0

0
0

文字

分享

0
0
0

【極光片語】頂尖團隊的社會責任—科學家該如何提問?

雷漢欣
・2015/04/08 ・3277字 ・閱讀時間約 6 分鐘 ・SR值 523 ・七年級

-----廣告,請繼續往下閱讀-----

一講到不同領域的結合,大部份人直覺想到的是自然學科裡的「生物尬電機、迸出新滋味」或是人文學科裡的「文史哲一家親」,會想到文科與理科整合的人可能就不多了,其實在上一集【極光片語】中,日本AIST以機器人科技滿足人性中陪伴的需求,就是個好例子。「人們常以為科學不會考慮到社會問題,只是一股腦兒的往科學前沿衝刺;其實科學對社會有很大的影響,至於科學家要怎麼讓民眾對科學研究有感?癥結在於研究方法和提出問題的形式。」李世光老師說。

李老師擔任國科會工程處處長時,曾率團去澳洲最高國家級研究機構CSIRO和研發出金黃色奇異果的HortResearch(注1)取經,學習這兩個科學研究單位如何關懷社會問題,並提出科學的解決之道。「他們的目標很有意思,叫做『Impact local immediately, influence global fundamentally』(即刻的在地衝擊性,根本的全球影響力)。」李老師說。

科學家發明的藥物讓綿羊長出脆弱的毛髮,綿羊穿上特製網衣後,工人就可以剝下一件完整的羊毛大衣。照片來源:李世光。
科學家發明的藥物讓綿羊長出脆弱的毛髮,綿羊穿上特製網衣後,工人就可以剝下一件完整的羊毛大衣。照片來源:李世光。

免動刀的綿羊脫衣秀

澳洲是全世界最大的羊毛出口國,羊毛不僅為澳洲帶來貿易的獲利,綿羊的脫衣秀也是觀光客必訪的行程,然而彎著腰用電動剃刀為綿羊脫毛衣並不是件輕鬆的差事,羊毛工人平均在42歲時會有脊椎側彎的問題,年輕人對這項工作也興趣缺缺,眼看著產業即將發生世代斷層的危機,澳洲人該如何面對呢?大量引進外籍勞工、開放更多打工度假的名額,似乎都不是長久之計;面對這題快問快答,科學家的答案:「讓羊毛自己掉落吧!」

澳洲CSIRO的科學家研發一種會使髮質變差的藥劑,注入綿羊體內後,只要等待幾週讓綿羊長出一小段易斷裂的毛髮,農場主人就可以像扒香蕉皮一樣,幫綿羊脫去整件毛衣。想像這個畫面或許有點獵奇,其實綿羊斷毛的原理跟警察驗毒一樣,我們的每根毛髮都是一本日記,記錄著每天的飲食、用藥,營養不良時會導致出枯黃的頭髮,代謝後的藥物卡在毛髮裡也無所遁形。科學家發明的「生物剃毛術」,有助於減少人工剃毛所需的勞力,避免可能發生的勞力短缺,直接、立即地解決在地的產業問題。

-----廣告,請繼續往下閱讀-----
淡褐蘋果蛾在澳洲、紐西蘭、美國等地都會造成農作物的損害。照片來源:維基百科
淡褐蘋果蛾在澳洲、紐西蘭、美國等地都會造成農作物的損害。照片來源:維基百科

擊敗那萬惡的澳洲飛蛾

在澳洲的東南方,那個舉世聞名的奇異果王國紐西蘭也面臨了一個挑戰:自從淡褐蘋果蛾(Epiphyas postvittana)從澳洲風塵僕僕的飛越塔斯曼海抵達對岸,紐西蘭的作物幾乎無一倖免的被洗劫一輪,對這個農業大國造成不小的影響,「所以他們說這是萬惡的澳洲飛蛾。(笑)」李老師說,「為了解決這個問題,HortResearch的科學家做了非常精彩的研究!」

