Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

知識大圖解:電子槍

知識大圖解_96
・2015/04/27 ・983字 ・閱讀時間約 2 分鐘 ・SR值 557 ・八年級

「電子槍」可不是什麼火力強大的武器,而是日常電器中的重要元件。

電子槍是一種多用途的電子元件,在許多設備中扮演關鍵的角色,應用範圍涵括3D印表機、焊槍、英國鑽石光源中心(Diamond Light Source)的大型同步加速器,以及美國金博爾物理研究所(Kimball Physics)的電力系統。

電子槍的運作原理可用最基本的動能和電流來解釋。將電子槍安裝在電氣裝置的真空管中,它會將電子和離子從金屬源(陰極)釋放出來,轉變成可供利用的能量波束,這個過程稱為「熱離子發射」。

Electron guns
請點擊看大圖。

電子槍中有一根小燈絲會加熱陰極,使其釋放出電子流。電子迅即加速,並被拉往鄰近帶正電的陽極。陽極上開有小孔,電子穿過之後,會形成一道集中的電子束,繼續在裝置內前行。1897年,湯木森(J. J. Thomson)在進行陰極射線的實驗後研究其用途,並利用這個概念發現了電子的存在。

-----廣告,請繼續往下閱讀-----

電子槍大致可分成兩大類型:熱離子發射與場發射。前者比較常見,可在高溫下運作。場發射(field emission)產生的熱量較少,但是亮度較高、電場較強。此外,「泛射式電子槍」則可將電子束散射至較為寬廣的區域。

 電子槍如何將能量轉變成實用產品?

關鍵在於釋放出原本固定在導體中的電子,但真正困難的是控制逃脫出來的電子。我們會將金屬加熱,使得電子離開陰極,然後用高電場來分離這些電子。 

電視和鑽石同步加速器看似截然不同,電子槍在兩者中如何運作?

電子槍的用途非常廣泛,但其背後的物理概念倒是不難。基本上就是提供電子能量,讓電子脫離束縛態。在鑽石中心,我們的電子槍上裝有一組電極,可以重整電子束,並將其送進線性加速器。舊型陰極射線管電視機則裝有能夠產生上萬伏特的零件,來加速電子束,使其直接打在螢幕上成像。所以,電視和鑽石同步加速器主要差別在於激發出電子後,對電子所做的處理。

要是沒有發明電子槍,整個產業界會變得如何?

可能一直到最近都還不會發明電視機,但是這關係其實也不算太大,因為廣播和電視節目的發射機也都需要用到裝有電子槍的放大器;若沒有電子槍,根本不會有電視節目可看。而且不只是電視節目訊號,老式的電動閥也是基於電子束而研發出來的,如果現代世界少了電子槍,整個電子產業的發展等於少了一個關鍵步驟。

-----廣告,請繼續往下閱讀-----

 

本文節錄自《How It Works知識大圖解 國際中文版》第07期(2015年4月號)

更多精彩內容請上知識大圖解

-----廣告,請繼續往下閱讀-----
文章難易度
知識大圖解_96
76 篇文章 ・ 12 位粉絲
How It Works擅長將複雜的知識轉化為活潑有趣的圖解知識,編輯方式以圖像化百科呈現,精簡易懂、精采動人、深入淺出的圖文編排,讓各年齡層的讀者們都能輕鬆閱讀。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
已經不能沒有「它」?悄悄改變我們生活的「家庭科技」
賴昭正_96
・2024/01/12 ・4027字 ・閱讀時間約 8 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我們生活在一個高度依賴科學與技術的社會,但幾乎所有的人對科學與技術都一無所知。

——Carl Sagan(1934-1966)美國天文學家、科普作家

在「日常生活範式的轉變:從紙筆到 AI」一文裡,筆者談到 50 年來的科技發展完全改變了我們自己日常生活的方式,如筆者已經不再用紙筆寫文章、不在圖書館裡找資料、旅行不需要攜帶地圖、在家逛街購物、買股票不需要透過券商下單、與親友及科學月刊通訊都是瞬間達成、⋯⋯等等。最近人工智能的正式登場更可能讓人人成為寫文章高手,讓讀者懷疑這篇文章是不是筆者自己寫的。

