0

0
0

文字

分享

0
0
0

成群的機器人飛向藍天

only-perception
・2011/10/02 ・529字 ・閱讀時間約 1 分鐘 ・SR值 465 ・五年級

-----廣告,請繼續往下閱讀-----

下次你抬頭看天空並以為你看到一群天鵝為了過冬往南飛翔時,你最好再看仔細一點。如果你在瑞士日內瓦湖,這可能實際上是一群來自於 Laboratory of Intelligence Systems 的機器人。

研究者 Sabine Hauert、Sebverin Leven 以及 Dario Floreano 發現一種使小型、具固定翅膀的機器人一同飛向天空,不會對撞且能同時遷移(migrate)的方法。為了要辦到這件事,研究者們需要使機器人以相同速度及方向移動,避免碰撞並維持密切靠近。他們本週將在舊金山舉行的 International Conference on Intelligent Robots and Systems 上演示其研究。

為達到此目標,研究者使用一種由 Craig Reynolds 在 1986 年開發的三維演算法,在此個別的機器人對其近鄰有所反應,但不會考量到一整群的動作。

這些機器人由機器人公司 senseFly 所創造,而且用連接到 Linux 電腦機板上的 Wi-Fi dongle 來彼此溝通。他們開始進行簡易測試,並達到一次共有 10 隻成群鳥兒的規模,但模擬顯示,機器人的數量可接近 100。

-----廣告,請繼續往下閱讀-----

除了寫程式使機器人以相同速度飛行、保持接近而不互撞之外,研究者也添加其他東西。他們加入遷移的能力。這讓研究者能設定一組預先程式化的目的地,讓這一群飛過去。

這些成群結隊的機器人,其預計用途包括拍攝與測繪地面,同時也有可能用於搜尋或監視的任務。

資料來源:PHYSORG:Flocking robots take to the sky〔September 27, 2011]

轉載自only-perception

-----廣告,請繼續往下閱讀-----
文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

0
0

文字

分享

0
0
0
不為人知的鳥秘密?全都藏在羽毛裡——《五感之外的世界》
臉譜出版_96
・2023/09/19 ・2471字 ・閱讀時間約 5 分鐘

比孔雀還要顯眼、高調的鳥類並不多,但如果可以的話,我想請各位先忽略牠那華麗又色彩斑斕的尾羽。我們要將關注焦點放在孔雀頭上形成冠羽的那些硬挺羽毛。

細節藏在羽毛的「振盪頻率」裡

這些長得像鍋鏟的羽毛雖然也很醒目,卻常常被忽略。蘇珊.阿瑪德.康恩(Suzanne Amador Kane)從專門繁殖鳥類的鳥舍與飼養員那裡找來了一些孔雀,再加上一隻來自動物園、曾經不小心飛進北極熊圍欄裡的倒霉孔雀,想要研究孔雀冠羽的用途。

她的學生丹尼爾.凡.貝爾倫(Daniel Van Beveren)在孔雀冠羽上裝設了機械振盪器,並且觀察冠羽的擺動。當機器的振盪頻率為二十六赫茲時──也就是一秒振盪二十六次──冠羽擺動得特別劇烈。這是會令孔雀冠羽產生共鳴的頻率,也正好是雄孔雀求偶時擺動尾羽的頻率,因此康恩對我說:「這不可能只是巧合。」

孔雀冠羽產生共鳴的頻率,正好是雄孔雀求偶時擺動尾羽的頻率。圖/pexels

凡.貝爾倫對著架設好儀器的孔雀冠羽播放各種錄音,假如播出的是真正的孔雀搖動尾羽的聲音,冠羽就會產生共鳴;若是播放其他聲音,例如 Bee Gees 的〈Staying Alive〉,就沒有這種效果。

-----廣告,請繼續往下閱讀-----

該研究結果顯示,站在求偶的雄孔雀面前的雌孔雀或許真的能夠感知到雄孔雀尾羽製造出的氣流。除了看見雄孔雀賣力的求偶動作以外,雌孔雀或許也能感覺到這一番努力。(這種現象也會反過來,有時候雌孔雀也會對雄孔雀展現自己。)

康恩想要拍攝真實的孔雀求偶時冠羽的模樣,觀察牠們擺動冠羽的頻率是否真和尾羽相同,藉此證明她的論點。假如真是如此,就表示孔雀求偶的過程中除了有浮誇的視覺效果以外,其實還存在著人類一直以來都沒注意到的元素;而我們會忽略這些細節,是因為缺少適當的配備。

假如連大自然中如此耀眼浮誇的行為展演中,都有被我們忽視的環節,我們到底還錯失了多少東西?

孔雀細小的纖羽會告訴我們答案

從孔雀冠羽底部細小的纖羽(filoplume)就能找出線索。纖羽的樣子就像一根尖端為簇狀的茅,還能做為機械性受體之用。

-----廣告,請繼續往下閱讀-----

當空氣流動擾動了冠羽,便會擠壓到纖羽,進而觸發神經。大部分的鳥類都有纖羽,而且幾乎都會伴隨其他羽毛一起發揮作用。

鳥類可以透過纖羽掌控羽毛的狀態,因此或許能夠在鳥羽澎亂時即時整理羽毛,重整態勢。不過纖羽還有一項最重要的功用──幫助鳥類飛行。

從孔雀冠羽底部細小的纖羽就能找出線索。圖/pexels

避免失速墜落技巧

鳥飛行的樣子看起來是如此地輕鬆自在,因此我們很可能根本想不到那是一件多費力的事。為了維持在空中飛行,鳥必須一直調整翅膀的型態與角度。如果一切都對了,氣流就能順著翅膀流動,鳥類的身體也就能順利抬升至空中。

然而如果鳥的翅膀角度太大,原本順暢的氣流會形成擾流,抬升的力量也就隨之消失,這種現象叫做失速(stalling)。一旦鳥無法避免這種狀態產生或即時修正,就會從天上掉下來。不過這不常發生,一部分原因是因為纖羽能為鳥類提供必要資訊,因此能夠因應各種情況快速調整翅膀的狀態,避免不幸。

-----廣告,請繼續往下閱讀-----

老實說,這種能力實在相當驚人。我記得有次站在船上看著一隻海鷗緊跟船身飛行;那天風很大,而我們──也就是我坐的船和那隻海鷗──都在高速移動。當我伸出手感受從手上與指間吹過的風時,不禁讚嘆海鷗的翅膀竟然也能產生同樣的作用,讓鳥類能夠在天空中飛翔。

如果一切都對了,氣流就能順著翅膀流動,鳥類的身體也就能順利抬升至空中。圖/pexels

然而我當時我根本不知道鳥類還會運用纖羽判讀氣流,在飛行時不斷微調姿態。法國的眼科醫師安德烈.羅尚-杜維尼奧(André Rochon-Duvigneaud)曾描述鳥是「一對靠雙眼引導方向的翅膀」,不過這個說法還不夠正確──鳥的翅膀其實會為自己找到方向。

蝙蝠翅膀長得不一樣,功能卻一點都不差

蝙蝠的翅膀也是如此。牠們翅膀的薄膜雖與鳥羽構造大不相同,敏感度卻不相上下。蝙蝠的翅膀薄膜上布滿有敏銳觸覺的毛髮,這些毛髮從小小的半圓球狀上凸出,並且連接著機械性受體。

蘇珊.斯德賓發現這些毛髮大多數只會對來自蝙蝠背後往前吹拂的氣流有反應,而這種現象通常在蝙蝠快要失速時才會出現。因此蝙蝠其實就跟鳥類一樣,都能感覺出快要失速的狀態,也能夠及時採取行動修正。

-----廣告,請繼續往下閱讀-----

多虧這些毛髮,蝙蝠能以陡峭的角度飛行、在空中盤旋和後空翻,捕捉在尾巴附近的昆蟲,甚至還能以頭下腳上的姿態降落。當斯德賓以除毛膏去除蝙蝠翅膀上的毛髮,並讓牠們飛過障礙物後,可以發現毛髮消失對牠們產生的影響非常明顯。

蝙蝠翅膀的薄膜雖與鳥羽構造大不相同,敏感度卻不相上下。圖/pexels

牠們雖然不會墜落,卻會選擇與周邊的物體保持相當的距離,轉彎的角度也比平常更大,姿態更笨拙;反之,假如牠們翅膀上的毛髮完好無缺,就能夠以離物體僅僅幾公分的姿態飛行,還能做出過髮夾彎一般的飛行動作。

對牠們來說,氣流感受器的存在與否決定了牠們只能用一般方式飛行,還是能夠進一步做出各種飛行特技。

對於其他動物來說,這些感受器的存在很可能更是存亡與否的關鍵。這或許就是為什麼它們會演變為這世上數一數二敏感的器官。

-----廣告,請繼續往下閱讀-----

——本文摘自《五感之外的世界:認識動物神奇的感知系統,探見人類感官無法觸及的大自然》,2023 年 8 月,臉譜出版,未經同意請勿轉載。

臉譜出版_96
85 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

2

6
2

文字

分享

2
6
2
牠如何長出一雙「隱形的翅膀」?——玻璃翼蝶的成長日誌
Curious曉白_96
・2021/10/28 ・3597字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

蝴蝶的美,源於牠們擁有的千變萬色的翅膀,這些色彩是門面,也是保護傘,鮮豔顯目派警戒掠食者別靠近!小心牠們有毒(即便有些蝶其實没毒 XD);擬態派能巧妙地偽裝成自然環境中的枯葉、樹木等騙過掠食者的眼睛,或是如猛禽眼睛樣貌的翅膀,嚇唬掠食者。多數蝴蝶們視顏色為性命,但對玻璃翼蝶來說……就是不給顏色瞧瞧,幾近透明如玻璃的翅膀,即使飛行也如穿上一層隱形罩袍,讓大家都難以察覺牠的存在。究竟,這個蝶界的「小透明」是如何成長?又何以成為科學家們研發新型抗反射材料的重要靈感?Let’s check it out !

玻璃翼蝶的成長日誌

玻璃翼蝶,又名寬紋黑脈綃蝶(學名:Greta oto,俗稱透翅蝶),屬於鳳蝶總科的蛺蝶科(Nymphalidae),主要分布在中南美洲的雨林及山區。牠們的卵殼型態非常多變,有些如珍珠般光滑透亮,有些點綴上小撮鱗毛,有些具有雕刻般的紋路。

玻璃翼蝶, 又名寬紋黑脈綃蝶 ,俗稱透翅蝶,為蛺蝶科寬紋黑脈綃蝶屬。圖/EOL

幼蟲時,牠們主要吃的是夜香樹屬的植物,這類植物含有具毒性的生物鹼,且能夠存儲於幼蟲體內,當有些鳥兒吃了他們,輕則拉肚子,重則中毒身亡。玻璃翼蝶向來與眾不同,即便同屬鱗翅目(Lepidoptera),他們卻不與其他蝶一般擁有鱗翅目的招牌特徵 —— 成蟲全身布滿鱗毛,取而代之的是光滑剔透如玻璃般的翅膀,而成蟲的牠們一樣喜愛吃「毒」口味的食物,例如菊科(含生物鹼 (pyrrolizidine alkaloids))、馬纓丹屬植物,讓掠食者們敬而遠之。

鱗翅目招牌特徵 —— 成蟲全身布滿鱗毛。圖/EOL
可從罌粟分離出生物鹼-嗎啡。圖/維基百科

隱形翅膀的誕生

玻璃翼蝶是如何生成如此獨特的翅膀呢?帕特爾(Nipam H. Patel)和他的同事們首度將玻璃翼蝶詳細的成長時間序公開於《實驗生物學期刊》(Journal of Experimental Biology),他們分別在其成蛹不同時間點(16, 30, 48, 60 hr)進行解剖,並觀察其生成翅膀型態的變化(如圖一)。

-----廣告,請繼續往下閱讀-----
  • 成蛹 16 小時

起初牠們與其他鱗翅目物種一樣,蛹翅由一層輕薄、勻稱的上皮組織組成,接著許多表皮細胞已分化為平行排列的感覺器官前細胞(Sensory Organ Precursor cells , 以下簡稱 SOP 細胞)。在翅膀生成前期,帕特爾等人發現翅膀透明區域與非透明區域相比,具有較低密度的 SOP 細胞,因此他們猜測,玻璃翼蝶翅膀上形成透明區域及非透明區域的關鍵點就在於 SOP 細胞密度的差異,導致兩個區域的 SOP 細胞日後受到不同的調節,進而影響成體翅膀上兩區域的鱗片密度和表面翼膜分布具有極端的差異。

  • 成蛹 30 小時

此時玻璃翼蝶身上的 SOP 細胞開始分化成為鱗狀細胞(scale cells)及似人類的神經膠質細胞的界面上皮細胞(socket cells),鱗狀細胞主要位於翅膀內部,而界面上皮細胞肌動主要負責連接每個鱗狀細胞,並位於翅膀較為表層的位置。此外,他們透過染色技術發現翅膀上開始出現由肌動蛋白組成的小圓柱狀增生鱗片,而這群增生鱗片甚至長到超出翅膀表面。這個階段的透明翼區域鱗片細胞型態跟不透明區域的未分化鱗片細胞一樣,像極了一個個被吹成橢圓狀的氣球。

  • 成蛹 48 小時

鱗狀細胞開始延展並擴散生長,這時候透明翼區和非透明翼區要開始分道揚鑣了!非透明翼區(尤其是翅膀周圍有顏色的分界線)有很粗的肌動蛋白束,鱗片細胞呈圓扁狀;而透明翼區的鱗狀細胞開始向上延伸,並產生兩種型態(短小倒三角狀及狹長鬃毛狀)的細胞交替分布於其中。

  • 成蛹 60 小時

透明翼區的短小倒三角鱗狀細胞們的兩個角角開始伸出「觸鬚」,形成兩個似觸角型的細胞並開始延伸生長,而長鬃毛鱗狀細胞的長度早已生長至一定長度,甚至還長到彎曲。非透明翼區的鱗狀細胞則會再長得更長、更寬、更平坦(葉狀),並在尖端處形成鋸齒狀。

-----廣告,請繼續往下閱讀-----
隨成蛹時間翅膀發育變化。 圖中洋紅色螢光為 SOP 細胞,綠螢光為肌動蛋白,粉紅色螢光為鱗狀細胞膜,成蛹 30 小時,透明翼區(Clear)與非透明翼區(Opaque)細胞分布密度差異大,成蛹 48 小時後兩區域細胞開始發展成截然不同的型態。 圖(一)/參考資料3

我們之所以能看到非透明物體具有色彩,是由於物體會吸收部分光線,並將其他光線反射入我們的眼睛。反射程度主要取決於生物組織和環境介質之間的折射率差異,差異越大,表面反射越高。以會呈現透明的水生生物為反例,因為其組織與周遭環境(水)的折射率相近,因此他們就能施展「隱身術」。但是呢!在陸地上,要隱身可難囉~因為陸地生物組織的折射率(n=~1.3-1.5)和空氣(n=1)的折射率差異很大,所以易產生極大的表面反射。

有色翅膀的蝴蝶擁有於一排排扁平、重疊的鱗片,每個鱗片都可以通過色素沉澱產生顏色,並與光於奈米結構層級上進行交互作用,產生所謂的「結構色(structural coloration)」,選擇性吸收特定波長的光,且使光發生散射、漫反射、衍射或干涉而產生各式炫麗色彩。相反地,像透明翼蝶與部分蛾類的翅膀之所以會呈現透明,讓光線穿透,並能夠從透明翅膀區域看見他們身後的物體,關鍵在於他們只含有一層幾丁質膜(chitin membrane,也稱甲殼質),這層膜並不會明顯地吸收或反射光線,因此光線能輕易透射這層膜。

仿生靈感:抗反射材料的誕生

然而,幾丁質膜的加持還不夠,因為幾丁質本身具高折射率(n=1.56),因此即便透明,還是會有反射光。為此,透明翼蝶的翅膀發展出一款新型態的「抗反射構造」,造就此構造的三大功臣:微小且垂直稀疏的鱗片、幾丁質組成的奈米柱、蠟質層。垂直的鱗片能順著光線移動,使光線更容易致穿透翅膀;奈米柱使翅膀顯得凹凸不平,不但能減少因相同角度反射所產生的眩光,還能使光線呈現漫反射的效果;可是,透過電子顯微鏡的觀察,科學家們發現透明翼蝶的透明翼區的漫反射率僅約 2 % (空氣與翅膀介面的比率),後來他們查出這是翅膀表面覆蓋蠟質層的功勞,蠟質層似緩衝膠,因為比空氣密度大,能緩衝光線穿透翅膀的速度,還能大幅減緩光線照射鱗片所產生的眩光,若去除透明翼區的奈米柱及蠟質層,則會使反射率提升 2.5 倍,使翅膀受光照而閃亮。

這項驚人的發現不只有帕特爾等人注意到,卡爾斯魯厄理工學院(Karlsruhe Institute of Technology)的研究團隊也曾於 2015 年在《自然通訊》(Nature Communications)期刊發表,玻璃翼蝶翅膀表面不規則的奈米結構能降低反射,並透過蝕刻沈積技術(etching techniques)製造了仿透明蝶翅的塗層,厚度僅 500 奈米,且具有防水及自潔功能。

-----廣告,請繼續往下閱讀-----

雖然目前研究處於測試階段,但在未來可望將這類新型塗層應用於防眩光的眼鏡鏡片、相機鏡頭、3C 產品的螢幕上,還能用於太陽能板以提升太陽能轉換效率,甚至軍事領域能發展出「隱形效果」的武器或裝備,這就是透明翼蝶帶來的重大效應。

卡爾斯魯厄理工學院研究團隊於 2015 年在《自然通訊》期刊中發表玻璃翼蝶翅膀表面不規則的奈米結構能降低反射。圖/參考資料4

結語

來自杜克大學的生物學家桑克‧強森(Sonke Johnsen)曾指出儘管許多具透明性質的物種都在身體結構上演化出奈米柱,但蠟質層倒是個令人費解的新發現,蝴蝶的幾丁質覆蓋層是個牢固的結構,為何還要加上蠟質層削弱其堅固度呢?因此他認為這個問題的解答或許會發掘出更多酷東西!不過一想到能在大太陽底下使用仿透明翼蝶的仿生手機,不再受惱人的反光所擾,這個對重度使用 3C 產品的捧由們已經是件很酷的事了!

仿生透明翼蝶產品,對人類來說,是一個保護眼睛、免於反光摧殘的一項發明。 圖/GIPHY

參考資料

  1. See through the Glasswing Butterfly’s Fascinating Wings
  2. New images clarify how glasswing butterflies make their wings transparent
  3. Developmental, cellular and biochemical basis of transparency in clearwing butterflies
  4. The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly
  5. How glasswing butterflies grow their invisible wings
  6. 抗反射塗層 仿透明蝶翼
  7. 科技大觀園:抗反射表面塗層仿生透明蝶翅
  8. 求真百科:玻璃翼蝶
  9. 寬紋黑脈綃蝶:形態特徵,棲息環境,生活習性,分布範圍,繁殖方式,種群現狀,保護級別
  10. MPlus | 隱形的翅膀:玻璃蝴蝶的透明演化之謎
所有討論 2
Curious曉白_96
12 篇文章 ・ 7 位粉絲
對於科學新知充滿好奇心,對於一切新知都想通曉明白,期許自己有一天能成為有所貢獻於社會的曉曉科學家!

4

11
3

文字

分享

4
11
3
在機器與人的交會之處——《再.創世》專題
再・創世 Cybernetic_96
・2021/09/08 ・6672字 ・閱讀時間約 13 分鐘

  • 作者/施奇廷|東海大學應用物理學系 
「羅梭的萬能機器人」(Rossum’s Universal Robots) 劇中機器人反抗人類的一幕。圖/WIKIPEDIA

起源

從 1920 年「羅梭的萬能機器人」(Rossum’s Universal Robots,通稱R.U.R.)登上舞台以來,「機器人」這個概念,一直是科幻作品中的常客。機器人「具有人的形象,而(在某些方面)具有比人類更強的能力」的設定,一直刺激著人類的想像力:能力強大卻又聽命於人類的忠實僕人;或是領悟到自己其實可以取代人類,成為下一代的地球霸主?樂觀的期待與被反噬的恐懼,向來是欣賞以機器人為主題的科幻作品的兩大樂趣。不過近十年來「人工智慧」(Artificial Intelligence)與「機器人學」(Robotics)的發展速度超乎預期,上述本來只存在於科幻作品中的兩面議題,突然變得不是那麼遙不可及。

提出「機器人學」這個名詞,並將理論系統化的,並不是工程領域的學者,而是科幻小說大師艾薩克‧艾西莫夫(Isaac Asimov),這個詞現在已經成為工程界對機器人科學的正式名稱,是一個從科幻對科技「逆輸入」的有趣案例。生於俄羅斯的艾西莫夫的本行是就科學家(專長是生物化學),曾經任教於波士頓大學醫學院,不過後來因為全力投入寫作,不再進行一般學者的教學研究工作,但是波士頓大學仍然保留他的職位。他所接受過的嚴謹科學訓練,也反映在作品中。1940 年,年方 19 歲的艾西莫夫就發表了第一篇機器人短篇小說「小機」(Robbie,收錄於短篇小說集「我‧機器人」),開啟了「機器人系列」的序幕。

法則

「人類製造的機器人結果反過來支配人類」這個命題可說是充滿「為何要搬磚頭砸自己的腳」的矛盾,因為人類絕對可以在一開始設計、製造時就預防這件事發生。不過睽諸人類科技發展的歷史,這種矛盾其實一直存在,也不斷發生,目前我們面臨的「核能科技的發展衍生的核子大戰威脅」、「高度工業化生產導致環境污染」,以及「大量使用石化燃料導致全球氣候變遷」這些問題,都是現在進行式。

不過「人類依照自己的形象打造的仿人類」又有點不同,高功能的機器「外型像人」這件事,足以引起人類的「科學怪人情結」,讓人類會對機器人的發展保持高度的戒心,在此思考下,1942 年時,艾西莫夫在他的作品中,比照「牛頓運動學三定律」的規格,揭示了「機器人三定律」:

-----廣告,請繼續往下閱讀-----

一、機器人不得傷害人類,也不能坐視人類受到傷害

二、在不違反第一法則的前提下,機器人必須保護自己的安全

三、在不違反第一與第二法則的前提下,機器人必須執行人類的命令

這三大法則是在機器人出廠時,就內建於其軟硬體內,絕對不容違反。如果讀者是「理科人」的話,大概會覺得這三大法則邏輯簡單明瞭,簡直無懈可擊,在此控制下,機器人應該可以成為人類最忠實的僕人,無須擔心他們會叛變了。

有趣的是,在艾西莫夫的機器人短篇小說中,幾乎都是在探討「會引起三大法則的缺陷、迷惑、矛盾的可能情境」,所以幾乎每篇小說都會產生一個「精神錯亂」的機器人。這些小說非常有趣,推薦喜歡「燒腦型作品」的讀者一讀。

Will Smith Robot GIF by 20th Century Fox Home Entertainment - Find & Share on GIPHY
電影中違反三大法則的機器人。/Giphy

這個系列作品的內容其實也部分反映了人性:人也是又內建「道德基準」(moral norms),能進行邏輯思考的動物,但是即使最理性冷靜的人,也是會碰到兩難的困境,例如著名的「電車難題」:「一輛失控的列車在軌道上急馳,在軌道上有五個人即將被碾過,你剛好在鐵軌的轉軌器旁邊,只要扳動轉軌器,就可以把列車轉向另一條軌道,但是另一條軌道上有一個人,本來不會有事,因為你將列車轉軌而會被碾斃,在這個狀況下,你到底要不要將列車轉軌呢?」幾十年來這個問題引起了許多哲學以及倫理學、社會學的廣泛討論。事實上,自動駕駛汽車(除了不具有人形之外,其實也算是機器人的一種)的設計就必須把這類情境納入考量。

電車難題。自動駕駛汽車的設計就必須把這類情境納入考量,其中牽涉了哲學、倫理學以及社會學 。 圖/WIKIPEDIA

就筆者的「理科腦」來看,這些矛盾的起因是「機器人定律與人類的道德準則是定性的,而實際情境卻是定量的」。例如兩個人類同時對一個機器人下命令,而這兩個命令互相矛盾,那麼這個機器人到底要聽誰的?這時候機器人必須對下命令的兩個人做出「定量上的評價」,決定執行哪一個命令。這個結果導致「機器人可以(必須)評價人類,將人類分出等級」,之後又會衍生出更多的問題…

-----廣告,請繼續往下閱讀-----

1985 年時,在機器人系列故事四十餘年的發展之下,艾西莫夫被自己的筆下的故事逼得追加了一個「第零定律」,位階在原來的三定律之上:「機器人不得傷害『整體人類』,或坐視『整體人類』受到傷害。」,這下子定律的規格從「牛頓三定律」變成了「熱力學的零+三定律」了,不愧是正統派科學家出身!這個第零定律跟之前一樣,從邏輯上看起來也很合理,但是這又造成機器人必須評價「整體人類」的福祉是什麼,由於第零定律凌駕於第一定律之上,因此視情況機器人是可以為了避免整體人類受到傷害,而去傷害甚至殺死個人的,最後可能會演變成「機器人為了整體人類好而接管、控制人類社會」的反烏托邦結果。

不過或許是因為「機器人叛變」這個展開實在太過顯而易見,而且因為可以塞進許多動作場面而成為影視作品愛用的題材,艾西莫夫的機器人作品中對這方面反倒是著墨不多,而是將關心的焦點放在「機器人是否能在三定律的規範下,活出自己的人格?」這個主題的代表作,就是獲得 1976 年「雨果獎」與「星雲獎」雙料大獎的中篇小說「雙百人」,後來在 1992 年由令一位作家羅伯特‧席維伯格(Robert Silverberg)擴充成長篇小說「正子人」;這個故事也在 1999 年改編為電影「變人」,由已故的喜劇泰斗羅賓‧威廉斯(Robin Williams)主演。

說實在的,想要瞭解「機器 → 人形機器 → 機器人 → 人」的演進與思辯,而又沒有很多時間與耐性的讀者,看這一本就夠了。

1999 年的科幻電影《變人》,由作家羅伯特‧席維伯格的長篇小說「正子人」改編而成。

分流

前面花了相當的篇幅講了艾西莫夫的機器人觀,除了這個「大師典範之外」,其實幾十年的科幻與娛樂文化演變下來,機器人也了更多的樣貌。

-----廣告,請繼續往下閱讀-----

好萊塢電影與日本動漫畫,是目前全球影視娛樂的兩大主流,當然兩者還是有一段差距,好萊塢挾其資金、人才、技術的實力,最為強勢;不過「小本經營」的日本御宅文化,在全世界的影響力也逐年提升,對好萊塢電影也產生了不小的影響。它們對於機器人這個主題的處理,有很大的不同。以下分成不同的機器人類型討論,不過要先說明的是,以下的分類有些是好萊塢電影擅長的題材,有些則是日本動漫畫的偏好,但是其實並沒有這麼涇渭分明,大部分在兩邊都有出現,只是多寡有別。

一、近未來,覺醒的機器人,成為人類之敵——好萊塢電影的機器人,跟艾西莫夫的機器人類似,是外型、尺寸都比照人類,並且具有不同程度的人工智慧。不過如前所述,好萊塢電影中的機器人有許多都是扮演「人類之敵」的大反派,完全不受艾西莫夫「機器人三定律」的節制,最經典的例子就是「魔鬼終結者」系列,劇中的機器人存在的目的就是用來追殺人類——可說是把「機器人三定律」完全反過來看就行了。這些機器人的背後是由一個名為「天網」的人工智慧,也可以說是個不具人形的機器人,本來是美國研發的國防電腦系統,後來這個系統產生自我意識,並且判斷人類才是「世界最大的威脅」,於是就發動核戰毀滅人類,並且持續掃蕩殘存的人類反抗軍,並且派遣機器人穿越時間回到過去殺害反抗軍領袖的母親以斬草除根。

相對於艾西莫夫小說中以「機器人三定律」來節制機器人的能力,以消除人們的「科學怪人情結」,努力讓人類社會接受機器人;「魔鬼終結者」系列是反過來喚起觀眾的「科學怪人情結」,再加上「末日電影」的背景設定,來營造危機感與戲劇性,然後在人類與機器人的對立下順理成章的大打出手,「拳腳與槍砲齊飛,鮮血共煙硝一色」,讓本來是「低成本 B 級動作片」的「魔鬼終結者」成為娛樂性與思想性兼具的成功作品。就這個視角而言,「駭客任務」中的架構與設定,以及成功的要素也頗有共同之處。

終結者 GIF
魔鬼終結者喚起觀眾的「科學怪人情結」,成為娛樂性與思想性兼具的成功作品。 圖/Giphy

二、遙遠的未來,機器人已經融入人類社會,共同面對更廣闊的星際世界——上述這種「人類與機器人的衝突與生死戰」的背景通常發生於「近未來」,故事舞台跟現代有相當程度的重疊,機器人進入生活的正面與負面效應,都比較能引起觀眾的代入感。如果是以「遙遠的未來」為背景,機器人與人類之間的「磨合陣痛期」已經過去,像是兩大名門「星際大戰」與「星際爭霸戰」,人類的足跡已經遍佈銀河系,見識過各種稀奇古怪的外星生命體,機器人也早就已經成為人類好伙伴,甚至被視為跟人類同等的存在了。

-----廣告,請繼續往下閱讀-----

三、機器人是人類肉體的延伸,力量的放大器——另一方面,日本動漫畫作品中的機器人,除了早期的「原子小金剛」是走「真人的大小與外貌,且具有人工智慧」的路線以外,主流是象徵「人類力量的延伸」的「巨大機器人」類型。這種機器人不具有人工智慧,而是搭載操作界面與作業系統,由人類駕駛員來操作,相當於扮演其大腦的角色。以早期的名作「無敵鐵金剛」而言,所標舉的主題是「如果人類透過機器取得了巨大的力量,將會成為神?還是成為惡魔?」,這類作品有別於西方「機器如何變成人」,而是「人類與機器合為一體」的概念。

機器人是吸引目標觀眾目光的賣點,也是贊助或出資廠商販賣模型玩具的獲利神器,導致許多巨大機器人動畫作品一味強調機器人造型帥氣而不注重劇情內涵,被譏為「為了販賣玩具所製作的 30 分鐘廣告片」,不過由於出資者只要求「機器人玩具賣得好」,對於內容不太有興趣干涉,反而讓創作者有揮灑的空間,出現了「長濱忠夫三部曲」、「機動戰士鋼彈」等名作。1995 年的「新世紀福音戰士」,把前述「人類與機器合為一體」的概念推到極致,駕駛員是透過神經系統直接與機器人(稱為 Evangelion,簡稱 EVA )「同調」連結,以精神力取代操縱桿與按鈕,直接操控 EVA——不過其實 EVA 與其說是機器人,「生化」味更重一些,劇中還曾出現駕駛員與 EVA 機體「完全融合」的情節。

Evangelion GIF - Find & Share on GIPHY
EVA 與其說是機器人,「生化」味更重一些,劇中還曾出現駕駛員與 EVA 機體「完全融合」的情節。圖/Giphy

四、機械化的人類——人與機器的關係,除了「機器→人形機器→機器人→人」這條路線外,也有反方向的路徑:由於疾病或受傷而失去部分身體功能的人,利用科技的力量改造身體,恢復正常的功能,甚至更為強大,這種被部分改造的人類稱為「改造人 Cyborg」(cybernetic organism),結合了「模控學」與「有機體」兩個字,也有人翻譯為「生化電子人」、「半機械人」,後來乾脆直接音譯為「賽伯格」。其實許多現實世界的人類已經多多少少變成改造人了:義肢、人工水晶體、心律調節器、人工關節等等,人們已經普遍可以接受為了維持身體機能以侵入性的方式改造部分器官,未來可以預見改造的範圍與精密程度必定會逐漸提升。

在這個「人體改造」的延長線上,我們可以看到像「機器戰警」中,殉職的員警被改造並且復活來執行正義,「鋼鐵人」受傷後在自己的胸腔裝了一個反應爐,成為裝甲動力服的能量來源;日系作品方面,有「無敵金剛 009」(後來改名為「人造人 009」,少了一股中二的氣勢)、「假面騎士系列」(真人演出的特攝片),這些作品中,並非前述因為疾病或受傷而修補人體,而是為了培養「征服世界用的超級士兵」,而將人體改造成具有超越一般人能力的戰鬥道具。

-----廣告,請繼續往下閱讀-----

與「機器人覺醒為人類、或自覺為超越人類的存在」的方向相反,在「改造人」這條線上會出現的問題則是「當人類持續被改造,被機械取代的部位越來越多,會不會因此變成『不是人類』?這個轉變的界線何在?」也是非常值得探討的問題,也讓「改造人」這類的作品更具有思想上的深度。

近年來日本動漫畫與好萊塢合流的作品逐漸增加,「攻殼機動隊」與「戰鬥天使艾莉塔」是其中翹楚,都是以「改造人與人類的分界線」,以日本原創的動漫畫作品為主題,結合好萊塢的資金與技術的大製作電影,都獲得了相當程度的成功。

交會

本文以包含小說、電影、動漫畫等科幻作品的角度來看「機器人與人」之間的關係。雖然不是從真實世界的科學與技術來進行嚴謹的探討,不過在「機器人與人」這個主題上,科技與科幻的發展路徑其實亦步亦趨、互為因果:如同艾西莫夫的「機器人學」與「機器人三定律」對真實世界的機器人科技有極大的影響一般,科幻的想像有可能成為引導科技發展的路標;相對的,科技的發展當然也會墊高科幻作品的根基。

前文我們看過了幾種「機器人與人」的類型作品:從機器人變成人、機器人與人共存、機器人與人合體、從人變成機器人。這幾種模式,各自以不同的視角來刺激我們思考「人到底是什麼」這個問題。從數十年來這個主題的科幻作品的發展看來,不論是從哪個角度切入,最後都指向一個共同的交會點:人類的大腦。

