0

0
1

文字

分享

0
0
1

窮盡法及其結果-《這才是數學》

PanSci_96
・2015/03/20 ・2879字 ・閱讀時間約 5 分鐘 ・SR值 476 ・五年級

我想繼續談一談窮盡法。這個方法的想法,就是想辦法用無窮無盡的逼近,去得到確切的量度,就像我們在前面用無窮多個正多邊形去度量圓形那樣。這是目前為止發明的度量技巧當中,最強大且最靈活的方法。原因在於,這個方法把曲線形狀的量度,簡化為直線形狀的量度。想不到我們竟能精確度量彎曲的形狀,而且還能度量得如此深入而漂亮。

且讓我帶你看另一個例子:用窮盡法度量圓柱的體積。

gbsf

圓柱很有趣,既圓又直,像是介於立方體和球體之間。總而言之,圓柱的兩個底面是(等面積的)圓形,一個在上,另一個在下。

估算圓柱體積的其中一個方法,是想像把圓柱縱切成許多薄片,然後用長方塊來逼近這些薄片。

-----廣告,請繼續往下閱讀-----

gfbsf

這些長方塊的長方形底面,可以非常逼近圓柱的底面積。切的薄片越多,長方塊的總體積就越接近圓柱的實際體積,長方形底的面積也越趨近於圓底的實際面積。

好啦,每一個長方塊的體積,等於各自的底面積乘以高,因此所有長方塊的體積,就等於底部所有長方形的總面積乘以高。在此我們利用了「所有長方塊的高都相等」這件事。意思就是,圓柱的體積近似值,會等於底面積的近似值乘上高。

這個模式已經夠我們解讀圓柱的實際量度。切片的數量越多,就能夠越逼近,而長方形底面積與高的乘積,也越趨近於圓形底面積與高的乘積,以及圓柱的體積。所以兩者必定相等,換句話說,窮盡法奏效了。圓柱的體積就等於底面積乘上高。

這讓我想到兩件事。第一,或許你早就知道這個結果了。直觀上不就很容易看出,圓柱所占的空間大小,會與高及底面積成比例嗎?我可不想解釋大家早就知道的事。更何況,把直觀與推理結合起來,這是件好事──也正是數學的本質。

-----廣告,請繼續往下閱讀-----

第二件事情是,把圓柱切成這樣的長方塊,似乎很難看又不夠自然。在前面我們度量圓形的時候,是把圓切割成排列得十分對稱的三角形啊。為什麼不沿著中心縱切成三角形楔塊?批評得有理,真的。我用另一個例子來回答這個問題(說得一副我不是提問者似的)。

tvsf

上面這塊立體的製作方式和圓柱相同,只不過上下兩面不再是圓形,而是其他形狀。我們就把這種東西稱呼為廣義圓柱吧。在這個例子裡,根本沒有對稱的切法了,所以最好的辦法只有切成長方塊狀。廣義圓柱的體積,仍會等於它的高乘以底面積。我想說的重點是,無論對稱與否,切成長方塊狀都行得通。這個例子也可以讓你清楚看到窮盡法的靈活度。

(廣義)圓柱的表面積要如何度量?

接下來我想帶你看看窮盡法的威力。在前面我們講過伸縮,也就是僅只沿著一個方向拉長某個倍數。有時候我喜歡把它想成是整個平面的變化,就好像拉著一片橡膠的兩側,而畫在平面上的任何一種形狀,就會跟著拉長。假設我們畫了幾個形狀,然後讓這些形狀(水平)伸縮某個倍數。

-----廣告,請繼續往下閱讀-----

sjdfnie

你可以看到這些形狀變形得多麼嚴重。拿正方形來說,就變成了長方形(所以四個邊長也不再全部相等)。另外,正三角形變成等腰三角形,圓形變成完全不一樣的形狀,叫做橢圓(ellipse)。

一般來說,伸縮是個很具破壞力的過程,往往會使長度與角度發生嚴重扭曲。特別是,形狀經過伸縮之後的周長,與伸縮之前的周長通常沒有任何數學關係。以橢圓的周長為例,就是個很經典的度量難題,原因正是它和圓周長無關。

另一方面,伸縮卻與面積的變化一致。我們已經曉得伸縮對於面積產生的效應:如果矩形(在平行於其中一邊的方向上)伸縮了某個倍數,它的面積也會乘以該倍率。由窮盡法,我們發現不管是哪種形狀,上述效應同樣適用。若說得更確切些,就假設有某種形狀,我們要讓它沿著某個方向伸縮r倍。我們想知道,此形狀的面積也會變成r倍。

0ibu

概念就是,要把這個形狀沿著伸縮的方向切成長方條,使得長方條的總面積很接近這個形狀的面積。lkjn

-----廣告,請繼續往下閱讀-----

伸縮之後,各個長方條也跟著拉長了,所以它們的面積都要乘以r倍。這表示該形狀在伸縮後的近似面積,是伸縮前的r倍。我們會發現,如果讓長方條的數量無限增加(這樣一來,它們的寬度會趨近於零),長方條的實際面積必定也會變成r倍。在嚴重扭曲變形之後,竟然還能掌握面積如何變化,在我看來實在太不可思議了。

 橢圓的面積有多大?

