Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

窮盡法及其結果-《這才是數學》

PanSci_96
・2015/03/20 ・2879字 ・閱讀時間約 5 分鐘 ・SR值 476 ・五年級

-----廣告,請繼續往下閱讀-----

我想繼續談一談窮盡法。這個方法的想法,就是想辦法用無窮無盡的逼近,去得到確切的量度,就像我們在前面用無窮多個正多邊形去度量圓形那樣。這是目前為止發明的度量技巧當中,最強大且最靈活的方法。原因在於,這個方法把曲線形狀的量度,簡化為直線形狀的量度。想不到我們竟能精確度量彎曲的形狀,而且還能度量得如此深入而漂亮。

且讓我帶你看另一個例子:用窮盡法度量圓柱的體積。

gbsf

圓柱很有趣,既圓又直,像是介於立方體和球體之間。總而言之,圓柱的兩個底面是(等面積的)圓形,一個在上,另一個在下。

估算圓柱體積的其中一個方法,是想像把圓柱縱切成許多薄片,然後用長方塊來逼近這些薄片。

-----廣告,請繼續往下閱讀-----

gfbsf

這些長方塊的長方形底面,可以非常逼近圓柱的底面積。切的薄片越多,長方塊的總體積就越接近圓柱的實際體積,長方形底的面積也越趨近於圓底的實際面積。

好啦,每一個長方塊的體積,等於各自的底面積乘以高,因此所有長方塊的體積,就等於底部所有長方形的總面積乘以高。在此我們利用了「所有長方塊的高都相等」這件事。意思就是,圓柱的體積近似值,會等於底面積的近似值乘上高。

這個模式已經夠我們解讀圓柱的實際量度。切片的數量越多,就能夠越逼近,而長方形底面積與高的乘積,也越趨近於圓形底面積與高的乘積,以及圓柱的體積。所以兩者必定相等,換句話說,窮盡法奏效了。圓柱的體積就等於底面積乘上高。

這讓我想到兩件事。第一,或許你早就知道這個結果了。直觀上不就很容易看出,圓柱所占的空間大小,會與高及底面積成比例嗎?我可不想解釋大家早就知道的事。更何況,把直觀與推理結合起來,這是件好事──也正是數學的本質。

-----廣告,請繼續往下閱讀-----

第二件事情是,把圓柱切成這樣的長方塊,似乎很難看又不夠自然。在前面我們度量圓形的時候,是把圓切割成排列得十分對稱的三角形啊。為什麼不沿著中心縱切成三角形楔塊?批評得有理,真的。我用另一個例子來回答這個問題(說得一副我不是提問者似的)。

tvsf

上面這塊立體的製作方式和圓柱相同,只不過上下兩面不再是圓形,而是其他形狀。我們就把這種東西稱呼為廣義圓柱吧。在這個例子裡,根本沒有對稱的切法了,所以最好的辦法只有切成長方塊狀。廣義圓柱的體積,仍會等於它的高乘以底面積。我想說的重點是,無論對稱與否,切成長方塊狀都行得通。這個例子也可以讓你清楚看到窮盡法的靈活度。

(廣義)圓柱的表面積要如何度量?

接下來我想帶你看看窮盡法的威力。在前面我們講過伸縮,也就是僅只沿著一個方向拉長某個倍數。有時候我喜歡把它想成是整個平面的變化,就好像拉著一片橡膠的兩側,而畫在平面上的任何一種形狀,就會跟著拉長。假設我們畫了幾個形狀,然後讓這些形狀(水平)伸縮某個倍數。

-----廣告,請繼續往下閱讀-----

sjdfnie

你可以看到這些形狀變形得多麼嚴重。拿正方形來說,就變成了長方形(所以四個邊長也不再全部相等)。另外,正三角形變成等腰三角形,圓形變成完全不一樣的形狀,叫做橢圓(ellipse)。

一般來說,伸縮是個很具破壞力的過程,往往會使長度與角度發生嚴重扭曲。特別是,形狀經過伸縮之後的周長,與伸縮之前的周長通常沒有任何數學關係。以橢圓的周長為例,就是個很經典的度量難題,原因正是它和圓周長無關。

另一方面,伸縮卻與面積的變化一致。我們已經曉得伸縮對於面積產生的效應:如果矩形(在平行於其中一邊的方向上)伸縮了某個倍數,它的面積也會乘以該倍率。由窮盡法,我們發現不管是哪種形狀,上述效應同樣適用。若說得更確切些,就假設有某種形狀,我們要讓它沿著某個方向伸縮r倍。我們想知道,此形狀的面積也會變成r倍。

0ibu

概念就是,要把這個形狀沿著伸縮的方向切成長方條,使得長方條的總面積很接近這個形狀的面積。lkjn

-----廣告,請繼續往下閱讀-----

伸縮之後,各個長方條也跟著拉長了,所以它們的面積都要乘以r倍。這表示該形狀在伸縮後的近似面積,是伸縮前的r倍。我們會發現,如果讓長方條的數量無限增加(這樣一來,它們的寬度會趨近於零),長方條的實際面積必定也會變成r倍。在嚴重扭曲變形之後,竟然還能掌握面積如何變化,在我看來實在太不可思議了。

 橢圓的面積有多大?

