0

0
1

文字

分享

0
0
1

誰該為Facebook的「過濾氣泡」現象負責?

活躍星系核_96
・2015/05/15 ・5181字 ・閱讀時間約 10 分鐘 ・SR值 594 ・九年級

文/新媒體世代 | What’s Next for New Media

當社群媒體逐漸融入日常生活,社會科學家們開始關心社群媒體對網路民眾可能造成的影響。雖然網路有助於人們看到更多元化的資訊,但是社群媒體獨有的運算機制(algorithm)卻可能選擇性地決定民眾看到的資訊內容,而著名的「過濾氣泡現象」(Filter Bubble)和「回聲室效應」(Echo Chamber)也應運而生 [1]。

「過濾氣泡」理論主張運算機制會依據網路民眾先前的網路行為(像是按讚、點擊和搜尋紀錄),決定民眾能夠看到的文章,網路媒體像是臉書和 Google 可以藉此來避免民眾看到和價值觀不符,或不感興趣的內容,導致民眾身處多同質性高的言論環境中;而「回聲室效應」則描述網路民眾更容易接觸到和自己意識形態相似,或是價值觀相符的資訊,進而使得民眾得到的網路訊息越來越趨單一化。

0-v1aCMXoCJBzQz68K

許多學者表示,暴露於多元言論和價值觀的機會,對於民主社會養成有正面影響,包括提高民眾對政治事件的興趣、增加對不同言論立場的包容性,以及提升政治知識等;而處在過高的同質性言論環境,則可能會造成像是態度極化等負面影響。然而也有學者指出,處在異質性的人際網絡中(network heterogeneity),部分個體可能會為了避免衝突而降低參與某些政治活動的意願 [2]。

-----廣告,請繼續往下閱讀-----

普遍來說,學者們對於網路媒體運算機制可能造成的影響,像是「過濾氣泡現象」和「回聲室效應」,都有諸多疑慮和批評。

然而,社群媒體的運算機制和相關數據大多是不公開資訊,進行運算機制實質影響的研究並不容易且不常見,因此當臉書研究員前幾天在《科學》(Science)期刊發表一篇最新報告「臉書上具多元意識形態的新聞與評論接觸」(Exposure to ideologically diverse news and opinion in Facebook),探討民眾臉書社群網絡組成,以及「用戶個人選擇」與「臉書運算機制」對民眾接觸對立政治立場文章的影響,該篇文章隨即在學術圈以及媒體產業界引起一陣熱烈討論。[3]

研究背景與重要發現

在提出這篇研究報告的相關評論前,先來細看重要的研究背景與發現。

研究背景:

-----廣告,請繼續往下閱讀-----
  • 研究樣本包括在 2014 年 7 月 7 日到 2015 年 1 月 7 日半年期間,在個人檔案上填寫政治立場的 1010 萬名 18 歲以上的美國活躍臉書用戶(每周需至少登入 4 天),以及約 23 萬筆有關「硬」新聞(像是全國新聞、政治和全球事務新聞等)的連結分享,而每則連結都需要在這半年期間,被至少 20 個前述回報個人政治立場的臉書用戶分享。
  • 研究將用戶回報的政治立場轉換成五點量表(-2:非常民主;+2:非常保守),由於只有 9% 的 18 歲以上美國臉書用戶填寫政治立場,且其中只有 46% 填寫政治立場的用戶其立場可以被轉換成五點量表,因此最終研究樣本大約只有所有美國臉書用戶的4% 。
  • 每則「硬」新聞連結的政治立場,是透過計算所有該則新聞分享者政治立場的平均值而得,該數值被稱為「內容對齊」(A 值; content alignment),正值代表分享文章立場趨保守派立場,而負值則表示分享新聞偏自由派立場。舉例來說,政治立場偏共和黨的 Foxnews.com 其 A 值為 +.80,而被認為偏民主黨的 Huffington Post 的 A 值為 -.65。

研究發現:

  • 研究樣本分享「硬」新聞的行為呈現極化現象,越容易被鮮明政治立場民眾分享的文章(極大或極小 A 值),也就是文章立場越認為越接近自由派或保守派時,分享次數越高。偏保守派文章的分享次數,也比偏自由派文章來得高。