除了這些有形的日常生活方式的改變外,事實上還有一些無形、沒有改變我們生活方式的科技正在我們家中發生的。其中最明顯的就是電視, 我們看電視的方法還是一樣, 但年輕的讀者可能不知道不管從軟體或硬體來看, 電視機已經完全不再是 1970 年代的電視機了。我們在這裡就來談談這些偷偷摸摸進入我們家庭生活的三大無形改變吧,免得被名科幻小說及科普作家薩根(Carl Sagan)嘲笑:我們生活在一個高度依賴科學與技術的社會,但幾乎所有的人對科學與技術都一無所知。

電視機

早期的電視機是由真空管及陰極射線管(CRT)組成的,體積膨大。1940 年代,半導體器件的發明使得生產固態電子器件成為可能,它比熱真空管更小、更高效、更可靠、更耐用、更安全、更涼爽、更經濟。從 1960 年代中期開始,熱電子管可以說完全被晶體管取代。然而直到 21 世紀初,陰極射線管(也是一種真空管)仍然是電視監視器和示波器的基礎。

圖/作者提供

1982 年,愛普生(Seiko Epson)發布了第一台用液晶(liquid crystal)當平面顯示器(display)的液晶電視(LCD TV);1984 年,愛普生又發布了第一台全彩袖珍液晶電視。夏普(Sharp)於 1988 年推出第一台商用液晶電視;第一台電漿(plasma)電視於 1997 年出現。電漿電視畫面是透過顯示器上面畫素(Pixel)點發光,不是像液晶電視機在畫面後面照光,因此在畫質方面比液晶顯示器強多了,但因在價格上沒辦法競爭,早已被淘汰掉了,最近被類似的有機發光二極體(organic light emitting diode, LED)電視機取代。

-----廣告,請繼續往下閱讀-----

除了硬體外,電視影像訊息的傳播編碼(coding)也大異於前:早期使用類比訊號(analog signal)編碼,現在則使用數字(digital)。後者在其開發時就立即被認為是自 1950 年代彩色電視出現以來,電視技術上之一項創新進步的重大變革。類比廣播到數字廣播的轉變始於 2000 年左右;經過多次及多年的拖延,美國終於於 2009 年 6 月 12 日正式取消無線類比電視廣播,台灣也已於 2012 年 7 月全面廢除無線類比電視廣播,改用數位電視。詳情請參見高畫質數位電視

電燈泡

我們一般都將發明燈泡的功勞歸於愛迪生(Thomas Edison),事實上早在他 1879 年申請專利之前,英國發明家就已經知道用弧光燈當燈泡。但愛迪生不但將白熾燈泡商業化,並發明了將電力帶入住家所需的整個系統——發電機、電線、保險絲、燈的開關。1904 年出現了取代碳絲燈泡之更亮的新型鎢絲燈泡,1913 年發現在燈泡內放入氮氣等惰性氣體可以提高壽命,沿用至今。 

電燈照明的原理是因為任何溫度不為絕對零度的物體,總是不停地對外放出各種頻率的輻射能(見「科學家如何找到黑體輻射光譜,引發 20 世紀初的量子革命?」)。不幸的是:這些不同頻率的輻射能中只有非常少的一部分是可見光,因此利用鎢絲加熱來照明的電燈效率非常低(見「電燈的效率」)。

筆者在「太陽能與光電效應」裡探討了「二極體」(diode)的物理,其用途甚廣(如整流器及控制器等)。它可以透過光來發電製造太陽面板;它也可以透過電來發光——「發光二極體」(light emitting diode, LED)——製造上面提到之有機發光二極體電視機及二極體燈泡。因我們可以用不同材料來控制發出來之輻射在可見光範圍,所以二極體燈泡效率比傳統鎢絲燈泡高得非常多:例如前者只需 18 瓦特就可達到後者 100 瓦特(W)的亮度。加上它不使用高溫,壽命也因之比較長;但因其製造成本高,所以直到最近美國才宣布禁售傳統鎢絲燈泡,強迫使用二極體燈泡1