面對病蟲害,噴灑農藥是行之有年的作法,後來人們考量到生態浩劫的風險,發明各種對環境較為友善的生物防治法,例如以藥劑或放射線讓雄蟲不孕,絕子絕孫以減少族群後裔、釋放費洛蒙干擾雄蟲求偶等等。「通常研究做到這步驟已經很讓人開心了,HortResearch的科學家卻繼續做了很有意思的事。」李老師說。昆蟲嗅覺研究群的科學家認為,昆蟲的嗅覺會影響覓食和交配,因此他們從淡褐蘋果蛾偵測費洛蒙等揮發性物質的觸鬚開始研究,找到分子進入觸鬚的路徑,再分析這些蛋白質受器的結構與功能,藉由蛋白質體學追溯到控制此嗅覺機制的基因後,再以基因剔除的技術證明了此基因的影響。

從器官到生化反應路徑,從蛋白質到基因,如此打破沙鍋問到底的昆蟲嗅覺研究,不僅有潛力產生出新的蛾類或害蟲控制法,還有機會讓工程領域的研究者開發出創新的嗅覺感應子,「台灣的電子技術加上紐西蘭的生化研究,可以共同開發電子鼻,應用在食品新鮮度測試、有毒氣體偵測、香水開發等無限多種領域。」李老師興奮地說,「當我們把科學和社會問題結合,就會有全新的思路,跨領域的整合就可以衍生出無限多種新的技術和產業!」從應用導向研究所延伸出的基礎研究不僅扎實,對世界產生的影響力也很強大。

HotResearch消費者體驗研究室旁邊的食品準備室,研究人員在此製備食物樣品,經由照片左邊的窗口遞給受試者試吃。照片來源:李世光。
HotResearch的消費者體驗研究室旁邊連接食品準備室,研究人員在此製備食物樣品,經由照片左邊的窗口遞給受試者試吃。照片來源:李世光。

係金A!奇異果的真功夫

除了研究萬惡的澳洲飛蛾,綠色和金色奇異果也是HortResearch最負盛名的成果,這些由世界各地的奇異果所育成出的新品種,不僅受到全世界的喜愛,更讓紐西蘭的農業出口成長近十倍,研究單位開發的新品種經由全國各地的小農各自生產,再由所有農戶共同擁有的公司統一行銷,這種產銷系統需要非常完善的採摘後管理,因此,紐西蘭奇異果背後的功臣除了育種、生產、生態保護和植物病蟲害控制等農業基本成員之外,更加入了強大的保存加工技術和市場研究等新角色。

-----廣告,請繼續往下閱讀-----

為了讓奇異果的外銷更成功,FortResearch很謹慎的研究各地消費者的喜好,包括氣味、顏色、口感等等,他們為此建造一間品評室,請不同族裔的人於此試吃各種不同的奇異果。為了減少操作人員造成的變因,受試者必須獨自坐在面牆的桌子前,牆上有一個像是購票亭的小窗口,窗口的對面是食物準備室,研究員經由窗口遞食物給受試者;為了測試顏色對食品喜好程度的影響,品評室也可以改變燈光的顏色:白光、紅光或全暗等等;為了標準化難以計算的喜好度,受試者不是像選秀節目評審一樣打出分數,而是拿著一把尺,在試吃完奇異果後,用手決定得分應該落在尺的左邊(不喜歡)或右邊(喜歡),手指捏著的刻度就是量化過的喜好度。這些嚴謹的研究讓李老師感到驚艷,他說:「這些科技化、量化的測試,背後的研究室和研究方法,比我想像的公正很多。」

來自東南亞國家的移工,會在台北火車站到中山北路三段一代聚會。
來自東南亞國家的移工,會在台北火車站到中山北路三段一帶聚會。照片來源:Lennon Ying-Dah Wong via Flickr