FS4

  • 研究發現臉書用戶交友情況呈現同質性現象(homophily),政治立場偏自由派用戶的臉書朋友網絡中,有更高比例是同樣傾向自由派的用戶,反之亦然。
  • 研究分析用戶在四種狀況下看到(或點閱)的「交叉內容」(cross-cutting content),也就是和用戶政治立場對立的新聞文章。
  • 四種情況包括「隨機」(如果用戶能隨機看到所有臉書平台上的內容)、「潛在」(臉書好友們分享的所有內容)、「暴露」(經臉書運算機制調整後,出現在動態牆上的內容),以及「挑選」(用戶自行點擊文章連結)。隨著情況從「隨機」轉變為「潛在」、「暴露」以及「挑選」,用戶接觸的「交叉內容」比例也逐漸下降。換句話說,用戶的臉書交友圈、臉書運算機制,以及個人點擊選擇,都會逐項降低用戶看見的「交叉內容」比例。

FS14

  • 當處在「隨機」情況,用戶看見「交叉內容」比例最高(偏自由派用戶可以看見約 45% 的偏保守派內容,而偏保守派用戶可以看見約 40% 的偏自由派文章);如果考量用戶只能看見自己所有臉書朋友的分享內容(「潛在」情況),偏自由派用戶看見的偏保守內容下降為 24%,而偏保守派用戶可以看見約 35% 的偏自由派文章。這也表示,偏自由派用戶其臉書好友中,只有 24% 會分享對立立場(偏保守派)的文章,而偏保守派用戶的臉書朋友中,有較高比例(35% )會分享偏自由派立場的文章。
  • 該研究也分析四種情況轉變時,用戶看到「交叉內容」機率的變化:臉書機制對於自由派立場民眾的影響(8%)比對於保守派民眾的影響(5%)來得大;而個人點擊選擇對於保守派立場民眾的影響(17%),則比對於自由派民眾的影響(6%)來得大。

FS15

  • 該研究也證實文章在動態牆的排序,確實會影響文章被用戶點擊的機率。排序在臉書動態牆前面的文章,遠比下面的文章有更高的閱覽機會。臉書研究者也在文章中表示:「用戶在動態牆上看到文章的順序由許多因素決定,包括用戶拜訪臉書的頻率、他們和特定朋友的互動頻率,以及用戶過去多常點擊特定網站的連結。」

FS71

  • 整體而言,臉書用戶樣本平均只會點擊動態牆上 7% 的「硬」新聞內容。

該研究指出,和社會普遍對網路民眾「只會和意識形態相近者互動」的想像不同,研究結果證實民眾不是只會接觸到和自己立場相近的文章,社群媒體(臉書)還是會讓民眾閱讀到部分政治不同立場的新聞文章。研究也表示,「或許不意外地,我們的社群網路組成,是限制我們在社群媒體上看見多元內容最重要的因素。」[註1]

臉書研究員們為這篇研究報告下了個總結:「最後,我們的結果確切地顯示出,在臉書上的平均狀況而言,個人選擇比起運算機制,更容易限制用戶看見挑戰個人價值觀的內容」,以及「我們的研究結果建議,要讓個人在社群媒體有暴露於對立意識形態觀點的機會,用戶個人有首要及最關鍵的掌控權。」[註2]

社會科學家們的評論

這篇文章可以說是難得的透過臉書實際數據,來回答社會學家長久以來關心的社群媒體研究課題。只是,重要的研究價值雖然並引起眾多關注,卻也引來部分學者批評。

像是密西根大學傳播學系副教授克里斯提· 桑維(Christian Sandvig)發表一篇標題為「臉書的”這不是我們的錯”研究」,抨擊臉書研究中不合理之處,以及不尋常的論述包裝。北卡羅來納大學教堂山分校資訊與圖書館學系助理教授澤奈普·  圖費克吉(Zeynep Tufekci)也在網誌中寫道「我讀過很多學術研究文章,通常作者都會想方設法地突顯重要發現。然而(臉書的)這篇研究,卻盡可能地透過迂迴的言語和不相關的比較,來隱藏研究發現」。而「過濾氣泡現象」提出者伊萊·帕李澤(Eli Praiser)也立即對這篇研究做出回應,雖然用詞相較之下和緩許多,但是文中仍點出不少該研究不足之處。[4]