-----廣告,請繼續往下閱讀-----
圖/作者提供

發光二極體需要在直流電下運作,一般家用二極體燈泡設計在低電壓 1.2-3.6V 之間。然而,為了變壓方便及減少輸送過程中的能量浪費(見「高壓危險」),全世界電力公司都用高電壓的交流電輸送電力,到住宅區附近的變電所後再減壓到 120-240V,因此二極體燈泡的設計非常不同於傳統燈泡:它的首要任務是將高電壓交流電降壓整流為低壓的直流電。除此之外,因固態線路特性,它也必須考慮電壓及電流的穩定、散熱等問題,因此在設計上比鎢絲燈泡複雜多了,成本也貴得多。

家庭電話

與電視機及燈泡相比,家庭電話可以說是改變最少的;事實上自從行動電話普及後,許多家庭已不再使用固定的家用電話,改變了我們日常生活的方式。但仍有不少像筆者一樣頑固的長者保留家用電話的,他們將發現:雖然現在的電話機比以前的加了很多功能,如來電顯示、留言、無線分機等,但其基本結構還是保留在 1962 年世界博覽會上首次以商品名「按鍵音(Touch-Tone)」推出的按鈕撥號(也就是說 1970 年代的電話現在還是可以用的,也還可以在市面上買到)。

圖/giphy

傳統電話系統通話依賴於兩個節點間的直接物理連接,在通話中這條線是不能斷的。為了覆蓋廣泛的地區,任何兩點間都直接連線當然是不可能的,因此出現了稱為「電路交換」(circuit switching)的呼叫切換技術。早期的呼叫切換是由電話接線員來完成的,但隨著電話覆蓋範圍的擴大,美國電話及電報公司(AT&T)開始推出機械交換系統,人們可以從家裡手動撥打其它號碼,不再需要人工操作員接通。到 1978 年左右,完全自動化終於消滅了電話接線員這一職業。

圖/作者提供

自從互聯網(Internet)及一種可用寬頻連線進行語音通話的互聯網協定語音(voice over internet protocol, VoIP)出現後,網路語音(VoIP)電話開始慢慢侵食傳統的家庭電話。不像電視機及燈泡,事實上傳統的家庭固定電話是有其優點,如不受斷電及不穩定網路的影響等,但因網路語音電話成本較低及較高彈性,美國聯邦通訊委員早在 2022 年 8 月就宣布不再要求美國電信公司提供銅線固定電話服務,因此相信傳統的電話系統不久將在美國消失了2

-----廣告,請繼續往下閱讀-----

電路交換技術的一大缺點是:兩點一旦連接在一起,別人便不能再使用那整條電路3,浪費了有限的資源。現在網路語音電話的交換網絡依賴於「分組交換」(packet switching)技術。分組交換概念是波蘭裔美國工程師巴蘭(Paul Baran)於 1960 年代初提出,首先使用於美國國防部的阿帕網(ARPANET)。使用者透過網路傳送檔案時,先將檔案分割為較小的數位「資料包」(packet)形式來進行傳輸。每個資料包都有一個包括來源位址、目標位址、資料包數量和序號等的資料包頭,因此它們可以各走其獨立路線(網路節點負責指揮交通),發送者和接收者之間沒有必要(也從未)直接連接在一起,可以充分且更有效率地利用傳輸媒體。數位資料包到達目的地後,經組合再透過數據機(modem)將數位數據轉回電話線的類比訊號,傳到傳統的電話上。

以前傳統電話因為要用實體電線接到區域交換總機,所以可以從區域號碼知道這支電話的所在地;網路語音電話只要連接到任何一個網路節點就可以,所以家用電話號碼可以隨搬家移動到別的區域(例如台北的 02 區域電話號碼可以在阿里山出現),因此區域號碼已經失去其區域的意義。

結論

這些悄悄來的家庭科技中,改變最多的是電視:在軟體(數位訊號傳輸)及硬體方面(平面顯示器)都完全擺脫了舊科技,以全新的面貌在家庭中出現;接觸過舊電視的讀者,應該不難發現影像的改進不可同日而語。燈泡則只改變硬體(二極體燈泡),網路語音電話只改變軟體(分組交換訊號傳輸)。

筆者雖然喜歡新科技,但因一則較貴,再則可能不穩定,而不願做新技術的天竺鼠(實驗對象),對新技術的接受總是很遲的;即使如此,筆者的家庭也已經全面「現代化」了。但是內人除了發現電視機不同及燈泡比以前更接近太陽光4外,根本不知道老公花了多少心血將狗窩現代化。