-----廣告,請繼續往下閱讀-----
數十年來這個主題的科幻作品的發展看來,不論是從哪個角度切入,最後都指向一個共同的交會點:人類的大腦。 圖/Pixabay

「正子人」中的機器人主角「安德魯‧馬丁」要爭取在法律上被認可為「人」,其起點是他的「正子腦」產生了類似人腦的感情、創造力、以及自我意識的自覺,在其兩百年的生涯中,他的「鉑銥合金正子腦」的運作模式與人腦越來越接近,應該可以通過任何像「圖靈測試」這種「能分辨人腦與電腦差別」的考驗。而他克服爭取成為「人」的最後阻礙的方式是:改造他那相對於人腦幾乎算是不朽的正子腦,讓它像人腦般會逐漸老化與死亡,終於取得了「人」的資格。

另一方面,「從人變成機器人」的這條路上,也是以「大腦是不是原裝貨」來作為人類與機械的分界點。身上的器官怎麼更換都沒關係,但是這個人的「自我」(identity)只存在於大腦的神經元之間的連結以及在內部儲存以及傳送的資訊中,如果大腦被換掉、或是內部的資訊消失了,這個人也將不再存在。更激進的說法是,連大腦的「硬體」都不重要,只有內含的資訊才是「人的本體」,所以只要能夠把腦內的資訊保留、複製下來,人將可以成為不朽的存在,就像「攻殼機動隊」的主角草薙素子,拋棄了已經多次改造的肉身,以及還是「原裝」的大腦,將腦內資訊轉進網路中,只要這個網路仍在運作,這組來自草薙素子大腦的資訊仍存在於這個網路中,她就相當於取得了永生。

回到現實世界,「人工智慧」與「腦科學」正好也是目前最熱門、進展也最快的科技領域,前者致力於「讓機器除了強大的計算與記憶能力之外,還能像人腦一樣能進行複雜的思考」,後者則是要「瞭解大腦如何學習、記憶、創造,以及人類的自我意識從何而來」,這兩個領域發展的進程與細節跟科幻作品當然不會一模一樣,但是在大方向上,「科學」與「科幻」實在有驚人的相似之處,最後兩個領域也有可能交會在同一點上。

看看社群網站的自動審查機制,以及電子商務網站的推薦系統,極權國家用來監控人民的社會科技體系,「不具人形的機器人」正逐漸接管我們的生活。也許在我們的有生之年,就可以看到這些科幻名作中的情節在現實世界中發生,至於人與機器人之間的關係,是對抗、共生、還是融合?人類社會未來的流向,仍然掌握在人類手上嗎?再不嚴肅思考這個問題,或許很快就會來不及了。

-----廣告,請繼續往下閱讀-----
所有討論 4
再・創世 Cybernetic_96
11 篇文章 ・ 29 位粉絲
由策展人沈伯丞籌畫之藝術計畫《再・創世 Cybernetic》,嘗試從演化控制學的理論基礎上,探討仿生學、人工智慧、嵌合體與賽伯格以及環境控制學等新知識技術所構成的未來生命圖像。

0

0
0

文字

分享

0
0
0
成群的機器人飛向藍天
only-perception
・2011/10/02 ・529字 ・閱讀時間約 1 分鐘 ・SR值 465 ・五年級

-----廣告,請繼續往下閱讀-----

下次你抬頭看天空並以為你看到一群天鵝為了過冬往南飛翔時,你最好再看仔細一點。如果你在瑞士日內瓦湖,這可能實際上是一群來自於 Laboratory of Intelligence Systems 的機器人。

研究者 Sabine Hauert、Sebverin Leven 以及 Dario Floreano 發現一種使小型、具固定翅膀的機器人一同飛向天空,不會對撞且能同時遷移(migrate)的方法。為了要辦到這件事,研究者們需要使機器人以相同速度及方向移動,避免碰撞並維持密切靠近。他們本週將在舊金山舉行的 International Conference on Intelligent Robots and Systems 上演示其研究。

為達到此目標,研究者使用一種由 Craig Reynolds 在 1986 年開發的三維演算法,在此個別的機器人對其近鄰有所反應,但不會考量到一整群的動作。

這些機器人由機器人公司 senseFly 所創造,而且用連接到 Linux 電腦機板上的 Wi-Fi dongle 來彼此溝通。他們開始進行簡易測試,並達到一次共有 10 隻成群鳥兒的規模,但模擬顯示,機器人的數量可接近 100。

-----廣告,請繼續往下閱讀-----

除了寫程式使機器人以相同速度飛行、保持接近而不互撞之外,研究者也添加其他東西。他們加入遷移的能力。這讓研究者能設定一組預先程式化的目的地,讓這一群飛過去。

這些成群結隊的機器人,其預計用途包括拍攝與測繪地面,同時也有可能用於搜尋或監視的任務。

資料來源:PHYSORG:Flocking robots take to the sky〔September 27, 2011]

轉載自only-perception

-----廣告,請繼續往下閱讀-----
文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D