-----廣告,請繼續往下閱讀-----

為什麼臉書的研究文章會讓學者們產生這些批判呢?最重要的關鍵問題在於,研究最後總結表示「個人選擇」比起臉書的「運算機制」,更應該為臉書上的「過濾氣泡現象」和「回聲室效應」來負責。

FS181

學者們表示這樣的說法並不恰當,原因包括:

  • 伊萊·帕李澤表示,雖然研究證實用戶的「臉書社群組成」和「個人點擊」,都會降低用戶看到內容的多元性,但是臉書選擇強調這兩者比起「運算機制」扮演更重要的角色,似乎有些言過其實。他強調如果「臉書運算機制」的影響,和「社群組成」以及「個人點擊選擇」的個別影響相似,其實就已經是個嚴重問題。
  • 此外,如果比較臉書用戶在不同情況下看到「交叉內容」的機率,對於立場偏保守派的民眾而言,「運算機制」(5%)的確比起「用戶選擇」(17%)的影響來得低,但是對於立場偏自由派的民眾而言,「運算機制」(8%)比起「用戶選擇」(6%)的影響來得高。因此臉書研究的總結並未真實反映結果。
  • 學者們都指出,其實將「個人選擇」與「運算機制」做比較是非常不恰當且不合理的,因為兩者同時發生且存在明顯的回饋循環(feedback loop)關係。用戶個人做出的點擊選擇是基於臉書篩選後的結果,而臉書篩選的演算法則又是以用戶臉書使用紀錄為基準。更恰當的研究結果描述應該是,「個人選擇」和「運算機制」都會加強用戶的同質化資訊吸收。
  • 澤奈普·  圖費克吉認為,早在網路普及之前,學者們就開始針對個人會透過選擇性暴露(selective exposure)來挑選立場一致的言論及避免相左立場觀點的現象,進行深入研究。但是臉書運算機制會造成資訊選擇單一化的現象,卻是很重要的新發現,也不該被忽略。且「個人選擇」與「運算機制」間更適合的描述應該是加成而非比較關係,而學者們也應該著重於此加成關係的深遠影響。

此外,學者們表示研究員在結論中指出這些結果反映臉書上的「常態」,卻忽略此篇「研究樣本的特殊性」。在個人檔案上註明政治立場的樣本條件並不尋常,這些用戶相較一般臉書觀眾,可能政治意識形態特別強烈鮮明,或是對政治特別熱衷且積極。這些樣本的特殊性也解釋為什麼此篇研究最後樣本數,只佔所有臉書用戶的極小比例。

而學者們也點出其他的潛在研究限制,包括「硬」新聞連結的政治立場,是由文章分享者的立場,而不是依據文章來源的政黨傾向,或文章內容分析來決定(不過研究發現,此種計算方式得到的結果,很接近大眾平常對這些新聞媒體的政治立場認知),以及臉書「運算機制」隨時都在改變的特性(延伸閱讀:臉書更改運算機制?掌握 5 個核心法則加上 15 個 Dos and Don’ts),也會降低該篇研究結果的通則性。臉書研究員在文章中也表示,他們對於接觸和點擊文章的定義並不完善,像是有些文章的重要結論已經摘要在動態牆上,用戶並不需要透過點擊就可以看見。

-----廣告,請繼續往下閱讀-----

延伸想想:臉書研究的一堂課

當然,臉書願意進行研究並且公開分享成果的行為是值得鼓勵的,無論對於研究者、廣告商還是一般大眾來說,這些內部研究發現都可說是非常珍貴且重要,許多學者和廣告商們長久的疑問和猜測,也終於透過臉書的內部研究解開了部分謎團。

像是研究指出,對於少數會表明政治立場的臉書用戶,除了個人選擇(「好友組成」和「連結點擊」)外,臉書「運算機制」也被證實在某種程度上,會些微地降低用戶閱覽新聞的多樣性。平均來說,這些臉書用戶只會點閱臉書牆上不到一成的「硬」新聞(也就是超過九成的硬新聞連結都不會被用戶點擊),而政治立場越鮮明甚至極端的文章,被用戶分享的機率也更高。此外,動態牆上的新聞排列順序,也被證明確實會影響點閱機率且差異極大。

