Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

成群的機器人飛向藍天

only-perception
・2011/10/02 ・529字 ・閱讀時間約 1 分鐘 ・SR值 465 ・五年級

-----廣告,請繼續往下閱讀-----

下次你抬頭看天空並以為你看到一群天鵝為了過冬往南飛翔時,你最好再看仔細一點。如果你在瑞士日內瓦湖,這可能實際上是一群來自於 Laboratory of Intelligence Systems 的機器人。

研究者 Sabine Hauert、Sebverin Leven 以及 Dario Floreano 發現一種使小型、具固定翅膀的機器人一同飛向天空,不會對撞且能同時遷移(migrate)的方法。為了要辦到這件事,研究者們需要使機器人以相同速度及方向移動,避免碰撞並維持密切靠近。他們本週將在舊金山舉行的 International Conference on Intelligent Robots and Systems 上演示其研究。

為達到此目標,研究者使用一種由 Craig Reynolds 在 1986 年開發的三維演算法,在此個別的機器人對其近鄰有所反應,但不會考量到一整群的動作。

這些機器人由機器人公司 senseFly 所創造,而且用連接到 Linux 電腦機板上的 Wi-Fi dongle 來彼此溝通。他們開始進行簡易測試,並達到一次共有 10 隻成群鳥兒的規模,但模擬顯示,機器人的數量可接近 100。

-----廣告,請繼續往下閱讀-----

除了寫程式使機器人以相同速度飛行、保持接近而不互撞之外,研究者也添加其他東西。他們加入遷移的能力。這讓研究者能設定一組預先程式化的目的地,讓這一群飛過去。

這些成群結隊的機器人,其預計用途包括拍攝與測繪地面,同時也有可能用於搜尋或監視的任務。

資料來源:PHYSORG:Flocking robots take to the sky〔September 27, 2011]

轉載自only-perception

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
不為人知的鳥秘密?全都藏在羽毛裡——《五感之外的世界》
臉譜出版_96
・2023/09/19 ・2471字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

比孔雀還要顯眼、高調的鳥類並不多,但如果可以的話,我想請各位先忽略牠那華麗又色彩斑斕的尾羽。我們要將關注焦點放在孔雀頭上形成冠羽的那些硬挺羽毛。

細節藏在羽毛的「振盪頻率」裡

這些長得像鍋鏟的羽毛雖然也很醒目,卻常常被忽略。蘇珊.阿瑪德.康恩(Suzanne Amador Kane)從專門繁殖鳥類的鳥舍與飼養員那裡找來了一些孔雀,再加上一隻來自動物園、曾經不小心飛進北極熊圍欄裡的倒霉孔雀,想要研究孔雀冠羽的用途。

她的學生丹尼爾.凡.貝爾倫(Daniel Van Beveren)在孔雀冠羽上裝設了機械振盪器,並且觀察冠羽的擺動。當機器的振盪頻率為二十六赫茲時──也就是一秒振盪二十六次──冠羽擺動得特別劇烈。這是會令孔雀冠羽產生共鳴的頻率,也正好是雄孔雀求偶時擺動尾羽的頻率,因此康恩對我說:「這不可能只是巧合。」

孔雀冠羽產生共鳴的頻率,正好是雄孔雀求偶時擺動尾羽的頻率。圖/pexels

凡.貝爾倫對著架設好儀器的孔雀冠羽播放各種錄音,假如播出的是真正的孔雀搖動尾羽的聲音,冠羽就會產生共鳴;若是播放其他聲音,例如 Bee Gees 的〈Staying Alive〉,就沒有這種效果。

-----廣告,請繼續往下閱讀-----

該研究結果顯示,站在求偶的雄孔雀面前的雌孔雀或許真的能夠感知到雄孔雀尾羽製造出的氣流。除了看見雄孔雀賣力的求偶動作以外,雌孔雀或許也能感覺到這一番努力。(這種現象也會反過來,有時候雌孔雀也會對雄孔雀展現自己。)

康恩想要拍攝真實的孔雀求偶時冠羽的模樣,觀察牠們擺動冠羽的頻率是否真和尾羽相同,藉此證明她的論點。假如真是如此,就表示孔雀求偶的過程中除了有浮誇的視覺效果以外,其實還存在著人類一直以來都沒注意到的元素;而我們會忽略這些細節,是因為缺少適當的配備。

假如連大自然中如此耀眼浮誇的行為展演中,都有被我們忽視的環節,我們到底還錯失了多少東西?