 同樣的,沿著某方向的伸縮也會讓體積產生相同倍數的變化。知道為什麼嗎?因為長方塊經過伸縮之後,行為仍是規矩的,所以可以如法炮製。當然,我們還是得小心點。比方說,如果一個立體伸縮了2倍,它的體積確實會變成2倍,但是表面積通常就會失控了。不信的話,你可以拿個立方體來試試!

接下來,我要帶你看一個很漂亮的量度(希望這是需要我秀給你看的唯一一種)。我們要度量的是角錐(金字塔)的體積。

-----廣告,請繼續往下閱讀-----

byhku

我最喜歡的度量方法,是把角錐放進一個等底、等高的方盒;也就是把這個方盒想成是裝著角錐的箱子。

dfv

你自然而然就會想問:角錐占了方盒的多少體積?這個問題很難回答,也很年代悠久,最早可追溯到古埃及(那當然)。有個(很聰明的)觀察方法可以做為切入點:如果把一個立方體的中心點和八個頂點作連線,就可以把立方體切成角錐。

tb dfg

切出來的角錐有六個,因為立方體有六個面。這些角錐全都一模一樣,所以體積等於六分之一個立方體。裝著這樣的角錐的方盒,會是半個立方體,因此這些角錐的體積,就等於箱子體積的三分之一。我認為這是個相當漂亮的論證。

麻煩在於,這只適用於上述形狀的角錐(它的高恰好是底邊長的一半)。大多數的角錐可沒那麼恰到好處,不是太陡,就是太低平。

-----廣告,請繼續往下閱讀-----

這是不是代表,我們只能度量特定一種形狀的角錐?當然不是!任何一種角錐其實都可以從上述這種特例,經過適度的伸縮變形出來。想要一個更陡的角錐,我們可以讓它任意上下伸縮,想要多高就拉多高。

fvid

現在要講到我最愛的部分了:伸縮對於角錐體積和方盒體積的影響,完全一樣。兩者都要乘上伸縮倍率。這表示兩者的體積之比保持固定不變。特殊角錐占了方盒的三分之一,那麼任何一個角錐也必定如此。所以,角錐的體積永遠是方盒體積的三分之一。我太喜歡這一連串概念了。看看窮盡法是多麼博大精深呀。

imvoif

把立方體各面的中心點互相連起來,可以作出正八面體。它占了立方體多少的體積?

oubl

有個不完整的角錐,高度是h,上底是邊長為a的正方形,下底是邊長為b的正方形。它的體積與a、b、h有何關連?

-----廣告,請繼續往下閱讀-----

gdr

正四面體的中心點在哪裡?

unnamed本文摘自泛科學2015三月選書《這才是數學:從不知道到想知道的探索之旅》,經濟新潮社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
圓錐曲線與射影幾何-《這才是數學》
PanSci_96
・2015/03/22 ・2957字 ・閱讀時間約 6 分鐘 ・SR值 568 ・九年級

-----廣告,請繼續往下閱讀-----

接下來我要告訴你一個很漂亮的發現,它是在第四世紀初做出來的,當時已是古典幾何時期的尾聲。當中的概念,最早出現於希臘幾何學家帕普斯(Pappus of Alexandria,西元320年前後)的數學著作裡。

首先我得說,要進入這個主題讓我有點惴惴不安,因為它的某些層面相當棘手,我不清楚該如何解釋。(可能有些地方我只能兩手一攤。)

我們從甜甜圈開始談起──呃,我所指的是甜甜圈形狀,不是指甜點。

sdsf

到現在為止,我們還不真正需要精確描述出形狀。形狀是由平面上或空間裡的點,以某種簡單、賞心悅目的排列方式組成的。我們可說已經很熟悉球體、圓錐或長方形了。那麼甜甜圈又是什麼樣的形狀?

-----廣告,請繼續往下閱讀-----

我最喜歡的思考方式,是想像有個圓形繞著空間裡的一條直線旋轉。

jmyj

這種甜甜圈狀的抽象幾何形狀,叫做環面(torus)。所謂的環面,就是指一個圓沿著圓形路徑在空間中移動所構成的軌跡。

我認為,像這樣把一個幾何形狀描述成另一個形狀的運動軌跡,是很了不起的想法。這不僅產生了類似環面這種新奇的形狀,也讓我們能夠以新的眼光看待熟悉的事物。譬如立方體,就可以看成是一個正方形沿著直線路徑運動的軌跡。

ghbdrg

偶爾我喜歡假裝正方形是一隻史前動物,在數百萬年前沿著這條路徑爬行,於是立方體就是牠奮力爬行的「化石紀錄」。我想到的另一個畫面則是雪地裡的足跡。長方形正是一根棍子側向移動留下的「足跡」。

-----廣告,請繼續往下閱讀-----

dgfb

重點是,許多漂亮的形狀可以視為某種運動的結果。

你能不能想出兩種把圓柱體解釋成運動軌跡的方式?