雖然臉書的研究成果提供非常多重要發現,只是,當商業公司提出學術發表時,也會被用更嚴格的眼光來審視,這也是為什麼學者們會提出諸多個人觀察和批判,希望幫助民眾更正確且深入地去解釋研究結果。

最後也不妨思考看看,是不是真的如臉書在研究最後總結,用戶個人(而非運算機制)該為臉書「過濾氣泡」現象負首要責任呢?

-----廣告,請繼續往下閱讀-----

——————————————————————————–

  • 註1:Perhaps unsurprisingly, we show that the composition of our social networks is the most important factor limiting the mix of content encountered in social media.
  • 註2:Finally, we conclusively establish that on average in the context of Facebook, individual choices more than algorithms limit exposure to attitude-challenging content… Our work suggests that the power to expose oneself to perspectives from the other side in social media lies first and foremost with individuals. (請參考文章最後一段的首句與末句)

參考資料:

  • [1] Praiser, E. (2011). The Filter Bubble: What the Internet is Hiding from You. New York, NY: The Penguin Press; Sunstein, C. (2007). Republic.com 2.0. Princeton, NJ: Princeton University Press.
  • [2] Kwak, N., Williams, A. E., Wang, X., & Lee, H. (2005). Talking politics and engaging politics: An examination of the interactive relationships between structural features of political talk and discussion engagement.Communication Research, 32, 87-111; Mutz, D. C. (2002). The consequences of cross-cutting networks for political participation. American Journal of Political Science, 46, 838-55; Mutz, D. C., & Mondak, J. J. (2006). The workplace as a context for cross-cutting political discourse. The Journal of Politics, 68, 140-155; Stroud, N. J. (2010). Polarization and partisan selective exposure. Journal of Communication, 60, 556-576.
  • [3] Bakshy, E., Messing, S., & Adamic, L. Exposure to ideologically diverse news and opinion on Facebook. Science. DOI: 10.1126/science.aaa1160.
  • [4-1] The Facebook “It’s Not Our Fault” Study. Social Media Collective [MAY 7, 2015]
  • [4-2] How Facebook’s Algorithm Suppresses Content Diversity (Modestly) and How the Newsfeed Rules Your Clicks.  Medium
  • [4-3]Did Facebook’s Big New Study Kill My Filter Bubble Thesis? Medium

——————————————————————————————————

本文轉載自新媒體世代 | What’s Next for New Media

-----廣告,請繼續往下閱讀-----

新媒體世代是由一個大眾傳播博士班學生和另一個關心新媒體的夥伴,一起成立的新部落格。我們希望藉由「新媒體世代」,讓各領域工作者能更深入認識新媒體架構出的新世界,並在傳統媒體與新媒體交會之際掌握趨勢。目前內容以分享歐美新媒體相關資訊,以及國內外新媒體圈大事件為主。網站文章除了以長篇形式,深入分析各新媒體事件外,還會以短摘形式,為大家精選更多新媒體訊息。歡迎有興趣的朋友們訂閱我們的 Facebook 專頁,獲得更多新媒體資訊!

 

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 127 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

2
0

文字

分享

1
2
0
AI 也會出差錯?使用人工智慧可能帶來的倫理與風險——《科學月刊》
科學月刊_96
・2023/02/19 ・3976字 ・閱讀時間約 8 分鐘

  • 甘偵蓉|清華大學人文社會 AI 應用與發展研究中心博士後研究學者。

Take Home Message

  • Facebook 或 Instagram 的訊息推薦、YouTube 或 Netflix 推薦觀賞影片、掃瞄臉部以解鎖手機,AI 應用早已在我們日常生活中隨處可見。
  • AI 應用中四種常見的倫理和風險:演算法偏誤、相關技術或產品偏離原先使用目的、擁有善惡兩種用途,以及演算法設計不良或現有技術限制。
  • 近年來各國家皆制訂有關 AI 發展的規範,臺灣則在 2019 年制訂「AI 科研發展指引」,期望能改善 AI 發展帶來的問題與風險。

當談到人工智慧(artificial intelligence, AI)、也就是 AI 時,讀者會想到什麼?是多年前由史匹柏(Steven Spielberg)導演的那部《A.I. 人工智慧》(A.I. Artificial Intelligence)中那個一直盼不到人類母愛而令人心碎的機器人小男孩?還是由史密斯(Will Smith)主演的《機械公敵》(I, Robot)裡那些沒遵守機器人三大法則的機器人或中央系統?

