0

0
0

文字

分享

0
0
0

電泳式和膽固醇式液晶電子墨水-電子紙系列報導

活躍星系核_96
・2011/10/06 ・2646字 ・閱讀時間約 5 分鐘 ・SR值 563 ・九年級

電子紙又可稱為軟性電子顯示器,該項產品的生產需要十多種技術間的互相配合。在與其它顯示器相比較下,是更希望可以突顯,具有「紙張」特色的顯示器。在高彩度、高亮度、低耗電、在自然光下能觀看的幾點要求下,目前最受矚目的技術主流有兩種:電泳式技術和膽固醇式液晶技術。而這兩種技術就好比印刷的墨水一般,讓電子紙在正確的位置上顯示出圖片和文字。

首先,在「自然光下可觀看」的條件,是希望電子紙能夠模仿普通紙張的特性,直接反射外界環境的光源,就立即達到顯示觀看效果,稱為「非自發光」;與「自發光」的顯示器,如:電視、i-phone、手機的原理不同。擁有電泳式技術的E Ink元太科技表示:「該技術的優點是運用周遭的光線去做閱讀,好比你盯住電視30秒,和盯著電子紙30秒,眼睛疲勞程度的感覺是不同的。電子紙在人體視覺接受度上比較舒適,而且也沒有輻射困擾,是極大優勢。」另外,膽固醇式液晶技術也是相同屬於非自發光類。

第二,在「低耗電」的要求下,電泳式技術和膽固醇式液晶技術都能夠做到,因為,兩者同樣屬於「雙穩態顯示技術」。雙穩態(bistable)是指可以不施加任何電壓維持在同樣的畫面,因為有兩個穩定狀態,故稱之。該技術的特點是,若不需更換螢幕資訊時,是可以關閉電源,螢幕是仍維持著原本的文字與圖片狀態,不會消失。只有在變換螢幕資訊內容時,才有必要通電。顯而易見的,雙穩態是一種具有非常省電特性的技術。

以下分別就電泳式技術和膽固醇式液晶技術的技術原理做簡單介紹:

-----廣告,請繼續往下閱讀-----

電泳式技術原理

具有百分之九十以上市佔率的E Ink元太科技公司,掌握了由美國E Ink創造的重要光學元件——「電子墨水」的關鍵技術。「電子墨水」是眾多電泳式技術的其中一種技術架構。

電子墨水聽起來是一種前端高科技的新潮技術,然而按照E Ink元太科技所公佈的說法,電子墨水與傳統印刷業使用的墨水相似,皆是利用當今印刷使用的顏料製成。不同之處在於,電子墨水是融合了現有化學、物理學和電子知識所創造的全新材料。經過這樣解釋,電子墨水反而與大眾親近不少,從肉眼來看,與一般普通墨水無異,然而電泳式技術背後的原理,卻牽連著視覺上黑白顏色的差別。

圖片來源:E Ink元太科技公司

電子墨水是一種可顯示黑白顏色的技術。內含有由數百萬個肉眼幾乎難以看見、微小的微膠囊,包覆成一顆顆的圓形狀的球體,稱之「微膠囊技術」。在每個微膠囊中含有電泳粒子,即帶正電的白色粒子,以及帶負電的黑色粒子,他們紛紛浸泡在懸浮液中。

-----廣告,請繼續往下閱讀-----

利用正負相吸的原理,當有電場接通,若黑色粒子球被正電荷吸引黏著於底部,使得白色粒子移動到上方,螢幕上顯示的便是白色影像。反之,白色粒子被負電荷吸引之處,而黑色粒子上升,該區塊肉眼所見的便是黑色。接著,可以運用相同原理,使得墨水顆粒擁有灰階的顏色。

智慧型墨水顯示器

擁有了電子墨水技術,顯示器的製造便是下一步的階段。將墨水抹一層於可彎曲的柔軟塑膠薄膜上做為基板,形成電路層板。電路層板由三樣材料構成,即是透明的前版、電子墨水和不透明後版,彷彿是三明治一般,將電子墨水塗抹、夾於中間層,雙眼由透光的前版面觀看,可以看見黑白色彩上變化,就是簡單的電泳式顯示器。而電子墨水最終將可讓生活周遭大部分的表面成為顯示器(如玻璃、纖維、塑膠),使得此項技術與其他產品結合後的應用面潛力無窮。

上述的電子墨水所擅長的是在黑白顯示方面,若想要讓畫面看起來五彩繽紛,E Ink元太科技的技術中,就必須加上一層彩色濾光片(Color Filter),讓光的三原色,紅、藍、綠混和調節後形成螢幕上的影像。然而現今所面臨的挑戰是,因其反射率會變低,在視覺上所展現的,便是全彩的飽和度上仍難達到令人滿意的狀態,且在靜態圖片的表現上較佳;若要展示動態影像,為了使反應速度加快,顏色純度就不如預期了。