孔雀細小的纖羽會告訴我們答案

從孔雀冠羽底部細小的纖羽(filoplume)就能找出線索。纖羽的樣子就像一根尖端為簇狀的茅,還能做為機械性受體之用。

-----廣告,請繼續往下閱讀-----

當空氣流動擾動了冠羽,便會擠壓到纖羽,進而觸發神經。大部分的鳥類都有纖羽,而且幾乎都會伴隨其他羽毛一起發揮作用。

鳥類可以透過纖羽掌控羽毛的狀態,因此或許能夠在鳥羽澎亂時即時整理羽毛,重整態勢。不過纖羽還有一項最重要的功用──幫助鳥類飛行。

從孔雀冠羽底部細小的纖羽就能找出線索。圖/pexels

避免失速墜落技巧

鳥飛行的樣子看起來是如此地輕鬆自在,因此我們很可能根本想不到那是一件多費力的事。為了維持在空中飛行,鳥必須一直調整翅膀的型態與角度。如果一切都對了,氣流就能順著翅膀流動,鳥類的身體也就能順利抬升至空中。

然而如果鳥的翅膀角度太大,原本順暢的氣流會形成擾流,抬升的力量也就隨之消失,這種現象叫做失速(stalling)。一旦鳥無法避免這種狀態產生或即時修正,就會從天上掉下來。不過這不常發生,一部分原因是因為纖羽能為鳥類提供必要資訊,因此能夠因應各種情況快速調整翅膀的狀態,避免不幸。

-----廣告,請繼續往下閱讀-----

老實說,這種能力實在相當驚人。我記得有次站在船上看著一隻海鷗緊跟船身飛行;那天風很大,而我們──也就是我坐的船和那隻海鷗──都在高速移動。當我伸出手感受從手上與指間吹過的風時,不禁讚嘆海鷗的翅膀竟然也能產生同樣的作用,讓鳥類能夠在天空中飛翔。

如果一切都對了,氣流就能順著翅膀流動,鳥類的身體也就能順利抬升至空中。圖/pexels

然而我當時我根本不知道鳥類還會運用纖羽判讀氣流,在飛行時不斷微調姿態。法國的眼科醫師安德烈.羅尚-杜維尼奧(André Rochon-Duvigneaud)曾描述鳥是「一對靠雙眼引導方向的翅膀」,不過這個說法還不夠正確──鳥的翅膀其實會為自己找到方向。

蝙蝠翅膀長得不一樣,功能卻一點都不差

蝙蝠的翅膀也是如此。牠們翅膀的薄膜雖與鳥羽構造大不相同,敏感度卻不相上下。蝙蝠的翅膀薄膜上布滿有敏銳觸覺的毛髮,這些毛髮從小小的半圓球狀上凸出,並且連接著機械性受體。

蘇珊.斯德賓發現這些毛髮大多數只會對來自蝙蝠背後往前吹拂的氣流有反應,而這種現象通常在蝙蝠快要失速時才會出現。因此蝙蝠其實就跟鳥類一樣,都能感覺出快要失速的狀態,也能夠及時採取行動修正。

-----廣告,請繼續往下閱讀-----

多虧這些毛髮,蝙蝠能以陡峭的角度飛行、在空中盤旋和後空翻,捕捉在尾巴附近的昆蟲,甚至還能以頭下腳上的姿態降落。當斯德賓以除毛膏去除蝙蝠翅膀上的毛髮,並讓牠們飛過障礙物後,可以發現毛髮消失對牠們產生的影響非常明顯。

蝙蝠翅膀的薄膜雖與鳥羽構造大不相同,敏感度卻不相上下。圖/pexels

牠們雖然不會墜落,卻會選擇與周邊的物體保持相當的距離,轉彎的角度也比平常更大,姿態更笨拙;反之,假如牠們翅膀上的毛髮完好無缺,就能夠以離物體僅僅幾公分的姿態飛行,還能做出過髮夾彎一般的飛行動作。

對牠們來說,氣流感受器的存在與否決定了牠們只能用一般方式飛行,還是能夠進一步做出各種飛行特技。

對於其他動物來說,這些感受器的存在很可能更是存亡與否的關鍵。這或許就是為什麼它們會演變為這世上數一數二敏感的器官。

-----廣告,請繼續往下閱讀-----

——本文摘自《五感之外的世界:認識動物神奇的感知系統,探見人類感官無法觸及的大自然》,2023 年 8 月,臉譜出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