-----廣告,請繼續往下閱讀-----

註解

  1. 事實上美國早在 2007 年就頒布白熾燈泡禁令,但被川普政府撤銷,該規則於今年(2023 年)8 月 1 日才又生效。台灣經濟部宣佈 2011 年底全面禁售白熾燈,五年內全面更換成二極體燈泡。
  2. 但在台灣還不流行。根據名市場研究公司 Future Market Insights 分析:全球住宅網路語音服務市場規模預計將從 2023 年的 221 億美元增至 2033 年的 678 億美元;在預測期內(2023 年至 2033 年),全球住宅網路語音服務需求預計將以 11.9% 的複合年增長率增長。
  3. 只要電話不掛斷(如找資料暫停通話),電路就不會、也不能斷;因此原則上如果夠多人在同時用電話,將會將所有的電路線都佔罄了。
  4. 太陽表面的溫度約在 6000°C,鎢絲燈泡大都在 3000°C 左右操作以增加壽命。

延伸閱讀

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
46 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

4
0

文字

分享

0
4
0
是毒藥也是解方,影視作品如何影響刻板印象?為什麼曾經的公主製造機,現在特別「政確」?
PanSci_96
・2023/12/06 ・5369字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

根據 10 月 30 號內政部最新公布的統計數據,台灣人最常取用的疊字名字,女性是「婷婷」,男性是「彬彬」,這男生的名字聽起來就很有禮貌,女生則是身材高挑,姿態端莊,而最常見的名字,男性是「家豪」,女性是「淑芬」,這些名字充滿了對於孩子的想像與祝福,希望男生能成為一位顧家卻又不失豪氣的大丈夫,女生則要保持賢淑,同時要像鮮花的芬芳那樣討人喜歡⋯⋯

等等⋯⋯我是不是掉入性別刻板印象了?

電視電影是刻板印象的修煉場,也是打破刻板印象的主戰場

名字就,就名字嘛!幹嘛說人家刻板?不過當我一說這些名字以及他們代表的意義,你應該也很快就察覺這是屬於刻板印象的一部分。這是因為我們的社會已經成長到能辨識這些觀念的程度了,但反過來說,你知道還有多少地方藏著沒有被發現的性別刻板印象嗎?

舉例來說,幾個月前在台灣掀起 MeToo 浪潮的電視劇《人選之人》,用一句「我們不要就這樣算了好不好」,許多人站出來指控那些糾纏他們多年的加害者。能有如此大的迴響,其實是天時地利人和的結果。想想以前看的鄉土劇、日韓劇或台劇,當劇中角色,特別是女性遇到性騷擾,通常是得等男主角出面「拯救」他們,不管是陪著他們去保警處理,或是用比較⋯⋯私人的方法解決。這樣的劇情設計,反映出當時社會給女性貼上的被動與柔弱標籤,必須要依靠勇敢、堅強的白馬王子才有辦法在社會上生存。雖然人選之人這部劇並非全繞著性騷擾事件發展,但一個由女性自己提出「我們不能這樣算了」的橋段,打破了過去影視作品裡的框架,也恰好與當前社會進步的步調吻合,這才如此多曾經被社會期待壓著不敢發聲的人,特別是女性與性少數站出來說出早就該讓大眾知曉的真相。

-----廣告,請繼續往下閱讀-----

類似的案例還有留下「可是瑞凡,我回不去了」這句名言的台劇《犀利人妻》,相信你就算沒看過這部戲,也肯定看過這些衍生出來的迷因。犀利人妻之所以如此經典,是因為它翻轉了過去影視作品中對於「伴侶出軌」這件事的刻板印象。想想以前女性角色發現伴侶出軌,大多會選擇自怨自艾,又或者是對所謂的「小三」進行報復,試圖讓被奪走的愛人回心轉意。但是,犀利人妻的主角謝安真卻在悲痛之後卻選了一條新的道路。他割捨了背叛自己的瑞凡,做到了「沒有你,我過得更好」,這才有那句「我回不去了」。這些打破刻板印象的影視作品,不只是提供新觀點這麼簡單,他們更像是一種社會風氣的試水溫。假如這個作品收穫正向的迴響、甚至成為啟發許多人的契機,那代表我們已經做好準備踏入新的階段。

不然你想想,像犀利人妻或人選之人這樣的戲劇,有辦法在三十,甚至五十年前的台灣出現,取得同樣的成功嗎?或者比較一下 2000 年早期當紅偶像劇的男女主角形象(例如《惡作劇之吻》、《流星花園》、《公主小妹》),跟 2010 年開始台劇男女角色形象(《我可能不會愛你》、《女兵日記》、《我的婆婆怎麼那麼可愛》),是不是多了很多有趣的變化與多樣性?

從這個角度去看,一直在進步、向著更平等社會邁進的我們,其實是真的已經「回不去」了。不只製作品質不斷提升,我們也越來越重視劇中傳達的訊息,希望讓影視作品不再是單純的娛樂取向產品,更能為我們生活的環境所有貢獻。

欸,「靠影視改變社會」,這可不只是嘴巴上說得好聽的空頭支票,你我都很熟悉的一個娛樂巨擎已經在做,而且做很多年了。

-----廣告,請繼續往下閱讀-----

如果你腦中突然出現三個閃亮亮圓圈⋯⋯恭喜你,答對了!

圖/giphy

迪士尼是公主製造工廠?

說到迪士尼,不知道你最先想到的哪個角色呢?對我來說,肯定是最經典的《小美人魚》。但其實啊,現在已經有許多心理學研究發現,這些角色以及他們的故事不只是陪伴我們長大,其實還潛移默化了我們對於自己與他人,乃至於整個世界的想像。

當然,這不是迪士尼對觀眾施了什麼魔法,而是我們,特別是自我認同尚未穩固的小孩子,特別容易從接觸的童話故事、小說、電視電影等媒介中,汲取角色的言行與價值觀成為自己的一部分。這樣的學習歷程在 2012 年被心理學家注意到,並命名為「經驗擷取」(experience-taking),可以把它想像成是一種把虛構角色當成榜樣的學習過程。我們小時候都曾想像自己能成為故事裡的英雄,當個帥氣的白馬王子,或是成為眾星拱月的公主,在充滿愛與勇氣的世界裡過上永遠幸福快樂的日子。經驗擷取就是把這個過程變成無意識、很難覺察得到的悄然變化。

也因為這個人類內建的機制存在,使得迪士尼的公主系列不只是打造出一系列的經典 IP,他還把順應當時性別刻板印象的角色模板偷偷植入每個小小觀眾的腦袋裡。如果你想當公主,就必須穿得像個公主、言行舉止像個公主、活得像個公主⋯⋯而當這些公主與王子都極為相似時,你就會得到兩套(公主與王子)偏頗且平面的刻板印象。對根本不懂人情世故的小孩來說,他們無從判斷這些「必須」是否恰當,又或者適不適合自己,所以更容易無條件地相信這些價值觀。這可不是危言聳聽,早在 1996 年就有心理學家注意到這件事,但要真的引發學術界廣泛的討論,還得等到 2011 年,性別平權意識又再提升之後。在 2017 年的一篇行為分析研究,便明確觀察到頻繁暴露於迪士尼作品的 3-5 歲女童在玩妝扮公主遊戲時,會不假思索地直接複製刻板印象的內容,並且會對自己無法「穿得像位公主」或「動得像位公主」而焦慮。

-----廣告,請繼續往下閱讀-----
頻繁暴露於迪士尼作品的 3-5 歲女童在玩妝扮公主遊戲時,會不假思索地直接複製刻板印象的內容。圖/giphy

你可能會想,這些事情等長大自己就會想通了。但其實這些小時候建立起來的想像,就跟雛鳥的印刻效應一樣,會在我們的認知裡停留很久很久,有些人可能一輩子都擺脫不了他們的影響。不只心理學家注意到這件事,迪士尼其實也很清楚自家作品擁有的影響力,這讓他們在 21 世紀後進入了「反轉」期。同樣是改編經典作品,但像《青蛙與王子》、《魔髪奇緣》等作品都賦予角色全新的形象,讓公主挑起英雄的大樑。到了《冰雪奇緣》,更是直接把艾莎晉升成女王,不但讓漢斯這個口蜜腹劍的負心漢王子露出真面目,還藉由與妹妹安娜之間的對比強調「女生為什麼不能自己做主」。雖然看起來還是王權封建制度,但傳達出來的訊息可是截然不同,這些努力也受到近年心理學研究的肯定。

而且大家仔細想想這些被翻轉的迪士尼角色,除了個性獨立,在行為上還有個很重要的共通點,那就是在面對不公義時,他們選擇了反抗。這是過去數百年間性別議題很常碰壁的死結:女性必須要為自己應有的權益發聲,但因為傳統社會期待女性要柔弱,所以當他們真的挺身而出,會先遇到「你怎麼這麼不像女生」的指責,真該重視的權益議題反而被忽略了。這時候,一個能在社會輿論中引發討論、「以身作則」的榜樣,就算是虛構的角色也足以打破那條深埋在社會文化中的無形界線。

過去的迪士尼是公主製造工廠,現在則是扭轉性別刻板印象不可或缺的盟友之一呢。

但是,也有人認為迪士尼已經「政治正確」搞過頭,反而破壞了我們的童年回憶,這又該怎麼看待呢?

-----廣告,請繼續往下閱讀-----
迪士尼「政確」過頭,反而破壞了我們的童年回憶?圖/giphy

矯枉過正的政治正確?

莎士比亞在《哈姆雷特》裡寫下「請您善待這班戲子伶人,不可怠慢!因為他們是這個時代的縮影!」,這句話其實到了現代仍然適用,因為創作作品的是人,所以難免會把自己的經驗與想像投射進去。而且除了創作者自己的意向,作品內容同樣會受到市場箝制,就好比歐洲中世紀的藝術作品會有濃厚的宗教色彩,又或者台灣在解嚴後出現的鄉土文學熱潮,可以說是相輔相成的角色。

但就像 20 世紀的迪士尼迎合市場,卻無意間成為助長性別刻板印象的幫兇,很多東西都是過猶不及,一但走向極端就可能衍生出新的議題。相信大家就算再不關心,肯定都聽過關於「政治正確」的討論吧?但若我們只看一些較為激烈或極端的案例,會很容易誤解這個「政治正確」風氣出現的本意。

前面有說到,所謂的性別刻板印象,是一種偏頗且扁平的框架,告訴你「要想成為他,就必須符合這些條件」。打個比方,你喜歡吃哇沙比嗎?雖然是生魚片的好朋友,但假如今天你從小被教育吃任何食物都要加哇沙比,如果不加就不准吃,那即使你再怎麼討厭哇沙比,也會因為肚子餓而不得不忍受這些難以下嚥的食物組合。這樣隨著時間逐漸僵化的性別框架,在心理學被稱為「性別基模」(gender schema),是一個在過去 30 年來被廣泛研究的題目。

根據提出性別基模理論的心理學家 Bem(貝姆),要想拯救這樣悲劇的味蕾,單純跟你說「你可以不要哇沙比」是沒有用的。因為時間一久,你很可能已經習慣了哇沙比的味道,甚至不需要外力逼迫,你都不覺得這樣搭配有什麼奇怪的。你需要的,是實際感受「沒有哇沙比的食物」吃起來是什麼味道。品嚐過食物原本的味道後,你封閉的經驗被打開了,就算最後決定你還是喜歡哇沙比,那也是自身意願的選擇。

-----廣告,請繼續往下閱讀-----

而這些所謂「政治正確」的創作選擇,其實就是在提供過去作品中欠缺的「多樣性」與「社會期待以外的選擇」。像剛拿下金鐘獎最佳女主角、戲劇導演與戲劇節目的《村裡來了個暴走女外科》,便是讓觀眾看見「不符合傳統醫師形象」也能「當個好醫生」的劉梓旭醫師,用超乎社會期待的方式處理自己生活中的議題。另外像是接連刷新華視收視率紀錄的《俗女養成記》又或者是十多年前的偶像劇《敗犬女王》,都是在用自己的方式回應「女生年紀大,身價塌」的歧視,讓同樣對年齡有焦慮感的女性看見選擇就算「不回答標準答案」也能找到幸福的可能性。