-----廣告,請繼續往下閱讀-----

膽固醇式液晶技術原理

「從技術原理來看就不太一樣,電泳式是顆粒狀,而膽固醇式則呈現一片片的片狀」。工研院影像顯示科技中心面板整合技術副組長胥智文,用這句話來簡單告訴我們兩種技術的區別。因為E Ink在電泳式技術上擁有太多專利權,工研院便將膽固醇式列為重點發展技術,長年投入研發,企圖以另一種管道,開創電子紙技術的另一種可能性。

膽固醇式本身就是有顏色的液晶

「因為膽固醇本身的液晶排列,很像人體膽固醇結構的片狀,所以稱之為膽固醇。」。該技術可以視為液晶顯示器(LCD)的延伸,在顯微鏡下,很像線狀液晶。加入旋光劑後,液晶分子就會360度旋轉,旋轉360度後所需的分子厚度稱為旋距(pitch)。因為膽固醇式本身就是有顏色的液晶,當我們利用液晶分子的縮放調整旋距厚度時,會影響反射出來不同的顏色。如此一來,膽固醇式便輕易的達成人們對於彩色畫面的要求。反觀電子墨水,由於基本上只能呈現黑、白以及灰階的顏色,還需加上彩色濾光片後才有其他顏色的顯現。

-----廣告,請繼續往下閱讀-----

用單層結構顯示三原色

利用膽固醇式液晶可以反射出不同顏色效果的特質,美國大廠便提出以三層堆疊方式,將紅、綠、藍三層面板疊起,在運用上述的雙穩態原理,將每個面板驅動到亮態或暗態,顯現出不同顏色達到彩色的功用。

而工研院自行研發的單層結構顯示器,只用薄薄的一層便可以完成全彩的效果,不僅可避免掉,三層堆疊結構製做程序複雜的問題,還可有效降低成本,厚度更減少60%以上。其基本概念即是將單層面板畫分三條垂直的畫素區塊,使用真空注入的方式,分別將紅色、綠色、藍色液晶注入各個畫素區域內,並確保每個區塊不會混合。接著只要分別控制,彩色圖片的顯示品質之優質,甚至可以達到與筆記型電腦不分上下的程度。

黑白畫面與挑戰

-----廣告,請繼續往下閱讀-----

上述的膽固醇式液晶技術在彩色顯示方面較電子墨水更具有發展性。但是相較之下,因為膽固醇式是採用紅、綠、藍三種顏色面板的形式當作油墨,在黑白顏色的表現方面,白色看起來有點灰灰暗暗的,不若元太科技的電子墨水的黑白顏色展現。其次,膽固醇式的驅動電壓比較高,使得成本相對提高,廠商在成本考量下,多抱持著觀望態度。這也說明了膽固醇式液晶技術所面臨的挑戰。

 國科會科技新聞寫作班深度報導 楊瓊蘭 / 嚴巧珍 / 林姿吟

電子紙系列報導:

文章難易度
活躍星系核_96
752 篇文章 ・ 126 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
友達的不插電電子紙
only-perception
・2011/11/02 ・796字 ・閱讀時間約 1 分鐘 ・SR值 501 ・六年級

另一款彈性電子紙顯示器?不,是某種特別的東西。這款概念 e-reader 並沒有令人昏昏欲睡的無聊重複。這款概念 e-reader 上個月在日本的 FPD International 展出,那是聚焦在平面顯示器上的大展,時間是 10/26 到 10/28。事實上,那是一種頂尖的吸引力。這款來自台灣友達光電(AUO)的新裝置不需要額外的電力供應。

事情就是這樣,正如友達所稱的,不插電彈性電子紙顯示器(Unplugged Flexible E-paper Display)。

這款六吋閱讀器以可撓式有機 TFT(Rollable Organic TFT)電子紙製成,另有彈性光伏電池附加其上。閱讀器的解析度為 800 x 600 像素。

電子紙與 PV 電池的組合具吸引力,且某些人表示,那可能象徵著電子閱讀器的未來。談一談關於行銷者的夢想 — 如果這款裝置以電子閱讀器的形態上市的話,那時可以把不易損壞的彈性電子紙與有效率的部件當作賣點。

-----廣告,請繼續往下閱讀-----

使用者可將它們塞入他們的公事包或包包中,不必擔憂。該公司表示另一個加分項目是,該閱讀器的最佳化充電電路設計帶來電力節省。

PV 電池的尺寸為 132 x 212 x 0.3 公釐,重 10 克。太陽光可產生 1W 或更大的電力。來自於檯燈的強光正對著 PV 電池。一個可充電電池置於基座下。雖然該裝置在太陽底下能自我供電,但太陽能電池無法自室內照明產生足夠能量。這也是為何需要外部充電電池的緣故,這讓使用者可在室內使用該裝置。