即刻的在地衝擊性,根本的全球影響力

有些科學家用科學方法解決社會問題,另一些科學家則將特殊的社會現象化作研究的助力。中研院的南島文化研究所曾經結合台大等單位的研究人員提出一項關於南島語族的跨領域研究計畫,向科技部申請了600萬的經費,負責審核的長官非常支持這個計畫,但他對預算感到疑惑:「600萬的經費怎麼夠呢?光是研究人員前往菲律賓、印尼、紐西蘭採血、訪談的交通費就不夠了吧?」計畫主持人如此回應:「不需要出國,我們每個週末去中山北路就可以了!」台灣有許多來自東南亞國家的外籍移工,離鄉背井、工作辛勞的他們趁著週末假日的難得空閑,在台北火車站到中山北路一帶與同鄉聚會,中研院提出的這項計畫即充分運用了台灣人口組成的優勢,降低研究的門檻。

無論是澳洲的綿羊、紐西蘭的淡褐蘋果蛾和奇異果,還是台灣的南島語族研究,都是以提升人民的福祉為核心目的,並且與當地社會緊緊相扣,「一流的研究團隊必有社會責任,只有從社會問題出發的科學研究,才能達到『Impact local immediately, influence global fundamentally(即刻的在地衝擊性,根本的全球影響力)』。」李老師說。

科學家能以科技實踐天馬行空的想像,為社會中的種種問題找出解答,但自然科學對人類社會的影響力,應該沒有比「網路」更廣大的了。虛擬的網路連結了實體的社會,物品、製造業、城市的數位化產生了現在當紅的物聯網、自造者、雲端等新名詞,生活及產業皆因為數位科技有了劇烈的變化,身在網路此山中的我們,看得清虛實整合世界的真面目嗎?預知詳情,請待下回揭曉~

-----廣告,請繼續往下閱讀-----

注1:HortResearch 於2008年與Crop and Food Research合併為Plant and Food Research。

【極光片語】專欄收錄李世光老師的訪談,每一段小故事、小物件的背後,都有饒富趣味的科學道理。吉光片羽比喻殘存的珍貴文物,象徵李世光老師在科學研發的高昂志氣和人生智慧;傳說見到極光會帶給人一輩子的好運,期待讀者在本專欄得到的啟發,都能像看見極光般感動。

-----廣告,請繼續往下閱讀-----
文章難易度
雷漢欣
20 篇文章 ・ 5 位粉絲
PanSci的菜菜實習編輯,來自溫馨的動科系,心情好的時候喜歡說「你知道嗎!?」小故事,即使常得到「誰不知道阿.......」的冷眼回應,也不改其志。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

26
0

文字

分享

0
26
0
多元價值、社區共好——側寫德州儀器的另一面
鳥苷三磷酸 (PanSci Promo)_96
・2020/11/16 ・2696字 ・閱讀時間約 5 分鐘 ・SR值 535 ・七年級

行銷專家常說要建立公司品牌,就是要讓公司感覺起來像人,性格引人注目、討人喜歡、誘人跟隨。企業都努力建立自己的文化,期望策略風行草偃,讓員工歸屬感強、為自己對公司的貢獻而驕傲——但是有待過公司的人都知道,以上這些都是用想的簡單,做起來就難度倍增。

2011 年的一篇應用心理學研究(論文出處)或許指出了明路。三位應用心理學家 Philipp Otto、Nick Chater 還有 Henry Stott 研究發現,我們形容公司的方式,雖然很多樣化,但整理後可歸納為四大面向,分別是誠實(honesty)、聲譽(prestige)、創新(innovation) 與力量(power)。而這四大面向,就是企業讓人感受到的性格。

上述這四個面向能夠完整涵括我們對企業的看法,而且還與經濟面向相呼應。例如當公司規模較大、獲利較高,往往就擁有較佳的聲譽;而公司成長速度越快,就更容易給人創新的感覺,反之亦然。研究者認為這個發現能幫助公司了解他們在大眾心目中的觀感是怎麼來的,並回頭檢視,來引導跟管理組織內外的個人跟團體,形塑組織的文化。

泛科知識今年與全球半導體巨擘德州儀器(TI)合作,透過多次的專訪與活動來了解 TI 如何透過實際行動來引領公司上下邁向願景、實踐價值,特別是在科技業往往較弱的性別平衡、培植女力這方面。在深入了解這家公司之後,我不禁在想,如果 TI 是一個人,那他具有什麼樣的性格?