0
0

文字

分享

0
0
0
成群的機器人飛向藍天
only-perception
・2011/10/02 ・529字 ・閱讀時間約 1 分鐘 ・SR值 465 ・五年級

-----廣告,請繼續往下閱讀-----

下次你抬頭看天空並以為你看到一群天鵝為了過冬往南飛翔時,你最好再看仔細一點。如果你在瑞士日內瓦湖,這可能實際上是一群來自於 Laboratory of Intelligence Systems 的機器人。

研究者 Sabine Hauert、Sebverin Leven 以及 Dario Floreano 發現一種使小型、具固定翅膀的機器人一同飛向天空,不會對撞且能同時遷移(migrate)的方法。為了要辦到這件事,研究者們需要使機器人以相同速度及方向移動,避免碰撞並維持密切靠近。他們本週將在舊金山舉行的 International Conference on Intelligent Robots and Systems 上演示其研究。

為達到此目標,研究者使用一種由 Craig Reynolds 在 1986 年開發的三維演算法,在此個別的機器人對其近鄰有所反應,但不會考量到一整群的動作。

這些機器人由機器人公司 senseFly 所創造,而且用連接到 Linux 電腦機板上的 Wi-Fi dongle 來彼此溝通。他們開始進行簡易測試,並達到一次共有 10 隻成群鳥兒的規模,但模擬顯示,機器人的數量可接近 100。

-----廣告,請繼續往下閱讀-----

除了寫程式使機器人以相同速度飛行、保持接近而不互撞之外,研究者也添加其他東西。他們加入遷移的能力。這讓研究者能設定一組預先程式化的目的地,讓這一群飛過去。

這些成群結隊的機器人,其預計用途包括拍攝與測繪地面,同時也有可能用於搜尋或監視的任務。

資料來源:PHYSORG:Flocking robots take to the sky〔September 27, 2011]

轉載自only-perception

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

2

6
2

文字

分享

2
6
2
牠如何長出一雙「隱形的翅膀」?——玻璃翼蝶的成長日誌
Curious曉白_96
・2021/10/28 ・3597字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

蝴蝶的美,源於牠們擁有的千變萬色的翅膀,這些色彩是門面,也是保護傘,鮮豔顯目派警戒掠食者別靠近!小心牠們有毒(即便有些蝶其實没毒 XD);擬態派能巧妙地偽裝成自然環境中的枯葉、樹木等騙過掠食者的眼睛,或是如猛禽眼睛樣貌的翅膀,嚇唬掠食者。多數蝴蝶們視顏色為性命,但對玻璃翼蝶來說……就是不給顏色瞧瞧,幾近透明如玻璃的翅膀,即使飛行也如穿上一層隱形罩袍,讓大家都難以察覺牠的存在。究竟,這個蝶界的「小透明」是如何成長?又何以成為科學家們研發新型抗反射材料的重要靈感?Let’s check it out !

玻璃翼蝶的成長日誌

玻璃翼蝶,又名寬紋黑脈綃蝶(學名:Greta oto,俗稱透翅蝶),屬於鳳蝶總科的蛺蝶科(Nymphalidae),主要分布在中南美洲的雨林及山區。牠們的卵殼型態非常多變,有些如珍珠般光滑透亮,有些點綴上小撮鱗毛,有些具有雕刻般的紋路。

玻璃翼蝶, 又名寬紋黑脈綃蝶 ,俗稱透翅蝶,為蛺蝶科寬紋黑脈綃蝶屬。圖/EOL

幼蟲時,牠們主要吃的是夜香樹屬的植物,這類植物含有具毒性的生物鹼,且能夠存儲於幼蟲體內,當有些鳥兒吃了他們,輕則拉肚子,重則中毒身亡。玻璃翼蝶向來與眾不同,即便同屬鱗翅目(Lepidoptera),他們卻不與其他蝶一般擁有鱗翅目的招牌特徵 —— 成蟲全身布滿鱗毛,取而代之的是光滑剔透如玻璃般的翅膀,而成蟲的牠們一樣喜愛吃「毒」口味的食物,例如菊科(含生物鹼 (pyrrolizidine alkaloids))、馬纓丹屬植物,讓掠食者們敬而遠之。