在台灣電子紙的發展中,AUO 長久以來都是先鋒。在 2009 年,AUO 公開一款電子書閱讀器,具有在當時受矚目的特色:低耗電電子紙及觸控平板。

這款原型也是六吋,解析度跟 FPD 上的新顯示器一樣,也是 800 x 600 像素。該公司製造與銷售 TFT-LCDs、PDPs。AUO 在本地銷售自家產品,也出口到世界各地。

-----廣告,請繼續往下閱讀-----

AUO 今年的展示中帶來一批該公司在顯示技術上的關鍵成就。這些包括 65 吋 Extreme-PR 3D Gesture 顯示面板、 46 吋 Scanning Retarder 3D 顯示面板、65 吋透明顯示面板、 46 吋 Super Narrow Bezel 面板、 6 吋彈性顯示器,其智慧型手機顯示面板具高解析度與低耗電,一系列 AMOLED 顯示技術與應用。

資料來源:PHYSORG:E-paper unplugged is key draw at Japan show[November 1, 2011]

轉載自only-percpetion

only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

0
0

文字

分享

0
0
0
蠶絲-神的祝福-有機薄膜電晶體(OTFT)新發現(電子紙系列報導)
活躍星系核_96
・2011/10/09 ・1321字 ・閱讀時間約 2 分鐘 ・SR值 544 ・八年級

五苯環

有機薄膜電晶體(OTFT)之新發現,清華大學材料系黃振昌教授與博士班研究生王中樺、謝兆瑩2009年利用蠶絲做為介電層的材料,並成功開發出蠶絲成型技術發表在學術期刊上(Advanced Materials)並同時申請專利。蠶絲製作在低電壓的高性能五苯環有機薄膜電晶體,效率比以往使用的材料快上20倍,未來可讓電子紙或有機發光二極體螢幕具有相當程度的撓曲性。

什麼是有機薄膜電晶體呢(organic thin film transitor OTFT)?

「有機」,是在超市看到定義”有機”天然無添加人工色素的食物?不!那是吃的有機物,而「有機」薄膜電晶體,比較貼近以前在高中化學中對有機物和無機物的分類定義。

-----廣告,請繼續往下閱讀-----

在軟性電子元件上,作為主動層(Active layers)的有機薄膜有很多種類,目前介紹的五苯環(Pentacene)是普遍被應用在OTF上的有機薄膜主動層之一。主動層運用的有機材料有小分子「五苯環」 (pentacene)又稱並五苯、高分子及有機金屬錯合物,五苯環熔點是攝氏300度,沸點是攝氏529度,製成薄膜時為可透光的藍紫色,因為結構緊密,且五苯環的材質可以幫助電子移動速度變快,採用五苯環電晶體來製造元件,可以透過有機溶劑,直接鍍在作為電子紙張基板的塑膠表面。用五苯環電晶體控制電子墨水開關的元件,沒有五苯環電子紙就無法運作,此外,減少另外加上去的電路複雜度,產品的成本能降到最低。近年來都被應用在太陽能電池及可撓曲式的電子顯示器或電子紙上。

和氧化物半導體和非晶矽的薄膜電晶體的基板幫助電子紙呈現動靜態影像的差異,OTFT基板注重製造成本低廉、耐衝撞及具有可撓曲的優勢,並能提升電泳電子紙pixel解析度3倍,解析度達150dpi,長遠來看,OTFT是未來電子紙主要使用的元件。

神的賜福-蠶絲

蠶絲,也是製作電子產品的絕佳材料!清華大學材料系師生兩年前意外發現,從蠶絲萃取出蠶絲蛋白,製成蠶絲膜,可當作閘極介電層材料;最近又成功製成可在低電壓操作的高性能五苯環有機薄膜電晶體,未來可應用在電子紙或有機發光二極體螢幕的彎曲功能。

清華大學材料系黃振昌教授表示:「使用蠶絲做介電層材料,是個非常意外的事情,我們經過許多次考驗,最終獲得突破。使用蠶絲可以比原本的速度快上20倍,由這種蠶絲膜製成的電子書或電子紙,翻頁速度會快很多。」,譬如以時速80公里的車速從台北到高雄要4.5小時,現在只要12分鐘。

-----廣告,請繼續往下閱讀-----

蠶絲的製作成薄膜的過程,是先將蠶絲都丟到量杯裡煮滾成,拿去烘乾,烘乾後再切成小小塊,再丟入溶劑裡煮成蠶絲蛋白,最後將蠶絲蛋白塗抹在電晶體體的介電層部分。

因為有機電子正夯!或許電子紙的研究會因此發現更多可能性,清華大學材料系黃振昌教授所研發的蠶絲做介電層的材料,或許會對軟性有機電子紙產生相當深遠的影響,甚至會大大改變現今對電子紙的研發的可能性。

國科會科技新聞寫作班深度報導 楊瓊蘭 / 嚴巧珍 / 林姿吟

電子紙系列報導:

活躍星系核_96
752 篇文章 ・ 126 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia