貼近陰影邊緣,我們看不到它而已。至於「巨人」,它的自旋帶動了空間旋轉,空間旋轉又帶動愛因斯坦內環向外移動,使次級影像的完整循環模式顯露出來(圖8.5的黃色曲線),也顯露出愛因斯坦內環。

愛因斯坦內環以內的流動形態則比較複雜。這個區域裡的恆星,是這個宇宙內所有恆星的三級影像和更高級別影像─跟位於愛因斯坦外環以外之主影像和位於兩道愛因斯坦環間之次級影像所代表的那些恆星是一樣的。

我在圖8.6 列出了「巨人」赤道面的五幅小圖,其中「巨人」本身以黑色描繪,照相機的軌道以紫色曲線表示,並以紅色代表光線。光線將藍色箭頭尖端位置上的恆星影像傳給照相機,而照相機是順時針方向環繞「巨人」運行。

螢幕截圖 2015-05-22 13.13.20

各位可以自行逐一審視這些小圖,將能從中更深入領會重力透鏡效應。要注意的是:恆星的實際方位,是朝上偏右(見紅色光線的外側端點)。照相機,以及各束光線的起點,都指朝恆星影像。

第十級影像非常靠近陰影的左緣,右側那幅次級影像則很靠近右緣;比對照相機拍攝這兩幅影像時的指向,我們可以看出,陰影對向角約為一百五十度朝上。

但事實上,照相機對著「巨人」中心的真正方向是朝左並朝著上方。透鏡效應讓陰影相對於「巨人」的實際方向出現了位移。

打造《星際效應》片中的黑洞和蟲洞視覺特效

克里斯希望「巨人」的樣子,就如同實際貼近觀察自旋黑洞所看到的真實模樣,因此他要保羅和我交換意見。

保羅安排我聯絡他的視覺特效工作室「雙重否定」在倫敦籌組的《星際效應》團隊。到後來,我和他們的首席科學家奧利弗.詹姆斯建立起密切的合作關係。奧利弗和我用電話和Skype 聯繫,透過電郵和電子檔案來交換意見,也曾在洛杉磯或他的倫敦辦公室見面商討。奧利弗在大學主修光學和原子物理學,理解愛因斯坦的相對論定律,因此我們能用相同的技術語言溝通。

我有好幾位物理學家同僚已經做過相關的電腦模擬,包括環繞黑洞軌道運行時,甚至墜入黑洞之後會見到的景象。這方面的頂尖專家有巴黎天文物理學研究院(institut d’astrophysiquede Paris)的阿蘭.雷佐羅(alain riazuelo),以及科羅拉多大學波德分校(University of colorado in Boulder)的安德魯.漢密爾頓(andrewhamilton)。安德魯拍攝過黑洞的電影,在世界各地的天象館放映;阿蘭則是曾經模擬過像「巨人」這種轉速非常、非常高的黑洞。

所以,本來我一開始是打算讓奧利弗聯絡阿蘭、安德魯兩人,請他們提供必要的輸入程式。但這決定讓我遲疑了好幾天,最終改變了心意。

投入物理學研究半個世紀以來,我一直致力於發掘新創見,也努力指導學生研究與發現。我問自己,為什麼不能來點改變,做點好玩的事,即便已經有人比我更早做過那件事?於是我真的親自投入其中,結果證實它確實很有趣,而且出乎我的意料,它還衍生出了「副產品」:一些(不大不小的)新發現。

我用愛因斯坦的物理學相對論定律,也大幅仰賴其他人業已完成的研究,尤其是法國宇宙理論實驗室(laboratoire Univers etTheories)的布蘭登.卡特(Brandon carter),以及哥倫比亞大學(columbia University)的珍娜.萊文(Janna levin)兩人的成果,成功寫出了奧利弗需要的方程式。

這組方程式能算出光線的軌跡,描繪它們如何從光源,例如一顆遙遠恆星,向內偏轉、穿越「巨人」翹曲的空間和時間,最後射入照相機。接著,我的方程式從這些光線算出照相機看到的影像,而且不只考慮到光源和「巨人」對空間和時間造成的翹曲,還把照相機環繞「巨人」的運動也納入考量。

方程式寫好後,我將它們導入一種非常便利、名為Mathematica的電腦計算軟體。然後,我拿我的Mathematica 代碼做出來的影像和雷佐羅的影像進行對照比較,結果兩邊相符,讓我非常振奮。寫下這組方程式的詳細說明後,我將它們連同我的Mathematica代碼寄給在倫敦的奧利弗。我的代碼跑得非常慢,解析度也很低。奧利弗的挑戰就是,要把我的方程式轉換成能夠產出電影所需的超高品質iMaX 影像電腦指令碼。

奧利弗和我按部就班進行下去。我們從一顆不自旋黑洞和一台不移動的照相機開始。接著,我們添上黑洞的自旋,然後又增添了照相機的運動:先環繞圓形軌道運行,然後一頭栽入一個黑洞裡。接下來我們轉向處理一台環繞蟲洞的照相機。

進行到這裡,奧利弗丟給我一枚迷你炸彈:在模擬更精密的效果時,光靠能描述光線軌跡的方程式是不夠的,他還需要能夠描述當一束光線行進通過黑洞之時,其截面尺寸、形狀如何改變的方程式。

這問題該怎麼解決,我多少有點概念,只是那組方程式實在複雜到稱得上恐怖,而我很怕自己會犯錯。

於是我搜尋技術文獻,結果發現在一九七七年,多倫多大學(University of Toronto)的瑟奇.皮諾特(Serge Pineault)和羅勃.羅德爾(rob roeder)已經導出必要的方程式,而且和我需要的形式幾乎是一致的。我花了三個星期處理他們的方程式,奮力克服我自己的愚鈍,做出完全符合必需形式的成果,接著再次導入Mathematica 並為奧利弗寫下說明,讓他將成果併入他自己的電腦指令碼。

最後,他的電腦指令碼終於可以產出電影所需的高品質影像,但是在「雙重否定」這邊,奧利弗的指令碼只是個起點而已。

他將指令碼交給歐吉妮.馮.騰澤爾曼領導的藝術小組,由他們加上一個吸積盤(第九章),並設計出背景星系,當中的星群和星雲受到「巨人」的透鏡效應所影響。接著,她的小組再將「永續號」、「漫遊者號」和登陸艇,以及照相機動畫(它的變換運動、方向和視野等)添加上去,再將這些影像塑造為極逼真的形式:片中實際呈現的精彩場景。更深入討論請見第九章。

在此同時,我看著奧利弗和歐吉妮寄給我的高解析度影片段落不斷思索,努力想破解為什麼這些影像會呈現這個樣子,以及恆星場為什麼是這樣流動。

對我個人來說,這些影片鏡頭就如同實驗資料:它們揭露了一些事,例如前面我為圖8.5 和8.6 所做的說明;要不是有這些模擬成果,單憑我自己是永遠想不透的。我們計畫發表一、兩篇技術論文來說明我們從中學到的新知識。

重力彈弓效應成像作業

螢幕截圖 2015-05-22 13.14

儘管克里斯多福決定不在《星際效應》片中呈現重力彈弓效應的鏡頭,但我還是很想知道:當庫柏駕著「漫遊者號」飛向米勒的星球時,他看到的是什麼景象?於是我用我的方程式和Mathematica來模擬這些情況,並製作成影像,但因為我的電腦碼相當緩慢,因此影像解析度遠低於奧利弗和歐吉妮的作品。

圖8.7 的一連串畫面顯示,當庫柏駕駛「漫遊者號」繞過一顆中等質量黑洞、準備往米勒的星球下降時,他眼中看見的景象─這是我就《星際效應》提出的科學家詮釋。事實上,這正是圖7.2 所描繪的彈弓效應。

最上幅的影像中,「巨人」位於背景,中等質量黑洞從它的前方通過。中等質量黑洞逮住發自遙遠恆星射向「巨人」的光線,使它繞過自己,再將光線拋向照相機。這就能解釋,為什麼中等質量黑洞陰影的周圍會出現狀似甜甜圈的星光。

另外,儘管這顆中等質量黑洞的尺寸只有「巨人」的千分之一,但它和「漫遊者號」之間的距離,比「巨人」和「漫遊者號」之間近得多,因此看來只稍小一些。

 

而由於照相機是隨著彈弓助推作業運行,從鏡頭看來,中等質量黑洞是朝右運行,因此它會隨之脫離「巨人」映襯背側的主陰影(圖8.7 中圖),同時將「巨人」陰影的一個次級影像向前推。

這兩個影像,完全可以和一顆恆星受黑洞重力透鏡影響產生的主影像和次級影像相提並論,只是這裡是「巨人」的陰影受到中等質量黑洞的透鏡效應所影響。

在最底下的影像中,次級陰影的尺寸隨著中等質量黑洞向前行進而逐漸縮小。這時候,彈弓助推作業已經快要完成了,「漫遊者號」搭載的照相機也鏡頭朝下,指向米勒的星球。

儘管這些都是令人嘆服的影像,卻只能從中等質量黑洞和「巨人」的近距離位置觀看,從地球遙望是看不到的。對地球上的天文學家來說,巨型黑洞最令人嘆服的景象,是從黑洞向外凸伸的噴流,以及環繞黑洞的燦爛熱氣圓盤。接下來我們就來討論這些現象。

0217信任本文摘自泛科學2015五月選書《星際效應:電影幕後的科學事實、推測與想像》,漫遊者文化出版。

-----廣告,請繼續往下閱讀-----
文章難易度
azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
1

文字

分享

0
4
1
快速通道與無盡地界:科幻作品裡的黑洞——《超次元.聖戰.多重宇宙》
2046出版
・2024/02/08 ・4430字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

星際捷徑

一個無底深淵怎能成為星際飛行的捷徑呢?原來按照愛因斯坦的理論,黑洞是一個時空曲率趨於無限大——也就是說,時空本身已「閉合」起來的區域。但往後的計算顯示,若收縮的星體質量足夠大的話,時空在閉合到某一程度之後,會有重新開敞的可能,而被吸入的物體,將可以重現於宇宙之中。只是,這個「宇宙」已不再是我們原先出發的宇宙,而是另一個宇宙、另一個時空(姑毋論這是甚麼意思)。按照這一推論,黑洞的存在,可能形成一條時空的甬道(稱為「愛因斯坦-羅森橋接」),將兩個本來互不相干的宇宙連接起來。

這種匪夷所思的推論固然可以成為極佳的科幻素材,但對於克服在我們這個宇宙中的星際距離,則似乎幫助不大。然而,一些科學家指出,愛因斯坦所謂的另一個宇宙,很可能只是這一宇宙之內的別的區域。如果是的話,太空船便可由太空的某處飛進一個黑洞之內,然後在遠處的一個「白洞」(white hole)那兒走出來,其間無須經歷遙遠的星際距離。把黑洞和白洞連結起來的時空甬道,人們形象地稱之為「蛆洞」、「蛀洞」或「蟲洞」(wormhole)。

科幻作品裡常以穿越蟲洞作為星際旅行的快速通道。圖/envato

「蛆洞」是否標誌著未來星際旅行的「捷徑」呢?不少科幻創作正以此為題材。其中最著名的,是《星艦奇航記》第三輯《太空站深空 9 號》(Deep Space Nine, 1993-1999),在劇集裡,人類發現了一個遠古外星文明遺留下來的「蛆洞」,於是在旁邊建起了一個龐大的星際補給站,成為了星際航運的聚散地,而眾多精彩的故事便在這個太空站內展開。

我方才說「最著名」,其實只限於《星艦》迷而言。對於普羅大眾,對於「蛆洞」作為星際航行手段的認識,大多數來自二○一四年的電影《星際效應》(Interstellar,港譯:《星際啟示錄》),其間人類不但透過蛆洞去到宇宙深處尋找「地球 2.0」(因為地球環境已大幅崩壞),男主角更穿越時空回到過去,目睹多年前與年幼女兒生離死別的一幕。電影中既有大膽的科學想像,也有感人的父女之情,打動了不少觀眾。大家可能有所不知的是,導演基斯杜化.諾蘭(Christopher Nolan, 1970-)邀請了知名的黑洞物理學基普.索恩(Kip Thorne, 1940-)作顧問,所以其中所展示的壯觀黑洞景象,可不是憑空杜撰而是有科學根據的呢!

-----廣告,請繼續往下閱讀-----
星際效應裡的黑洞景象。圖/wikimedia

那麼蛆洞是否就是人類進行星際探險的寄託所在呢?

然而事情並非這麼簡單。我們不要忘記,黑洞的周圍是一個十分強大的引力場,而且越接近黑洞,引力的強度越大,以至任何物體在靠近它時,較為接近黑洞的一端所感受到的引力,與較為遠離黑洞的一端所感受到的,將有很大的差別。這種引力的差別形成了一股強大之極的「潮汐張力」(tidal strain),足以把最堅固的太空船(不要說在內的船員)也撕得粉碎。

潮汐張力的危險不獨限於黑洞,方才提及的中子星,其附近亦有很強的潮汐力。 拉瑞.尼文(Larry Niven, 1938-,港譯:拉利.尼雲)於一九六六年所寫的短篇〈中子星〉(Neutron Star),正以這一危險作為故事的題材。

尤有甚者,即使太空船能抵受極大的潮汐力,在黑洞的中央是一個時空曲率趨於無限,因此引力也趨於無限的時空「奇點」(singularity)。太空船未從白洞重現於正常的時空,必已在「奇點」之上撞得粉碎,星際旅程於是變了死亡旅程。

然而,往後的研究顯示,以上的描述只適用於一個靜止的、沒有旋轉的黑洞,亦即「史瓦西解」所描述的黑洞。可是在宇宙的眾多天體中,絕大部分都具有自轉。按此推論,一般黑洞也應具有旋轉運動才是。要照顧到黑洞自旋的「場方程解」,可比單是描述靜止黑洞的史瓦西解複雜得多。直至一九六三年,透過了紐西蘭數學家羅伊・卡爾(Roy Kerr, 1934-)的突破性工作,人類才首次得以窺探一個旋轉黑洞周圍的時空幾何特性。

-----廣告,請繼續往下閱讀-----
圖/envato

旋轉的黑洞

科學家對「卡爾解」(The Kerr solution)的研究越深入,發現令人驚異的時空特性也越多。其中一點最重要的是:黑洞中的奇點不是一個點,而是一個環狀的區域。即只要我們避免從赤道的平面進入黑洞,理論上我們可以毋須遇上無限大的時空曲率,便可穿越黑洞而從它的「另一端」走出來。

不用說,旋轉黑洞(也就是說,自然界中大部分的黑洞)立即成為科幻小說作家的最新寵兒。

一九七五年,喬.哈德曼(Joe Haldeman,1943-)在他的得獎作品《永無休止的戰爭》(The Forever War, 1974)之中,正利用了快速旋轉的黑洞(在書中稱為「塌陷體」——collapsar)作用星際飛行——以及星際戰爭得以體現的途徑。

由於黑洞在宇宙中的分佈未必最方便於人類的星際探險計劃,一位科學作家阿德里安.倍里(Adrian Berry,1937-2016)更突發奇想,在他那充滿想像的科普著作《鐵的太陽》(The Iron Sun, 1977)之中,提出了由人工製造黑洞以作為星際轉運站的大膽構思。

-----廣告,請繼續往下閱讀-----

要特別提出的一點是,飛越旋轉黑洞雖可避免在奇點上撞得粉碎,卻並不表示太空船及船上的人無須抵受極強大的潮汐力。如何能確保船及船員在黑洞之旅中安然無恙,是大部分作家都只有輕輕略過的一項難題。

此外,按照理論顯示,即使太空船能安然穿越黑洞,出來後所處的宇宙,將不是我們原先出發的那個宇宙;而就算是同一個宇宙,也很可能處於遙遠的過去或未來的某一刻。要使這種旅程成為可靠的星際飛行手段,科幻作家唯有假設人類未來對黑洞的認識甚至駕馭,必已達到一個我們今天無法想像的水平。

然而,除了作為星際飛行途徑,黑洞本身也是一個怪異得可以的地方,因此也是一個很好的科幻素材。黑洞周圍最奇妙的一個時空特徵,就是任何事物——包括光線——都會「一進不返」的一道分界線,科學家稱之為「事件穹界」(event horizon)。這個穹界(實則是一個立體的界面),正是由當年史瓦西計算出來的「史瓦西半徑」(Schwarzschild radius)所決定。例如太陽的穹界半徑是三公里,也就是說,假若一天太陽能收縮成一個半徑小於三公里的天體,它將成為一個黑洞而在宇宙中消失。「穹界」的意思就是時空到了這一界面便有如到了盡頭,凝頓不變了。

圖/envato

簡單地說,穹界半徑就是物體在落入黑洞時的速度已達於光速,而相對論性的「時間延長效應」(time dilation effect)則達到無限大。對太空船上的人來說,穿越界面的時間只是極短的頃刻,但對於一個遠離黑洞的觀測者,他所看到的卻是:太空船越接近界面,船上的時間變得越慢。

-----廣告,請繼續往下閱讀-----

而在太空船抵達界面時,時間已完全停頓下來。換句話說,相對於外界的人而言,太空船穿越界面將需要無限長的時間!

無限延長的痛苦

了解到這一點,我們便可領略波爾.安德遜(Poul Anderson, 1926-2001)的短篇〈凱利〉(Kyrie, 1968)背後的意念。故事描述一艘太空船不慎掉進一個黑洞,船上的人自是全部罹難。但對於另一艘船上擁有心靈感應能力的一個外星人來說,情況卻有所不同。理由是她有一個同樣擁有心靈感應能力的妹妹在船上,而遇難前兩人一直保持心靈溝通。由於黑洞的特性令遇難的一剎(太空船穿越穹界的一剎)等於外間的永恆,所以這個生還的外星人,畢生仍可在腦海中聽到她妹妹遇難時的慘叫聲。

安德遜這個故事寫於一九六八年,可說是以黑洞為創作題材的一個最早嘗試。

短篇〈凱利〉便是利用黑洞的特性——遇難的一剎等於外間的永恆——使生還者感受無盡的痛苦。圖/envato

太空船在穹界因時間停頓而變得靜止不動這一情況在阿爾迪斯一九七六年寫的《夜裡的黑暗靈魂》(The Dark Soul of the Night)中,亦有頗為形象的描寫。恆星的引力崩塌,在羅伯特.史弗堡(Robert Silverberg)的《前往黑暗之星》(To the Dark Star, 1968)之中卻帶來另一種(雖然是假想的)危險。故事中的主人翁透過遙感裝置「親身」體驗一顆恆星引力塌陷的過程,卻發覺時空的扭曲原來可以使人的精神陷於瘋狂甚至崩潰的境地。

-----廣告,請繼續往下閱讀-----

以穹界的時間延長效應為題材的長篇小說,首推弗雷德里克.波爾(Frederik Pohl, 1919-2013)的得獎作品《通道》(Gateway, 1977),故事描述人類在小行星帶發現了由一族科技極高超的外星人遺留下來的探星基地。基地內有很多完全自動導航的太空船,人類可以乘坐這些太空船穿越「時空甬道」抵達其他的基地,並在這些基地帶回很多珍貴的,因此也可以令發現者致富的超級科技發明。

故事的男主角正是追尋這些寶藏的冒險者之一。他和愛人和好友共乘一艘外星人的太空船出發尋寶,卻不慎誤闖一顆黑洞的範圍。後來他雖逃脫,愛人和好友卻掉進黑洞之中。但由於黑洞穹界的時間延長效應,對於男主角來說,他的愛人和好友永遠也在受著死亡那一刻的痛苦,而他也不歇地受著內疚與自責的煎熬。

故事的內容由男主角接受心理治療時逐步帶出。而特別之處,在於進行心理治療的醫生不是一個人,而是一副擁有接近人類智慧的電腦。全書雖是一幕幕的人機對話,描寫卻是細膩真摯、深刻感人,實在是一部令人難以忘懷的佳作。

圖/envato

由於這篇小說的成功,波氏繼後還寫了兩本續集:《藍色事件穹界以外》(Beyond the Blue Event Horizon, 1980)及《希徹會晤》(Heechee Rendezvous, 1984)。而且兩本都能保持很高的水準。

-----廣告,請繼續往下閱讀-----

時間延長效應並非一定帶來悲劇。在先前提及的《永無休止的戰爭》的結尾,女主角正是以近光速飛行(而不是飛近黑洞)的時間延長效應,等候她的愛侶遠征歸來,為全書帶來了令人驚喜而又感人的大團圓結局。

七○年代末的黑洞熱潮,令迪士尼(Walt Disney)的第一部科幻電影製作亦以此為題材。在一九七九年攝製的電影《黑洞》(The Black Hole)之中,太空船「帕魯明諾號」在一次意外中迷航,卻無意中發現了失蹤已久的「天鵝號」太空船。由於「天鵝號」環繞著一個黑洞運行,船上的人因時間延長效應而衰老得很慢。這艘船的船長是一個憤世疾俗的怪人,他的失蹤其實是故意遠離塵世。最後,他情願把船撞向黑洞也不願重返文明。

比起史提芬.史匹堡(Steven Spielberg, 1946-)的科幻電影,這部《黑洞》雖然投資浩大,拍來卻是平淡乏味,成績頗為令人失望。除了電影外,科幻作家艾倫.迪安.霍斯特(Alan Dean Foster, 1946-)亦根據劇本寫成的一本同名的小說。

這張圖片的 alt 屬性值為空,它的檔案名稱為 ___72dpi.jpeg

——本文摘自《超次元.聖戰.多重宇宙》,2023 年 11 月,二○四六出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。