問題是,以這種方式來解釋一個形狀,對於度量是否有任何幫助。描述與量度之間的關係,是幾何學上一再出現的主題。物件的量度會如何隨著描述方式的不同而改變?

尤其,一個物件如果是某個更簡單形狀的運動軌跡,它的量度與這個簡單形狀及其移動方式,究竟有何關係?這是一千六百年前帕普斯提出的問題,而我想要解釋的,正是他的偉大發現。

-----廣告,請繼續往下閱讀-----

我就從我們在前面看過的鳳梨片開始好了。

fjviospe

我們現在所講的,是夾在兩個同心圓之間的空間。這種區域叫做環形(annulus)。對於這個形狀,我們很自然會想成是中間去掉了一個小圓的圓形區域。

另一方面,環形也可以看成一根棍子沿圓形路徑運動所掃出的形狀,就像鏟雪車繞著一棵樹鏟完雪的結果。

fjvpsei

假如棍子(或鏟雪車)是直線行進,當然就會掃出一個矩形。現在我們就能把環形與矩形,視為與同一個概念有關連的不同面貌──此概念就是「由棍棒的運動所形成的形狀」。這很有意思,因為環形與矩形在幾何上大不相同。譬如說,如果你試圖把矩形彎成一個環形,可能不會太順利;內圈的邊會扭曲變形,而外圈的邊會扯破。這情景不大妙。

-----廣告,請繼續往下閱讀-----

與環形和矩形有關的有趣問題,就是該怎樣比較兩者的面積。假設我們手邊有根棍子,讓它繞著圓形路徑掃一圈,構成一個環形。那麼需要多長的直線路徑,才能夠掃出同樣的面積?這正是帕普斯想知道的事情。

sdfjsiod

如果預期正確答案介於環的內、外圓周長之間,這很合理。最自然的猜測是兩圓周長的中間值。我們就假設可以特別安排,讓矩形的長度剛好等於這個「平均」圓周長。那麼兩者的面積一定相符嗎?

結果真的相同。事實上,還有個好方法可以看出這件事,這個方法關連到巴比倫的平方差公式rfvwr

概念如下。這個環形完全由內、外圓的半徑來決定。令外圓半徑為R,內圓半徑為r。當我們把這個環形想成兩圓的差,它的面積就會等於wem

-----廣告,請繼續往下閱讀-----

對於矩形,我們需要知道棍子的長度以及路徑長。棍子的長度很容易,就是R – r。知道為什麼嗎?而通過環形中央的圓,它的半徑是內、外圓半徑的平均,所以就此意義來說確實是平均值。換句話說,中間圓的半徑是fowr

由於圓周長永遠是2p 乘以半徑,因此路徑長(連同矩形的長度)必為

jmpo 最後,矩形的面積等於長寬的乘積,也就是

mpi

恰好是環形的面積。我很喜歡代數與幾何像這樣互相連結起來。屬於代數的平方差公式,由環與矩形的幾何等價關係呈現出來。

-----廣告,請繼續往下閱讀-----

不妨把中間的圓形,想成是棍子中心點的移動軌跡。換句話說,中心點行進的距離才是重點。具體來說,我們已經發現,如果棍子的中心點沿著圓形路徑移動一段長度,所掃出的面積會和沿著直線路徑時的面積相同。不管是直線還是圓形路徑,掃出的面積都等於棍子長度與路徑長的乘積。

這個例子正說明了描述(把環形描述成棍子的移動)對於量度(棍子和路徑很巧妙地決定了面積)的影響。就像我先前講過的,幾何學討論的正是描述與量度之間的關係。

這個例子還可以進一步延伸。假設我們是沿著任意路徑推棍子(的中心點)。

kpmk

這樣我們仍然會得出同樣的結果嗎?我們仍能說,所掃出區域的面積會和直線路徑的情形相同?面積就等於棍長與路徑長的乘積嗎?或說我們根本就是得寸進尺?

-----廣告,請繼續往下閱讀-----

實際上,不管路徑是何形狀,上述的結果都是對的。看我能不能解釋一下為什麼如此。首先可以觀察到,這個結果也適用於圓弧(整個圓的局部)路徑。

pm;o

這是因為,弧長及所掃出的面積,都會與整個環形的弧長及所掃面積成比例。特別是,對於環形「小段」和非常細的矩形,此結果也會成立。概念就是,把這些小碎片拼組成更複雜的形狀。

jilo

棍子中心點的各種移動軌跡,合起來就構成了一條大的路徑,細部來看是由許多圓弧線段及直線段組成。我們還可以經由適當的安排,讓所做出的路徑盡可能接近我們想達成的路徑形狀。

特別是,我們可以(透過這樣的無窮逼近)讓路徑的總長度,接近我們所想的路徑的長度,而組成小段的總面積,也會接近我們所想的區域的實際面積。由於面積近似值是棍長與路徑長的乘積,且逼近做得越好時,這仍是對的,因此對於我們所想的實際區域,這必然也是對的。窮盡法又幫了大忙。