《A.I. 人工智慧》(A.I. Artificial Intelligence)電影海報,上映於 2001 年。圖/IMDb

或許未來有一天,人類真的可以設計出如電影中那些像人一樣的 AI 系統或機器人。但目前為止,你常聽到的 AI 其實既很厲害又很不厲害,為什麼呢?厲害的是它下圍棋可贏過世界冠軍,還能夠比放射科技師更快、更準確地辨識 X 光片中疑似病變的細胞;但它不厲害的是,很會下圍棋的 AI 就只能下圍棋,別說不會打牌,連撲克牌是什麼都不知道!而且每次學新事物幾乎都是打掉重練,得不斷做好多考古題才有可能學得會,不像人類通常教幾次就會舉一反三。

不過,即使目前世界上的 AI 都是這種只具備特定功能的「弱 AI」(artificial narrow intelligence, ANI),但已經為這個世界帶來相當大的進步與便利。所以,以下要談的就是 ANI 的倫理與風險。

談到這種只具特定功能的 ANI,讀者知道目前生活周遭有哪些事物有利用 AI 技術嗎?其實 Google 上的搜尋資訊、Facebook 或 Instagram 的訊息推薦、對智慧型手機喊「Siri 現在外面有下雨嗎?」等功能,或是以掃瞄臉部解鎖手機與進入大樓、YouTube 或 Netflix 推薦觀賞影片,甚至是投履歷求職、銀行審核貸款申請等都常用到 AI 技術,它早在我們日常生活中隨處可見。

-----廣告,請繼續往下閱讀-----
AI 技術在日常生活中隨處可見,如 YouTube 推薦觀看影片。圖/Pexels

但也正是如此,讓人們這幾年在使用 AI 時,逐漸發現它可能造成的問題或傷害,以下簡單介紹常見的四種AI應用可能造成的倫理問題或風險。

演算法偏誤

第一種是演算法偏誤(algorithmic bias)。什麼是演算法偏誤?簡單來說就是 AI 在某些群體的判斷準確率或預測結果上總是很差,導致結果可能對於此群體造成系統性的不利。但為何會造成演算法偏誤?常見原因有三項。

第一項原因是,建立 AI 模型的研究資料集有偏誤,在性別、種族、社經地位等特徵上,沒有真實世界的人口分布代表性。例如數位裝置採用 AI 臉部辨識技術解鎖,原本是希望保護個人使用數位裝置的安全性,結果皮膚深的人卻常常遇到辨識失敗而無法解鎖。這通常是因為目前許多 AI 模型都是以機器學習技術設計,而機器學習的主要特性就是從過去人類留下的大量資料中學習;當初提供電腦學習臉部辨識的圖片時,如果多數都是白皮膚而非黑皮膚、多數都是男性的臉而非女性的臉,那麼電腦在學習辨識人臉的準確率上,整體而言辨識男性白人就會比辨識女性黑人要高出許多。

第二項產生演算法偏誤的原因是建立 AI 模型的研究資料集不只有偏誤,還反映現實社會中的性別、種族、社經地位等歧視;例如美國警政單位以過往犯罪資料訓練出獄後犯人再犯風險評估的 AI 模型,那些資料不意外地有色人種的犯罪紀錄遠多於白人犯罪紀錄。然而,那些紀錄也反映美國社會長久以來對於有色人種的歧視,其中包含警察對於有色人種的盤查比例遠高於白人、法院對於有色人種的定罪比例及判刑嚴重程度也遠高於白人、警力通常被派往多黑人與拉丁裔人種居住的窮困社區盤查等。所以根據過往犯罪資料所訓練出來的 AI 模型,不意外地也就會預測有色人種的再犯機率普遍來說比白人高。