鱗翅目招牌特徵 —— 成蟲全身布滿鱗毛。圖/EOL
可從罌粟分離出生物鹼-嗎啡。圖/維基百科

隱形翅膀的誕生

玻璃翼蝶是如何生成如此獨特的翅膀呢?帕特爾(Nipam H. Patel)和他的同事們首度將玻璃翼蝶詳細的成長時間序公開於《實驗生物學期刊》(Journal of Experimental Biology),他們分別在其成蛹不同時間點(16, 30, 48, 60 hr)進行解剖,並觀察其生成翅膀型態的變化(如圖一)。

-----廣告,請繼續往下閱讀-----
  • 成蛹 16 小時

起初牠們與其他鱗翅目物種一樣,蛹翅由一層輕薄、勻稱的上皮組織組成,接著許多表皮細胞已分化為平行排列的感覺器官前細胞(Sensory Organ Precursor cells , 以下簡稱 SOP 細胞)。在翅膀生成前期,帕特爾等人發現翅膀透明區域與非透明區域相比,具有較低密度的 SOP 細胞,因此他們猜測,玻璃翼蝶翅膀上形成透明區域及非透明區域的關鍵點就在於 SOP 細胞密度的差異,導致兩個區域的 SOP 細胞日後受到不同的調節,進而影響成體翅膀上兩區域的鱗片密度和表面翼膜分布具有極端的差異。

  • 成蛹 30 小時

此時玻璃翼蝶身上的 SOP 細胞開始分化成為鱗狀細胞(scale cells)及似人類的神經膠質細胞的界面上皮細胞(socket cells),鱗狀細胞主要位於翅膀內部,而界面上皮細胞肌動主要負責連接每個鱗狀細胞,並位於翅膀較為表層的位置。此外,他們透過染色技術發現翅膀上開始出現由肌動蛋白組成的小圓柱狀增生鱗片,而這群增生鱗片甚至長到超出翅膀表面。這個階段的透明翼區域鱗片細胞型態跟不透明區域的未分化鱗片細胞一樣,像極了一個個被吹成橢圓狀的氣球。

  • 成蛹 48 小時

鱗狀細胞開始延展並擴散生長,這時候透明翼區和非透明翼區要開始分道揚鑣了!非透明翼區(尤其是翅膀周圍有顏色的分界線)有很粗的肌動蛋白束,鱗片細胞呈圓扁狀;而透明翼區的鱗狀細胞開始向上延伸,並產生兩種型態(短小倒三角狀及狹長鬃毛狀)的細胞交替分布於其中。

  • 成蛹 60 小時

透明翼區的短小倒三角鱗狀細胞們的兩個角角開始伸出「觸鬚」,形成兩個似觸角型的細胞並開始延伸生長,而長鬃毛鱗狀細胞的長度早已生長至一定長度,甚至還長到彎曲。非透明翼區的鱗狀細胞則會再長得更長、更寬、更平坦(葉狀),並在尖端處形成鋸齒狀。

-----廣告,請繼續往下閱讀-----
隨成蛹時間翅膀發育變化。 圖中洋紅色螢光為 SOP 細胞,綠螢光為肌動蛋白,粉紅色螢光為鱗狀細胞膜,成蛹 30 小時,透明翼區(Clear)與非透明翼區(Opaque)細胞分布密度差異大,成蛹 48 小時後兩區域細胞開始發展成截然不同的型態。 圖(一)/參考資料3

我們之所以能看到非透明物體具有色彩,是由於物體會吸收部分光線,並將其他光線反射入我們的眼睛。反射程度主要取決於生物組織和環境介質之間的折射率差異,差異越大,表面反射越高。以會呈現透明的水生生物為反例,因為其組織與周遭環境(水)的折射率相近,因此他們就能施展「隱身術」。但是呢!在陸地上,要隱身可難囉~因為陸地生物組織的折射率(n=~1.3-1.5)和空氣(n=1)的折射率差異很大,所以易產生極大的表面反射。