-----廣告,請繼續往下閱讀-----

「WIN」,要就一起贏

首先,你沒看過之前的系列文章,容我再次說明:TI 的女性倡議 Women’s Initiative (WIN) 目標與任務包括增加女性人才的進用管道、提升女性在科技領域的領導角色,並透過各種社區培力與導師制度,讓年輕女性看見自己在科技領域中的職涯機會。

為了「WIN」,TI 知道僅從上而下提供員工福利不足成其事,更要由下而上,成為「學習型組織」。我們採訪過在台灣推動 WIN 計畫的 Jennifer 鄭惠心最年輕業務總監 Shirley 潘先俐測試製造部工程師江雅君 Anna、封裝部製程工程師吳知穎 Ariel 及測試機構工程師張淨涵 Tiffany,更從男性工程師的角度切入,採訪了產品測試部門經理張峯鳴(FM Chang)與女同事共事的感受。透過上述問卷、訪談、活動與回饋,TI 要讓在許多科技公司裡刻意被忽略的性別失衡問題浮上檯面,並將其變成公司的推進力。

日前 TI 為「WIN 計畫」,對內部女性同仁做了問卷調查。問卷調查發現,超過半數(51.2%)的回答者都認為在職涯中,她們面臨的最大挑戰是「家庭責任與職場工作的平衡」,可以見得女性仍在兩者中摸索著平衡前進。問卷也發現,在這樣以男性為主的環境中工作,女性 TIer 認為最大的挑戰是「溝通模式相異」(佔 33.3%),而此處的溝通模式其實也不僅止於男女之間的差異,更彰顯在跨部門的溝通之中。

TI 2020 舉辦內部女力論壇,希望藉此給同仁更多擁抱挑戰的勇氣

日前透過內部舉辦的 2020 的女力論壇,三位不同部門、不同世代的女性同仁在對談之中分享自己的心法、面對挑戰的解決方式,讓彼此在這些議題上有更多交流,為的就是讓同仁們在未來面對問題時,能真正擁抱挑戰、跨越障礙。

-----廣告,請繼續往下閱讀-----

坐而言,也起而行

從 2017 年起,TI 開辦「科技小學堂」,前進校園和慈善機構,將高深科技的知識轉化,帶到小朋友的日常生活中。今年雖受疫情影響,TI 仍打造一套全新的「半導體 IC 製程」課,前往鄰近的新北市秀朗國小,幫助學生掌握連大多數大人都不太理解的技術,志工老師也在課程最後向小朋友傳達了重要的多元價值—女生也可以當工程師、成為科學家,自在追求喜歡的事物,不應受到性別框架和拘束。

女生也可以當工程師、成為科學家,不應受到性別框架和拘束

由於疫情干擾,原本排定的一些 CIT(社區參與團隊)行動無法開展,TI 還是結合了母親節,展開為期一個月「為孩子而讀 Read for Kids」科普捐書活動,並在接下來的 7 月 9 日、10 日兩天,召集 30 位熱心 TIer 擔任志工,將募集的 1,150 本科普圖書,打包裝箱捐贈給地方小學。

為期兩天的志工活動,總共送出1,150本書至地方的兩所小學

除了因應疫情做出相關的活動調整,本次更透過 Facebook Challenge 讓每位同仁自主傳播、號召參與,進一步擴大公益活動的影響力,希望在這個不太平靜的一年中,仍然能透過捐書、贈書讓孩子們保持對知識的熱情。

台灣德州儀器封裝事業副總經理 Jerry Huang 表示:「持續回饋社會是 TI 的企業價值之一,我時常邀請家人一同參與公司的公益活動,每次的活動都讓家人和孩子收穫滿滿。今年雖然疫情嚴峻,但 TI 對公益的投入並沒有因而中斷,希望這次同仁們募集捐贈的科普讀物,能讓鄰近社區學校的同學們踏入科學的大門,隨時對世界保有滿滿的好奇心。」

-----廣告,請繼續往下閱讀-----
透過Facebook Challenge,由同仁自主號召更多人響應公益活動

讓員工與公司都成為最好的自己

不論是女力倡議或是企業社會責任,TI 在過程中都展現其半導體本業的性格。在 TI 全球董事長、總裁暨執行長 Rich Templeton 在給全體 TIer 的信中,寫道:「我們的核心價值,是持續透過半導體讓電子產品更加普及,打造更美好的世界。」他希望 TI 員工能秉持企業家精神,視公司如同自己的長久事業而努力,在不斷改變的世界裡,努力調整並取得成功,讓 TI 成為每個 TI 人引以為傲的鄰家企業。為達到這樣的願景,執行長 Templeton 定義「誠信可靠、多元包容、持續創新、具競爭力和成果導向」就是 TI 要淬礪篤行的性格。

有人說性格決定命運,感覺起來很宿命,其實不然。正如開頭提到的研究指出,因為企業的性格與經營成績有關,所作所為也能改變外界看待企業的方式。TI 執行長 Templeton 認為,「所有的員工、客戶、供應商及社區都有選擇。這些人之所以選擇在 TI 工作、向我們購買商品,或是支持我們,並不只是因為我們的產品和技術,更是因為我們的營運符合我們的願景與價值精神。」

在台灣已經 51 歲的德州儀器,在持續變化的環境下,猶如沉水植物般,隨著水位高低而伸展彎曲;對多元人才、性別平衡的重視,就像錯開生長的葉片,能隨著水流擺動,接受來自不同角度的陽光;對企業社會責任的重視跟實踐,則為整個生態系帶來氧氣、營養、與安定——像 TI 這樣的企業,掌握著自己的命運。

本文由德州儀器與泛科知識共同企劃

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
237 篇文章 ・ 317 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
【極光片語】頂尖團隊的社會責任—科學家該如何提問?
雷漢欣
・2015/04/08 ・3277字 ・閱讀時間約 6 分鐘 ・SR值 523 ・七年級

一講到不同領域的結合,大部份人直覺想到的是自然學科裡的「生物尬電機、迸出新滋味」或是人文學科裡的「文史哲一家親」,會想到文科與理科整合的人可能就不多了,其實在上一集【極光片語】中,日本AIST以機器人科技滿足人性中陪伴的需求,就是個好例子。「人們常以為科學不會考慮到社會問題,只是一股腦兒的往科學前沿衝刺;其實科學對社會有很大的影響,至於科學家要怎麼讓民眾對科學研究有感?癥結在於研究方法和提出問題的形式。」李世光老師說。

李老師擔任國科會工程處處長時,曾率團去澳洲最高國家級研究機構CSIRO和研發出金黃色奇異果的HortResearch(注1)取經,學習這兩個科學研究單位如何關懷社會問題,並提出科學的解決之道。「他們的目標很有意思,叫做『Impact local immediately, influence global fundamentally』(即刻的在地衝擊性,根本的全球影響力)。」李老師說。

科學家發明的藥物讓綿羊長出脆弱的毛髮,綿羊穿上特製網衣後,工人就可以剝下一件完整的羊毛大衣。照片來源:李世光。
科學家發明的藥物讓綿羊長出脆弱的毛髮,綿羊穿上特製網衣後,工人就可以剝下一件完整的羊毛大衣。照片來源:李世光。

免動刀的綿羊脫衣秀

澳洲是全世界最大的羊毛出口國,羊毛不僅為澳洲帶來貿易的獲利,綿羊的脫衣秀也是觀光客必訪的行程,然而彎著腰用電動剃刀為綿羊脫毛衣並不是件輕鬆的差事,羊毛工人平均在42歲時會有脊椎側彎的問題,年輕人對這項工作也興趣缺缺,眼看著產業即將發生世代斷層的危機,澳洲人該如何面對呢?大量引進外籍勞工、開放更多打工度假的名額,似乎都不是長久之計;面對這題快問快答,科學家的答案:「讓羊毛自己掉落吧!」