-----廣告,請繼續往下閱讀-----

第三項產生演算法偏誤的原因則是 AI 學會了連系統開發者都沒有察覺到,潛藏在資料裡的偏誤。例如科技公司人資部門本來想借助 AI 更有效率地篩選出適合來面試的履歷,所以挑選在該公司任職一定年資且曾升遷二次的員工履歷來訓練 AI 模型。問題是,高科技公司向來男多女少,所提供給 AI 學習的資料自然就男女比例相當不均。AI 也就學會了凡是出現偏向女性名字、嗜好、畢業學校系所等文字的履歷,平均所給的評分都比出現偏向男性等相關文字的履歷還低。

潛藏在資料裡的偏誤造成 AI 預測結果彷彿帶有性別歧視。圖/Envato Elements

但目前科技公司陽盛陰衰,是受到以往鼓勵男性就讀理工、女性就讀人文科系,或男性在外工作女性在家帶小孩等性別刻板偏見所影響。所以 20~30 年來許多人做出各種努力以消除這種性別刻板偏見所帶來的不良影響,政府也努力制定各種政策來消除這種不當的性別偏見,像是求才廣告基本上不能限定性別、公司聘雇員工應該達到一定的性別比例等。因此,訓練 AI 的研究資料一旦隱藏類似前述性別比例不均的現象,訓練出來的 AI 預測結果就彷彿帶有性別歧視,讓人們過往致力消除性別不平等的各種努力都白費了!

其他 AI 應用帶來的倫理與風險

除了演算法偏誤的問題外,第二種可能帶來的倫理問題或風險是 AI 技術已經偏離原先使用目的,例如深偽技術(deepfake)原本用來解決圖片資料量不夠的問題,後來卻被利用在偽造名人性愛影片等。

第三種則是有些 AI 技術或產品本身就可能有善惡兩種用途(dual-use)。例如 AI 人臉辨識技術可用在保護數位裝置的使用者或大樓保全,但也可用來窺探或監控特定個人;無人機可以在農業上幫助農夫播種,但也可作為自動殺人武器;可用來搜尋如何產生毒性最少的藥物合成演算法,也能反過來成為搜尋如何產生毒性最強的藥物合成演算法。

-----廣告,請繼續往下閱讀-----

最後,第四種是演算法設計不良或現有技術限制所導致的問題。在演算法設計不良方面,例如下棋機器人手臂可能因為沒有設計施力回饋或移動受阻暫停等防呆裝置,而造成誤抓人類棋手的手指且弄斷的意外。在現有技術限制方面,道路駕駛的交通標誌在現實中可能時常有老舊或髒汙的情況,儘管對於人類駕駛來說可能不影響判讀,但對於自駕車來說很可能就因此會嚴重誤判,例如無法正確辨識禁止通行標誌而繼續行駛,或是將速限 35 公里誤判成 85 公里等。但前述情況也有可能是自駕車網路、控制權限或物件辨識模型受到惡意攻擊所致。

以上介紹了 AI 常見的四種倫理問題或風險:演算法偏誤、相關技術或產品偏離原先使用目的、擁有善惡兩種用途,以及演算法設計不良或現有技術限制。但人們該如何減少這些倫理問題與風險呢?

培養AI使用倫理與風險的敏銳度

近五、六年來國際組織如聯合國教育科學及文化組織(United Nations Educational, Scientific and Cultural Organization, UNESCO)、歐盟(European Union, EU)、電機電子工程師學會(Institute of Electrical and Electronics Engineers, IEEE)或是國家、國際非營利組織皆紛紛制訂有關 AI 發展的白皮書或倫理指引(ethical guidelines),甚至逐漸朝向法律治理的方向,如歐盟的人工智慧規則草案等。儘管這些文件所提出的倫理價值、原則或行為規範,看似各有不同,但經過這些年的討論與摸索,也逐漸匯聚出一些共識。

「人工智慧科研發展指引」提出三項倫理價值,包含以人為本、永續發展、多元包容。圖/Pexels

臺灣相較於前述國際文件來說,在制訂的時間上比較晚。2019 年由當時的科技部(現改為國科會)制訂「人工智慧科研發展指引」,裡面提出的三項倫理價值以及八項行為指引,基本上涵蓋了前述各種國際 AI 發展指引文件最常提及的內容。所謂三項倫理價值包含以人為本、永續發展、多元包容,行為指引則有共榮共利、安全性、問責與溝通、自主權與控制權、透明性與可追溯性、可解釋性、個人隱私與數據治理、公平性與非歧視性共八項。

-----廣告,請繼續往下閱讀-----

未來當讀者看到又出現哪些 AI 新技術或產品時,不妨試著評估看看是否有符合這三項價值及八項行為指引。若沒有,究竟是哪項不符合?不符合的原因是上述所介紹常見的四種倫理問題或風險的哪一種?若都不是,還有哪些倫理問題或風險過去被忽略了但值得重視?

AI 技術發展日新月進,在日常生活中的應用也愈來愈廣。但考量法律條文有強制性,在制訂時必須相當謹慎,免得動輒得咎,也很可能在不清楚狀況下反而制訂了不當阻礙創新發展的條文;再加上法律制定也必須有一定的穩定性,不能朝令夕改,否則會讓遵守法規者無所適從。因此可以想見,法令規範趕不上新興科技所帶來的問題與風險本來就是常態,而非遇到 AI 科技才有這種情況。

人們若能培養自身對於 AI 倫理問題或風險的敏銳度,便可發揮公民監督或協助政府監督的力量,評估 AI 開發或使用者有無善盡避免傷害特定個人或群體之嫌,逐漸改善 AI 開發者與大眾媒體常過度誇大 AI 功能,但對於可能帶來的倫理問題或風險卻常閃爍其詞或避而不談的不好現象。

本文感謝工業技術研究院產業科技國際策略發展所支持。

  • 〈本文選自《科學月刊》2023 年 2 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
-----廣告,請繼續往下閱讀-----
所有討論 1
科學月刊_96
249 篇文章 ・ 3706 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
0

文字

分享

0
1
0
AI 的 3 種學習形式:不同的目標功能,不同的訓練方式——《 AI 世代與我們的未來》
聯經出版_96
・2022/12/27 ・2368字 ・閱讀時間約 4 分鐘

搭配不同的任務,人工智慧的應用方式也不一樣,所以開發人員用來創造人工智慧的科技也不一樣。這是部署機器學習時最基礎的挑戰:不同的目標和功能需要不同的訓練技巧。

機器學習最基礎的挑戰:不同目標和功能需配合不同訓練技巧。圖/Pexels

不過,結合不同的機器學習法,尤其是應用神經網路,就出現不同的可能性,例如發現癌症的人工智慧。

機器的 3 種學習形式

在我們撰寫本章的時候,機器學習的三種形式:受監督式學習、不受監督式學習和增強式學習,都值得注意。

受監督式學習催生了發現海利黴素的人工智慧。總結來說,麻省理工學院的研究人員想要找出有潛力的新抗生素,在資料庫裡放入二千種分子來訓練模型,輸入項目是分子結構,輸出項目是抑菌效果;研究人員把分子結構展示給人工智慧看,每一種結構都標示抗菌力,然後讓人工智慧去評估新化合物的抗菌效果。

-----廣告,請繼續往下閱讀-----

這種技巧稱為受監督式學習,因為人工智慧開發人員利用包含了輸入範例(即分子結構)的資料集,在這裡面,每一筆數據都單獨標示研究人員想要的輸出項目或結果(即抗菌力)。

開發人員已經把受監督式學習的技巧應用於許多處,例如創造人工智慧來辨識影像。為了這項任務,人工智慧先拿已經標示好的圖像來訓練,學著把圖像和標籤,例如把貓的照片和「貓」的標籤,聯想在一起,人工智慧把圖片和標籤的關係編碼之後,就可以正確地辨識新圖片。

貓貓!圖/Pexels

因此,當開發人員有一個資料集,其中每個輸入項目都有期望的輸出項目,受監督式學習就能有效地創造出模型,根據新的輸入項目來預測輸出項目。

不過,當開發人員只有大量資料,沒有建立關係的時候,他們可以透過不受監督式學習來找出可能有用的見解。因為網際網路與資料數位化,比過去更容易取得資料,現在企業、政府和研究人員都被淹沒在資料中。

-----廣告,請繼續往下閱讀-----

行銷人員擁有更多顧客資訊、生物學家擁有更多資料、銀行家有更多金融交易記錄。當行銷人員想要找出客戶群,或詐騙分析師想要在大量交易中找到不一致的資訊,不受監督式學習就可以讓人工智慧在不確定結果的資訊中找出異常模式。

這時,訓練資料只有輸入項目,然後工程師會要求學習演算法根據相似性來設定權重,將資料分類。舉例來說,像網飛(Netflix)這樣的影音串流服務,就是利用演算法來找出哪些觀眾群有類似的觀影習慣,才好向他們推薦更多節目;但要優化、微調這樣的演算法會很複雜:因為多數人有好幾種興趣,會同時出現在很多組別裡。

影音串流服務利用演算法,進而推薦使用者可能喜歡的節目。圖/Pexels

經過不受監督式學習法訓練的人工智慧,可以找出人類或許會錯過的模式,因為這些模式很微妙、數據規模又龐大。因為這樣的人工智慧在訓練時沒有明定什麼結果才「適當」,所以可以產生讓人驚豔的創新見解,這其實和人類的自我教育沒什麼不同——無論是人類自學或是人工智慧,都會產生稀奇古怪、荒謬無理的結果。

不管是受監督式學習法或不受監督式學習法,人工智慧都是運用資料來執行任務,以發現新趨勢、識別影像或做出預測。在資料分析之外,研究人員想要訓練人工智慧在多變的環境裡操作,第三種機器學習法就誕生了。

-----廣告,請繼續往下閱讀-----

增強式學習:需要理想的模擬情境與回饋機制

若用增強式學習,人工智慧就不是被動地識別資料間的關聯,而是在受控的環境裡具備「能動性」,觀察並記錄自己的行動會有什麼反應;通常這都是模擬的過程, 把複雜的真實世界給簡化了,在生產線上準確地模擬機器人比較容易,在擁擠的城市街道上模擬就困難得多了。

但即使是在模擬且簡化的環境裡,如西洋棋比賽,每一步都還是會引發一連串不同的機會與風險。因此,引導人工智慧在人造環境裡訓練自己,還不足以產生最佳表現,這訓練過程還需要回饋。

西洋棋比賽中的每一步會引發一連串機會與風險。圖/Pexels

提供反饋和獎勵,可以讓人工智慧知道這個方法成功了。沒有人類可以有效勝任這個角色:人工智慧因為在數位處理器上運作,所以可以在數小時或數日之內就訓練自己幾百次、幾千次或幾十億次,人類提供的回饋相比之下根本不切實際。

軟體工程師將這種回饋功能自動化,謹慎精確地說明這些功能要如何操作,以及這些功能的本質是要模擬現實。理想情況下,模擬器會提供擬真的環境,回饋功能則會讓人工智慧做出有效的決定。

-----廣告,請繼續往下閱讀-----

阿爾法元的模擬器就很簡單粗暴:對戰。阿爾法元為了評估自己的表現,運用獎勵功能,根據每一步創造的機會來評分。

增強式學習需要人類參與來創造人工智慧的訓練環境(儘管在訓練過程中不直接提供回饋):人類要定義模擬情境和回饋功能,人工智慧會在這基礎上自我訓練。為產生有意義的結果,謹慎明確地定義模擬情境和回饋功能至關重要。

——本文摘自《 AI 世代與我們的未來:人工智慧如何改變生活,甚至是世界?》,2022 年 12 月,聯經出版公司,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
聯經出版_96
27 篇文章 ・ 20 位粉絲
聯經出版公司創立於1974年5月4日,是一個綜合性的出版公司,為聯合報系關係企業之一。 三十多年來已經累積了近六千餘種圖書, 範圍包括人文、社會科學、科技以及小說、藝術、傳記、商業、工具書、保健、旅遊、兒童讀物等。