這正是第一個例子,可說明帕普斯發現的結果適用範圍廣泛:移動棍子而掃出的區域面積,就等於棍長乘上棍子中心點的移動距離。

但有幾個微妙的細節。第一點是,棍子必須隨時與運動方向保持垂直。如果成一個角度斜著推棍子,情況會變得一團糟。

ko8i

舉例來說,對於歪斜的矩形,帕普斯定理就束手無策了。因為形狀是由小片的環與矩形組成(至少大致上是),而在這些小片上棍子和路徑始終成直角,因此垂直運動是這個方法可處理的唯一一種移動方式。垂直運動正是帕普斯哲學的重要元素之一。

第二個問題是自相交的情形。

jisfd

如果路徑彎得太劇烈,部分區域就會重複掃過,重疊處的面積也會重複計算。只要保持垂直,並防止急轉彎,就一切順利。

由移動的棍子所掃出的區域周長是多少?

unnamed本文摘自泛科學2015三月選書《這才是數學:從不知道到想知道的探索之旅》,經濟新潮社出版。

-----廣告,請繼續往下閱讀-----

0

0
1

文字

分享

0
0
1
窮盡法及其結果-《這才是數學》
PanSci_96
・2015/03/20 ・2879字 ・閱讀時間約 5 分鐘 ・SR值 476 ・五年級

我想繼續談一談窮盡法。這個方法的想法,就是想辦法用無窮無盡的逼近,去得到確切的量度,就像我們在前面用無窮多個正多邊形去度量圓形那樣。這是目前為止發明的度量技巧當中,最強大且最靈活的方法。原因在於,這個方法把曲線形狀的量度,簡化為直線形狀的量度。想不到我們竟能精確度量彎曲的形狀,而且還能度量得如此深入而漂亮。

且讓我帶你看另一個例子:用窮盡法度量圓柱的體積。

gbsf

圓柱很有趣,既圓又直,像是介於立方體和球體之間。總而言之,圓柱的兩個底面是(等面積的)圓形,一個在上,另一個在下。

估算圓柱體積的其中一個方法,是想像把圓柱縱切成許多薄片,然後用長方塊來逼近這些薄片。

-----廣告,請繼續往下閱讀-----

gfbsf

這些長方塊的長方形底面,可以非常逼近圓柱的底面積。切的薄片越多,長方塊的總體積就越接近圓柱的實際體積,長方形底的面積也越趨近於圓底的實際面積。

好啦,每一個長方塊的體積,等於各自的底面積乘以高,因此所有長方塊的體積,就等於底部所有長方形的總面積乘以高。在此我們利用了「所有長方塊的高都相等」這件事。意思就是,圓柱的體積近似值,會等於底面積的近似值乘上高。

這個模式已經夠我們解讀圓柱的實際量度。切片的數量越多,就能夠越逼近,而長方形底面積與高的乘積,也越趨近於圓形底面積與高的乘積,以及圓柱的體積。所以兩者必定相等,換句話說,窮盡法奏效了。圓柱的體積就等於底面積乘上高。

這讓我想到兩件事。第一,或許你早就知道這個結果了。直觀上不就很容易看出,圓柱所占的空間大小,會與高及底面積成比例嗎?我可不想解釋大家早就知道的事。更何況,把直觀與推理結合起來,這是件好事──也正是數學的本質。

-----廣告,請繼續往下閱讀-----

第二件事情是,把圓柱切成這樣的長方塊,似乎很難看又不夠自然。在前面我們度量圓形的時候,是把圓切割成排列得十分對稱的三角形啊。為什麼不沿著中心縱切成三角形楔塊?批評得有理,真的。我用另一個例子來回答這個問題(說得一副我不是提問者似的)。

tvsf

上面這塊立體的製作方式和圓柱相同,只不過上下兩面不再是圓形,而是其他形狀。我們就把這種東西稱呼為廣義圓柱吧。在這個例子裡,根本沒有對稱的切法了,所以最好的辦法只有切成長方塊狀。廣義圓柱的體積,仍會等於它的高乘以底面積。我想說的重點是,無論對稱與否,切成長方塊狀都行得通。這個例子也可以讓你清楚看到窮盡法的靈活度。

(廣義)圓柱的表面積要如何度量?