-----廣告,請繼續往下閱讀-----

澳洲CSIRO的科學家研發一種會使髮質變差的藥劑,注入綿羊體內後,只要等待幾週讓綿羊長出一小段易斷裂的毛髮,農場主人就可以像扒香蕉皮一樣,幫綿羊脫去整件毛衣。想像這個畫面或許有點獵奇,其實綿羊斷毛的原理跟警察驗毒一樣,我們的每根毛髮都是一本日記,記錄著每天的飲食、用藥,營養不良時會導致出枯黃的頭髮,代謝後的藥物卡在毛髮裡也無所遁形。科學家發明的「生物剃毛術」,有助於減少人工剃毛所需的勞力,避免可能發生的勞力短缺,直接、立即地解決在地的產業問題。

淡褐蘋果蛾在澳洲、紐西蘭、美國等地都會造成農作物的損害。照片來源:維基百科
淡褐蘋果蛾在澳洲、紐西蘭、美國等地都會造成農作物的損害。照片來源:維基百科

擊敗那萬惡的澳洲飛蛾

在澳洲的東南方,那個舉世聞名的奇異果王國紐西蘭也面臨了一個挑戰:自從淡褐蘋果蛾(Epiphyas postvittana)從澳洲風塵僕僕的飛越塔斯曼海抵達對岸,紐西蘭的作物幾乎無一倖免的被洗劫一輪,對這個農業大國造成不小的影響,「所以他們說這是萬惡的澳洲飛蛾。(笑)」李老師說,「為了解決這個問題,HortResearch的科學家做了非常精彩的研究!」

面對病蟲害,噴灑農藥是行之有年的作法,後來人們考量到生態浩劫的風險,發明各種對環境較為友善的生物防治法,例如以藥劑或放射線讓雄蟲不孕,絕子絕孫以減少族群後裔、釋放費洛蒙干擾雄蟲求偶等等。「通常研究做到這步驟已經很讓人開心了,HortResearch的科學家卻繼續做了很有意思的事。」李老師說。昆蟲嗅覺研究群的科學家認為,昆蟲的嗅覺會影響覓食和交配,因此他們從淡褐蘋果蛾偵測費洛蒙等揮發性物質的觸鬚開始研究,找到分子進入觸鬚的路徑,再分析這些蛋白質受器的結構與功能,藉由蛋白質體學追溯到控制此嗅覺機制的基因後,再以基因剔除的技術證明了此基因的影響。

-----廣告,請繼續往下閱讀-----

從器官到生化反應路徑,從蛋白質到基因,如此打破沙鍋問到底的昆蟲嗅覺研究,不僅有潛力產生出新的蛾類或害蟲控制法,還有機會讓工程領域的研究者開發出創新的嗅覺感應子,「台灣的電子技術加上紐西蘭的生化研究,可以共同開發電子鼻,應用在食品新鮮度測試、有毒氣體偵測、香水開發等無限多種領域。」李老師興奮地說,「當我們把科學和社會問題結合,就會有全新的思路,跨領域的整合就可以衍生出無限多種新的技術和產業!」從應用導向研究所延伸出的基礎研究不僅扎實,對世界產生的影響力也很強大。

HotResearch消費者體驗研究室旁邊的食品準備室,研究人員在此製備食物樣品,經由照片左邊的窗口遞給受試者試吃。照片來源:李世光。
HotResearch的消費者體驗研究室旁邊連接食品準備室,研究人員在此製備食物樣品,經由照片左邊的窗口遞給受試者試吃。照片來源:李世光。

係金A!奇異果的真功夫

除了研究萬惡的澳洲飛蛾,綠色和金色奇異果也是HortResearch最負盛名的成果,這些由世界各地的奇異果所育成出的新品種,不僅受到全世界的喜愛,更讓紐西蘭的農業出口成長近十倍,研究單位開發的新品種經由全國各地的小農各自生產,再由所有農戶共同擁有的公司統一行銷,這種產銷系統需要非常完善的採摘後管理,因此,紐西蘭奇異果背後的功臣除了育種、生產、生態保護和植物病蟲害控制等農業基本成員之外,更加入了強大的保存加工技術和市場研究等新角色。