同樣的,讓女性或少數族群擔綱過往由男性把持的英雄角色,也是在提供觀眾一種新的角色模板。例如哈利波特裡最聰明、能力最強的並不是被預言選上唯一能與佛地魔對抗的哈利,而是麻瓜出身的妙麗。先不討論作者 JK 羅琳近年與 LGBTQ 族群起的爭議,在 21 世紀初期,那位願意一拳揍上馬份鼻子、永遠是第一個想出困境解法的年輕女巫可是西方女性培力的代言人,成為許多年輕女孩嚮往與效仿的對象。

或許不是每部影視作品都能像哈利波特或迪士尼形塑一整個世代的社會風氣,又或者像人選之人這樣啟發前所未有的 Me Too 運動,但他們多少反映了我們現在身處的環境,同時為他的改變與延續做出一點貢獻。從這個角度去想,你會發現政治正確並不是現在才有的現象,而是從古至今一直都有的創作取向。而之所以「政治正確」會在現代引起如此大的爭議,其實還得歸功我們成功打破了刻板印象,以致於大家都有了「正確答案不只一種」的認知,這才會對與自身想法不同的答案表達質疑,不是嗎?

對了,你最近看過的戲劇作品中,哪些作品的性別呈現最深得你心呢?歡迎跟我們分享吧!我先說,我自己最愛的是《八尺門的辯護人》裡的 Leena 跟陳令秋,那你呢?

-----廣告,請繼續往下閱讀-----

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

  • https://www.moi.gov.tw/News_Content.a…
  • Corwin, H. J. (1998). Reading with empathy: The effect of self-schema and gender-role identity on readers’ empathic identification with literary characters (Order No. 9937004). Available from ProQuest Dissertations & Theses A&I. (304459026). Retrieved from http://search.proquest.com/docview/30…
  • Giezrzynski, A., & Eddy, K. (2013). Harry Potter and the Millennials: Research Methods and the Politics of the Muggle Generation. JHU Press.
  • Kaufman, G. F., & Libby, L. K. (2012). Changing beliefs and behavior through experience-taking. Journal of personality and social psychology, 103(1), 1.
  • Kidd, D. C., & Castano, E. (2013). Reading literary fiction improves theory of mind. Science, 2013, 342.6156: 377-380.
  • Klodt, J. E. (2003). Sex, drugs, and self-destruction: Reading decadence and identity in spain’s youth narrative.
  • Todd, A. R., & Galinsky, A. D. (2014). Perspective‐taking as a strategy for improving intergroup relations: Evidence, mechanisms, and qualifications. Social and Personality Psychology Compass, 8(7), 374-387.
  • Green, M. C., & Jenkins, K. M. (2014). Interactive narratives: Processes and outcomes in user-directed stories. Journal of Communication, 64(3), 479-500.
  • England, D. E., Descartes, L., & Collier-Meek, M. A. (2011). Gender role portrayal and the Disney princesses. Sex roles, 64, 555-567.
  • Streiff, M., & Dundes, L. (2017). Frozen in time: How Disney gender-stereotypes its most powerful princess. Social Sciences, 6(2), 38.
  • Garabedian, J. (2015). Animating gender roles: How Disney is redefining the modern princess. James Madison Undergraduate Research Journal (JMURJ), 2(1), 4.
  • Hoerrner, K. L. (1996). Gender roles in Disney films: Analyzing behaviors from Snow White to Simba. Women’s studies in communication, 19(2), 213-228.
  • Wiersma, B. A. (2000). The gendered world of Disney: A content analysis of gender themes in full-length animated Disney feature films. South Dakota State University.
  • Hunt, S. (2015). Representations of gender and agency in the Harry Potter series. In Corpora and discourse studies: Integrating discourse and corpora (pp. 266-284). London: Palgrave Macmillan UK.
  • Hoerrner, K. L. (1996). Gender roles in Disney films: Analyzing behaviors from Snow White to Simba. Women’s studies in communication, 19(2), 213-228.
  • Bem, S. L. (1983). Gender schema theory and its implications for child development: Raising gender-aschematic children in a gender-schematic society. Signs: Journal of women in culture and society, 8(4), 598-616.
  • Bem, S. L. (1981). Gender schema theory: A cognitive account of sex typing. Psychological review, 88(4), 354.
  • Starr, C. R., & Zurbriggen, E. L. (2017). Sandra Bem’s gender schema theory after 34 years: A review of its reach and impact. Sex Roles, 76, 566-578.
-----廣告,請繼續往下閱讀-----

討論功能關閉中。