接下來我想帶你看看窮盡法的威力。在前面我們講過伸縮,也就是僅只沿著一個方向拉長某個倍數。有時候我喜歡把它想成是整個平面的變化,就好像拉著一片橡膠的兩側,而畫在平面上的任何一種形狀,就會跟著拉長。假設我們畫了幾個形狀,然後讓這些形狀(水平)伸縮某個倍數。

-----廣告,請繼續往下閱讀-----

sjdfnie

你可以看到這些形狀變形得多麼嚴重。拿正方形來說,就變成了長方形(所以四個邊長也不再全部相等)。另外,正三角形變成等腰三角形,圓形變成完全不一樣的形狀,叫做橢圓(ellipse)。

一般來說,伸縮是個很具破壞力的過程,往往會使長度與角度發生嚴重扭曲。特別是,形狀經過伸縮之後的周長,與伸縮之前的周長通常沒有任何數學關係。以橢圓的周長為例,就是個很經典的度量難題,原因正是它和圓周長無關。

另一方面,伸縮卻與面積的變化一致。我們已經曉得伸縮對於面積產生的效應:如果矩形(在平行於其中一邊的方向上)伸縮了某個倍數,它的面積也會乘以該倍率。由窮盡法,我們發現不管是哪種形狀,上述效應同樣適用。若說得更確切些,就假設有某種形狀,我們要讓它沿著某個方向伸縮r倍。我們想知道,此形狀的面積也會變成r倍。

0ibu

概念就是,要把這個形狀沿著伸縮的方向切成長方條,使得長方條的總面積很接近這個形狀的面積。lkjn

-----廣告,請繼續往下閱讀-----

伸縮之後,各個長方條也跟著拉長了,所以它們的面積都要乘以r倍。這表示該形狀在伸縮後的近似面積,是伸縮前的r倍。我們會發現,如果讓長方條的數量無限增加(這樣一來,它們的寬度會趨近於零),長方條的實際面積必定也會變成r倍。在嚴重扭曲變形之後,竟然還能掌握面積如何變化,在我看來實在太不可思議了。

 橢圓的面積有多大?

 同樣的,沿著某方向的伸縮也會讓體積產生相同倍數的變化。知道為什麼嗎?因為長方塊經過伸縮之後,行為仍是規矩的,所以可以如法炮製。當然,我們還是得小心點。比方說,如果一個立體伸縮了2倍,它的體積確實會變成2倍,但是表面積通常就會失控了。不信的話,你可以拿個立方體來試試!

接下來,我要帶你看一個很漂亮的量度(希望這是需要我秀給你看的唯一一種)。我們要度量的是角錐(金字塔)的體積。

-----廣告,請繼續往下閱讀-----

byhku

我最喜歡的度量方法,是把角錐放進一個等底、等高的方盒;也就是把這個方盒想成是裝著角錐的箱子。

dfv

你自然而然就會想問:角錐占了方盒的多少體積?這個問題很難回答,也很年代悠久,最早可追溯到古埃及(那當然)。有個(很聰明的)觀察方法可以做為切入點:如果把一個立方體的中心點和八個頂點作連線,就可以把立方體切成角錐。

tb dfg

切出來的角錐有六個,因為立方體有六個面。這些角錐全都一模一樣,所以體積等於六分之一個立方體。裝著這樣的角錐的方盒,會是半個立方體,因此這些角錐的體積,就等於箱子體積的三分之一。我認為這是個相當漂亮的論證。

麻煩在於,這只適用於上述形狀的角錐(它的高恰好是底邊長的一半)。大多數的角錐可沒那麼恰到好處,不是太陡,就是太低平。

-----廣告,請繼續往下閱讀-----

這是不是代表,我們只能度量特定一種形狀的角錐?當然不是!任何一種角錐其實都可以從上述這種特例,經過適度的伸縮變形出來。想要一個更陡的角錐,我們可以讓它任意上下伸縮,想要多高就拉多高。

fvid

現在要講到我最愛的部分了:伸縮對於角錐體積和方盒體積的影響,完全一樣。兩者都要乘上伸縮倍率。這表示兩者的體積之比保持固定不變。特殊角錐占了方盒的三分之一,那麼任何一個角錐也必定如此。所以,角錐的體積永遠是方盒體積的三分之一。我太喜歡這一連串概念了。看看窮盡法是多麼博大精深呀。

imvoif

把立方體各面的中心點互相連起來,可以作出正八面體。它占了立方體多少的體積?

oubl

有個不完整的角錐,高度是h,上底是邊長為a的正方形,下底是邊長為b的正方形。它的體積與a、b、h有何關連?

-----廣告,請繼續往下閱讀-----

gdr

正四面體的中心點在哪裡?

unnamed本文摘自泛科學2015三月選書《這才是數學:從不知道到想知道的探索之旅》,經濟新潮社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
我們一開始先談抽象幾何圖形-《這才是數學》
PanSci_96
・2015/03/19 ・2925字 ・閱讀時間約 6 分鐘 ・SR值 441 ・四年級

以下是個美麗的圖案。

qwe

我來告訴你,為什麼我覺得這種圖案很吸引我。首先,裡面有幾種我很喜歡的形狀。

zxc

這幾種形狀簡單又對稱,所以我很喜歡。像這樣由直線構成的形狀,叫做多邊形(polygon)。所有的邊與每個角都相等的多邊形,稱為正多邊形。所以我想我應該要說:我喜歡正多邊形。

這個圖案設計吸引我的另一個原因是,當中的組成元件拼接得天衣無縫。鋪磚之間沒有縫隙,也不會重疊(我喜歡把這些元件想成瓷磚,就像馬賽克裝飾藝術)。至少看上去是如此。請記住,我們所談的東西,其實是假想的完美形狀。不能因為圖案看起來很好,便認為就是這麼回事。無論多麼費心製作的圖片,都是實體世界的產物;圖片不可能告訴我們關於假想數學物件的真理。幾何形狀做自己想做的事,不是做我們希望它們做的事。

-----廣告,請繼續往下閱讀-----

那我們怎麼能確定,這些多邊形真的拼貼得完美無缺?對於這些幾何物件,我們真能知道些什麼嗎?問題的關鍵是,我們要度量這些多邊形──不是用尺或量角器這類笨拙的實體器具,而是靠心智去度量。我們需要找一種方法,能單單用哲學論證去衡量這些形狀。

有沒有注意到,在這個例子裡我們需要量的是角度?為了檢查類似的馬賽克拼貼圖案做得出來,我們必須確認在地磚之間的每個接角,各多邊形的角度加起來是一整圈360度。譬如最普通的正方形鋪磚,正方形的各角是四分之一圈,所以四個正方形加起來剛好一圈。

zxcas

附帶一提,我喜歡用一整圈來當作角度的度量單位,而不喜歡用度。我個人覺得這樣更簡單,也比把一圈分成360等份更自然些(你當然可以選擇自己喜歡的方式)。所以我的說法就會是:正方形各角的角度是1/4。

跟角度有關的第一件驚人發現是,不管是哪種形狀的三角形,內角和始終相同,加起來都是半圈(或180度,如果你必須從俗的話)。

-----廣告,請繼續往下閱讀-----

iop

如果想實際感受一下,不妨拿紙做幾個三角形,把角裁下來,然後排在一起,你就會看到它們一定能排成一條直線。多漂亮的發現呀!但我們怎麼知道真的就是如此?

有一種方法是,把三角形改畫在兩條平行線之間。

fygh

請注意看,這兩條直線與三角形其中兩邊構成的Z字形。(我猜你可能會把右邊的那個稱為倒Z形,不過怎麼稱呼都無所謂。)要請你看的重點是,Z字形的夾角永遠會相等。

vbn

這是因為Z字形是對稱的:假如我們讓它繞著中心點旋轉半圈,看起來會完全相同。這表示上下兩個角必定相等。有道理吧?這就是一個典型的對稱論證。如果一個形狀經過了某一組運動的作用之後仍保持不變,我們就可以由此推斷出,兩個或更多個量度必定相等。

-----廣告,請繼續往下閱讀-----

回到剛才兩平行線夾三角形的圖示,我們現在曉得,底部的兩個角分別與頂部的對應角相等。

fth

這也就表示,三角形的三個角湊在一起,會在頂部拼成一條直線。所以,三個角相加一共轉了半圈。這個數學推理很輕鬆愉快吧!

這正是做數學的意義。先做出發現(不管用哪種方法做出來都行,包括紙、繩子、橡皮筋之類的實體模型),然後盡可能以最簡單優雅的方式去解釋。這是數學的藝術,也是數學充滿挑戰與樂趣的地方。

由這項發現產生的其中一個結論是,如果我們的三角形恰好是等邊三角形(即正三角形),那麼三個角會相等,一定都等於1/6。我們還可以換一種方法來看出同樣的結果:想像你是在開車繞著三角形的邊線。

-----廣告,請繼續往下閱讀-----

vbntnd

你轉了三個相等的彎之後,就回到起點。由於最後轉了一整圈,因此每個彎必定剛好等於1/3。請注意,我們所轉的角度實際上是三角形的外角。

thmd

由於內角與外角合起來是半圈,所以內角和就等於rrbwer特別是,六個正三角形可以剛好鋪成一個接角。

se4tmxth

嘿,這不就做出了一個正六邊形!我們額外得到了一個結論:正六邊形的每個角必為正三角形各角的兩倍,也就是1/3。這表示,三個正六邊形可以拼在一起。

drtmxerg

因此,我們還是有可能對這些形狀有些認識。尤其是,我們現在明白了為什麼最初的那幅馬賽克圖案拼得出來。

-----廣告,請繼續往下閱讀-----

bdf

在圖案的每個接角,都有一個正六邊形、兩個正方形、一個正三角形。這些角度相加起來會等於wnter所以拼得起來!

(附帶一提,如果你不喜歡分數運算,你隨時可以換掉度量單位,避開分數。譬如你可以用1/12圈當作單位,這樣的話,正六邊形的角度就會是4,正方形的角度會是3,正三角形的角度是2,那麼相加起來就會等於4 + 3 + 3 + 2 = 12;也就是一整圈。)

我特別喜愛這個鑲嵌圖案呈現出來的對稱性。每個接角都有同樣的形狀依序排在周圍:六邊形、正方形、三角形、正方形。這表示一旦我們檢查過其中一個接角能夠拼滿,就能順理成章推知其他接角也不成問題。這個圖案可以無限往外延伸,鋪滿整個無限平面。我不禁納悶,「數學實在」裡還有沒有其他美麗的鑲嵌圖案?

利用正多邊形做出對稱的鑲嵌設計,方法有哪些?

-----廣告,請繼續往下閱讀-----

 當然,我們需要知道各種正多邊形的角度。你能不能想想看該如何量出角度呢?

 正n邊形的角度有多大?

nfg

你可以量出正n角星的角度嗎?

dadc

從正多邊形的其中一角所畫的對角線,會切割出相等的角度嗎?

-----廣告,請繼續往下閱讀-----

 雖然我們現在談的主題是多邊形做出的漂亮圖案,我想讓你看看我的另一個最愛。

dsdcv

這一次我們用了正方形和三角形,但不是鋪成平面,而是做成某種球形。這種幾何體叫做多面體(polyhedron),幾千年來數學家一直在琢磨這種幾何形狀。思考的方法之一,是去想像多面體展開成平面的模樣。譬如剛才這個多面體,從其中一角展開後看起來會像這樣:

df zs

我們可以看到,有兩個正方形及兩個三角形圍繞著一個頂點,但留下了一個縫隙,以便摺成一個球。因此對於多面體來說,角度相加起來必須小於一整圈。

 如果角度之和大於一整圈,會發生什麼情況?

 多面體與平面鑲嵌的另一個差異點,在於多面體的設計只牽涉到有限多個地磚。模式仍舊可以持續進行下去(就某種意義上),但不會無限延伸到外太空去。我當然也對這些模式感到好奇。

 對稱的多面體有哪些?

 換一種問法就是:有哪些方法,可把正多邊形做成多面體,而且在每個角可看到同樣的模式?阿基米德找出了所有可能的方法。你能不能找得出來?

最對稱的多面體,當然是每個面都全等的多面體,譬如立方體。這種多面體稱為正多面體。古人已經發現正多面體只有五種(所謂的柏拉圖立體)。你能不能說出是哪五種?

 有哪五種正多面體?

unnamed本文摘自泛科學2015三月選書《這才是數學:從不知道到想知道的探索之旅》,經濟新潮社出版。

-----廣告,請繼續往下閱讀-----
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
1

文字

分享

0
0
1
窮盡法及其結果-《這才是數學》
PanSci_96
・2015/03/20 ・2879字 ・閱讀時間約 5 分鐘 ・SR值 476 ・五年級

-----廣告,請繼續往下閱讀-----

我想繼續談一談窮盡法。這個方法的想法,就是想辦法用無窮無盡的逼近,去得到確切的量度,就像我們在前面用無窮多個正多邊形去度量圓形那樣。這是目前為止發明的度量技巧當中,最強大且最靈活的方法。原因在於,這個方法把曲線形狀的量度,簡化為直線形狀的量度。想不到我們竟能精確度量彎曲的形狀,而且還能度量得如此深入而漂亮。

且讓我帶你看另一個例子:用窮盡法度量圓柱的體積。

gbsf

圓柱很有趣,既圓又直,像是介於立方體和球體之間。總而言之,圓柱的兩個底面是(等面積的)圓形,一個在上,另一個在下。

估算圓柱體積的其中一個方法,是想像把圓柱縱切成許多薄片,然後用長方塊來逼近這些薄片。

-----廣告,請繼續往下閱讀-----

gfbsf

這些長方塊的長方形底面,可以非常逼近圓柱的底面積。切的薄片越多,長方塊的總體積就越接近圓柱的實際體積,長方形底的面積也越趨近於圓底的實際面積。

好啦,每一個長方塊的體積,等於各自的底面積乘以高,因此所有長方塊的體積,就等於底部所有長方形的總面積乘以高。在此我們利用了「所有長方塊的高都相等」這件事。意思就是,圓柱的體積近似值,會等於底面積的近似值乘上高。

這個模式已經夠我們解讀圓柱的實際量度。切片的數量越多,就能夠越逼近,而長方形底面積與高的乘積,也越趨近於圓形底面積與高的乘積,以及圓柱的體積。所以兩者必定相等,換句話說,窮盡法奏效了。圓柱的體積就等於底面積乘上高。

這讓我想到兩件事。第一,或許你早就知道這個結果了。直觀上不就很容易看出,圓柱所占的空間大小,會與高及底面積成比例嗎?我可不想解釋大家早就知道的事。更何況,把直觀與推理結合起來,這是件好事──也正是數學的本質。

-----廣告,請繼續往下閱讀-----

第二件事情是,把圓柱切成這樣的長方塊,似乎很難看又不夠自然。在前面我們度量圓形的時候,是把圓切割成排列得十分對稱的三角形啊。為什麼不沿著中心縱切成三角形楔塊?批評得有理,真的。我用另一個例子來回答這個問題(說得一副我不是提問者似的)。

tvsf

上面這塊立體的製作方式和圓柱相同,只不過上下兩面不再是圓形,而是其他形狀。我們就把這種東西稱呼為廣義圓柱吧。在這個例子裡,根本沒有對稱的切法了,所以最好的辦法只有切成長方塊狀。廣義圓柱的體積,仍會等於它的高乘以底面積。我想說的重點是,無論對稱與否,切成長方塊狀都行得通。這個例子也可以讓你清楚看到窮盡法的靈活度。

(廣義)圓柱的表面積要如何度量?

接下來我想帶你看看窮盡法的威力。在前面我們講過伸縮,也就是僅只沿著一個方向拉長某個倍數。有時候我喜歡把它想成是整個平面的變化,就好像拉著一片橡膠的兩側,而畫在平面上的任何一種形狀,就會跟著拉長。假設我們畫了幾個形狀,然後讓這些形狀(水平)伸縮某個倍數。

-----廣告,請繼續往下閱讀-----

sjdfnie

你可以看到這些形狀變形得多麼嚴重。拿正方形來說,就變成了長方形(所以四個邊長也不再全部相等)。另外,正三角形變成等腰三角形,圓形變成完全不一樣的形狀,叫做橢圓(ellipse)。

一般來說,伸縮是個很具破壞力的過程,往往會使長度與角度發生嚴重扭曲。特別是,形狀經過伸縮之後的周長,與伸縮之前的周長通常沒有任何數學關係。以橢圓的周長為例,就是個很經典的度量難題,原因正是它和圓周長無關。

另一方面,伸縮卻與面積的變化一致。我們已經曉得伸縮對於面積產生的效應:如果矩形(在平行於其中一邊的方向上)伸縮了某個倍數,它的面積也會乘以該倍率。由窮盡法,我們發現不管是哪種形狀,上述效應同樣適用。若說得更確切些,就假設有某種形狀,我們要讓它沿著某個方向伸縮r倍。我們想知道,此形狀的面積也會變成r倍。

0ibu

概念就是,要把這個形狀沿著伸縮的方向切成長方條,使得長方條的總面積很接近這個形狀的面積。lkjn

-----廣告,請繼續往下閱讀-----

伸縮之後,各個長方條也跟著拉長了,所以它們的面積都要乘以r倍。這表示該形狀在伸縮後的近似面積,是伸縮前的r倍。我們會發現,如果讓長方條的數量無限增加(這樣一來,它們的寬度會趨近於零),長方條的實際面積必定也會變成r倍。在嚴重扭曲變形之後,竟然還能掌握面積如何變化,在我看來實在太不可思議了。

 橢圓的面積有多大?

 同樣的,沿著某方向的伸縮也會讓體積產生相同倍數的變化。知道為什麼嗎?因為長方塊經過伸縮之後,行為仍是規矩的,所以可以如法炮製。當然,我們還是得小心點。比方說,如果一個立體伸縮了2倍,它的體積確實會變成2倍,但是表面積通常就會失控了。不信的話,你可以拿個立方體來試試!

接下來,我要帶你看一個很漂亮的量度(希望這是需要我秀給你看的唯一一種)。我們要度量的是角錐(金字塔)的體積。

-----廣告,請繼續往下閱讀-----

byhku

我最喜歡的度量方法,是把角錐放進一個等底、等高的方盒;也就是把這個方盒想成是裝著角錐的箱子。

dfv

你自然而然就會想問:角錐占了方盒的多少體積?這個問題很難回答,也很年代悠久,最早可追溯到古埃及(那當然)。有個(很聰明的)觀察方法可以做為切入點:如果把一個立方體的中心點和八個頂點作連線,就可以把立方體切成角錐。

tb dfg

切出來的角錐有六個,因為立方體有六個面。這些角錐全都一模一樣,所以體積等於六分之一個立方體。裝著這樣的角錐的方盒,會是半個立方體,因此這些角錐的體積,就等於箱子體積的三分之一。我認為這是個相當漂亮的論證。

麻煩在於,這只適用於上述形狀的角錐(它的高恰好是底邊長的一半)。大多數的角錐可沒那麼恰到好處,不是太陡,就是太低平。

-----廣告,請繼續往下閱讀-----

這是不是代表,我們只能度量特定一種形狀的角錐?當然不是!任何一種角錐其實都可以從上述這種特例,經過適度的伸縮變形出來。想要一個更陡的角錐,我們可以讓它任意上下伸縮,想要多高就拉多高。

fvid

現在要講到我最愛的部分了:伸縮對於角錐體積和方盒體積的影響,完全一樣。兩者都要乘上伸縮倍率。這表示兩者的體積之比保持固定不變。特殊角錐占了方盒的三分之一,那麼任何一個角錐也必定如此。所以,角錐的體積永遠是方盒體積的三分之一。我太喜歡這一連串概念了。看看窮盡法是多麼博大精深呀。

imvoif

把立方體各面的中心點互相連起來,可以作出正八面體。它占了立方體多少的體積?

oubl

有個不完整的角錐,高度是h,上底是邊長為a的正方形,下底是邊長為b的正方形。它的體積與a、b、h有何關連?

-----廣告,請繼續往下閱讀-----

gdr

正四面體的中心點在哪裡?

unnamed本文摘自泛科學2015三月選書《這才是數學:從不知道到想知道的探索之旅》,經濟新潮社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。