為了讓奇異果的外銷更成功,FortResearch很謹慎的研究各地消費者的喜好,包括氣味、顏色、口感等等,他們為此建造一間品評室,請不同族裔的人於此試吃各種不同的奇異果。為了減少操作人員造成的變因,受試者必須獨自坐在面牆的桌子前,牆上有一個像是購票亭的小窗口,窗口的對面是食物準備室,研究員經由窗口遞食物給受試者;為了測試顏色對食品喜好程度的影響,品評室也可以改變燈光的顏色:白光、紅光或全暗等等;為了標準化難以計算的喜好度,受試者不是像選秀節目評審一樣打出分數,而是拿著一把尺,在試吃完奇異果後,用手決定得分應該落在尺的左邊(不喜歡)或右邊(喜歡),手指捏著的刻度就是量化過的喜好度。這些嚴謹的研究讓李老師感到驚艷,他說:「這些科技化、量化的測試,背後的研究室和研究方法,比我想像的公正很多。」

-----廣告,請繼續往下閱讀-----

來自東南亞國家的移工,會在台北火車站到中山北路三段一代聚會。
來自東南亞國家的移工,會在台北火車站到中山北路三段一帶聚會。照片來源:Lennon Ying-Dah Wong via Flickr

即刻的在地衝擊性,根本的全球影響力

有些科學家用科學方法解決社會問題,另一些科學家則將特殊的社會現象化作研究的助力。中研院的南島文化研究所曾經結合台大等單位的研究人員提出一項關於南島語族的跨領域研究計畫,向科技部申請了600萬的經費,負責審核的長官非常支持這個計畫,但他對預算感到疑惑:「600萬的經費怎麼夠呢?光是研究人員前往菲律賓、印尼、紐西蘭採血、訪談的交通費就不夠了吧?」計畫主持人如此回應:「不需要出國,我們每個週末去中山北路就可以了!」台灣有許多來自東南亞國家的外籍移工,離鄉背井、工作辛勞的他們趁著週末假日的難得空閑,在台北火車站到中山北路一帶與同鄉聚會,中研院提出的這項計畫即充分運用了台灣人口組成的優勢,降低研究的門檻。

無論是澳洲的綿羊、紐西蘭的淡褐蘋果蛾和奇異果,還是台灣的南島語族研究,都是以提升人民的福祉為核心目的,並且與當地社會緊緊相扣,「一流的研究團隊必有社會責任,只有從社會問題出發的科學研究,才能達到『Impact local immediately, influence global fundamentally(即刻的在地衝擊性,根本的全球影響力)』。」李老師說。

科學家能以科技實踐天馬行空的想像,為社會中的種種問題找出解答,但自然科學對人類社會的影響力,應該沒有比「網路」更廣大的了。虛擬的網路連結了實體的社會,物品、製造業、城市的數位化產生了現在當紅的物聯網、自造者、雲端等新名詞,生活及產業皆因為數位科技有了劇烈的變化,身在網路此山中的我們,看得清虛實整合世界的真面目嗎?預知詳情,請待下回揭曉~

-----廣告,請繼續往下閱讀-----

注1:HortResearch 於2008年與Crop and Food Research合併為Plant and Food Research。

【極光片語】專欄收錄李世光老師的訪談,每一段小故事、小物件的背後,都有饒富趣味的科學道理。吉光片羽比喻殘存的珍貴文物,象徵李世光老師在科學研發的高昂志氣和人生智慧;傳說見到極光會帶給人一輩子的好運,期待讀者在本專欄得到的啟發,都能像看見極光般感動。

-----廣告,請繼續往下閱讀-----
文章難易度
雷漢欣
20 篇文章 ・ 5 位粉絲
PanSci的菜菜實習編輯,來自溫馨的動科系,心情好的時候喜歡說「你知道嗎!?」小故事,即使常得到「誰不知道阿.......」的冷眼回應,也不改其志。