有色翅膀的蝴蝶擁有於一排排扁平、重疊的鱗片,每個鱗片都可以通過色素沉澱產生顏色,並與光於奈米結構層級上進行交互作用,產生所謂的「結構色(structural coloration)」,選擇性吸收特定波長的光,且使光發生散射、漫反射、衍射或干涉而產生各式炫麗色彩。相反地,像透明翼蝶與部分蛾類的翅膀之所以會呈現透明,讓光線穿透,並能夠從透明翅膀區域看見他們身後的物體,關鍵在於他們只含有一層幾丁質膜(chitin membrane,也稱甲殼質),這層膜並不會明顯地吸收或反射光線,因此光線能輕易透射這層膜。

仿生靈感:抗反射材料的誕生

然而,幾丁質膜的加持還不夠,因為幾丁質本身具高折射率(n=1.56),因此即便透明,還是會有反射光。為此,透明翼蝶的翅膀發展出一款新型態的「抗反射構造」,造就此構造的三大功臣:微小且垂直稀疏的鱗片、幾丁質組成的奈米柱、蠟質層。垂直的鱗片能順著光線移動,使光線更容易致穿透翅膀;奈米柱使翅膀顯得凹凸不平,不但能減少因相同角度反射所產生的眩光,還能使光線呈現漫反射的效果;可是,透過電子顯微鏡的觀察,科學家們發現透明翼蝶的透明翼區的漫反射率僅約 2 % (空氣與翅膀介面的比率),後來他們查出這是翅膀表面覆蓋蠟質層的功勞,蠟質層似緩衝膠,因為比空氣密度大,能緩衝光線穿透翅膀的速度,還能大幅減緩光線照射鱗片所產生的眩光,若去除透明翼區的奈米柱及蠟質層,則會使反射率提升 2.5 倍,使翅膀受光照而閃亮。

這項驚人的發現不只有帕特爾等人注意到,卡爾斯魯厄理工學院(Karlsruhe Institute of Technology)的研究團隊也曾於 2015 年在《自然通訊》(Nature Communications)期刊發表,玻璃翼蝶翅膀表面不規則的奈米結構能降低反射,並透過蝕刻沈積技術(etching techniques)製造了仿透明蝶翅的塗層,厚度僅 500 奈米,且具有防水及自潔功能。

-----廣告,請繼續往下閱讀-----

雖然目前研究處於測試階段,但在未來可望將這類新型塗層應用於防眩光的眼鏡鏡片、相機鏡頭、3C 產品的螢幕上,還能用於太陽能板以提升太陽能轉換效率,甚至軍事領域能發展出「隱形效果」的武器或裝備,這就是透明翼蝶帶來的重大效應。

卡爾斯魯厄理工學院研究團隊於 2015 年在《自然通訊》期刊中發表玻璃翼蝶翅膀表面不規則的奈米結構能降低反射。圖/參考資料4

結語

來自杜克大學的生物學家桑克‧強森(Sonke Johnsen)曾指出儘管許多具透明性質的物種都在身體結構上演化出奈米柱,但蠟質層倒是個令人費解的新發現,蝴蝶的幾丁質覆蓋層是個牢固的結構,為何還要加上蠟質層削弱其堅固度呢?因此他認為這個問題的解答或許會發掘出更多酷東西!不過一想到能在大太陽底下使用仿透明翼蝶的仿生手機,不再受惱人的反光所擾,這個對重度使用 3C 產品的捧由們已經是件很酷的事了!

仿生透明翼蝶產品,對人類來說,是一個保護眼睛、免於反光摧殘的一項發明。 圖/GIPHY
  1. See through the Glasswing Butterfly’s Fascinating Wings
  2. New images clarify how glasswing butterflies make their wings transparent
  3. Developmental, cellular and biochemical basis of transparency in clearwing butterflies
  4. The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly
  5. How glasswing butterflies grow their invisible wings
  6. 抗反射塗層 仿透明蝶翼
  7. 科技大觀園:抗反射表面塗層仿生透明蝶翅
  8. 求真百科:玻璃翼蝶
  9. 寬紋黑脈綃蝶:形態特徵,棲息環境,生活習性,分布範圍,繁殖方式,種群現狀,保護級別
  10. MPlus | 隱形的翅膀:玻璃蝴蝶的透明演化之謎
-----廣告,請繼續往下閱讀-----
所有討論 2
Curious曉白_96
12 篇文章 ・ 7 位粉絲
對於科學新知充滿好奇心,對於一切新知都想通曉明白,期許自己有一天能成為有所貢獻於社會的曉曉科學家!