 同樣的,沿著某方向的伸縮也會讓體積產生相同倍數的變化。知道為什麼嗎?因為長方塊經過伸縮之後,行為仍是規矩的,所以可以如法炮製。當然,我們還是得小心點。比方說,如果一個立體伸縮了2倍,它的體積確實會變成2倍,但是表面積通常就會失控了。不信的話,你可以拿個立方體來試試!

接下來,我要帶你看一個很漂亮的量度(希望這是需要我秀給你看的唯一一種)。我們要度量的是角錐(金字塔)的體積。

-----廣告,請繼續往下閱讀-----

byhku

我最喜歡的度量方法,是把角錐放進一個等底、等高的方盒;也就是把這個方盒想成是裝著角錐的箱子。

dfv

你自然而然就會想問:角錐占了方盒的多少體積?這個問題很難回答,也很年代悠久,最早可追溯到古埃及(那當然)。有個(很聰明的)觀察方法可以做為切入點:如果把一個立方體的中心點和八個頂點作連線,就可以把立方體切成角錐。

tb dfg

切出來的角錐有六個,因為立方體有六個面。這些角錐全都一模一樣,所以體積等於六分之一個立方體。裝著這樣的角錐的方盒,會是半個立方體,因此這些角錐的體積,就等於箱子體積的三分之一。我認為這是個相當漂亮的論證。

麻煩在於,這只適用於上述形狀的角錐(它的高恰好是底邊長的一半)。大多數的角錐可沒那麼恰到好處,不是太陡,就是太低平。

-----廣告,請繼續往下閱讀-----

這是不是代表,我們只能度量特定一種形狀的角錐?當然不是!任何一種角錐其實都可以從上述這種特例,經過適度的伸縮變形出來。想要一個更陡的角錐,我們可以讓它任意上下伸縮,想要多高就拉多高。

fvid

現在要講到我最愛的部分了:伸縮對於角錐體積和方盒體積的影響,完全一樣。兩者都要乘上伸縮倍率。這表示兩者的體積之比保持固定不變。特殊角錐占了方盒的三分之一,那麼任何一個角錐也必定如此。所以,角錐的體積永遠是方盒體積的三分之一。我太喜歡這一連串概念了。看看窮盡法是多麼博大精深呀。

imvoif

把立方體各面的中心點互相連起來,可以作出正八面體。它占了立方體多少的體積?

oubl

有個不完整的角錐,高度是h,上底是邊長為a的正方形,下底是邊長為b的正方形。它的體積與a、b、h有何關連?

-----廣告,請繼續往下閱讀-----

gdr

正四面體的中心點在哪裡?

unnamed本文摘自泛科學2015三月選書《這才是數學:從不知道到想知道的探索之旅》,經濟新潮社出版。

文章難易度
PanSci_96
1226 篇文章 ・ 2337 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
圓錐曲線與射影幾何-《這才是數學》
PanSci_96
・2015/03/22 ・2957字 ・閱讀時間約 6 分鐘 ・SR值 568 ・九年級

-----廣告,請繼續往下閱讀-----

接下來我要告訴你一個很漂亮的發現,它是在第四世紀初做出來的,當時已是古典幾何時期的尾聲。當中的概念,最早出現於希臘幾何學家帕普斯(Pappus of Alexandria,西元320年前後)的數學著作裡。

首先我得說,要進入這個主題讓我有點惴惴不安,因為它的某些層面相當棘手,我不清楚該如何解釋。(可能有些地方我只能兩手一攤。)

我們從甜甜圈開始談起──呃,我所指的是甜甜圈形狀,不是指甜點。

sdsf

到現在為止,我們還不真正需要精確描述出形狀。形狀是由平面上或空間裡的點,以某種簡單、賞心悅目的排列方式組成的。我們可說已經很熟悉球體、圓錐或長方形了。那麼甜甜圈又是什麼樣的形狀?

-----廣告,請繼續往下閱讀-----

我最喜歡的思考方式,是想像有個圓形繞著空間裡的一條直線旋轉。

jmyj

這種甜甜圈狀的抽象幾何形狀,叫做環面(torus)。所謂的環面,就是指一個圓沿著圓形路徑在空間中移動所構成的軌跡。

我認為,像這樣把一個幾何形狀描述成另一個形狀的運動軌跡,是很了不起的想法。這不僅產生了類似環面這種新奇的形狀,也讓我們能夠以新的眼光看待熟悉的事物。譬如立方體,就可以看成是一個正方形沿著直線路徑運動的軌跡。

ghbdrg

偶爾我喜歡假裝正方形是一隻史前動物,在數百萬年前沿著這條路徑爬行,於是立方體就是牠奮力爬行的「化石紀錄」。我想到的另一個畫面則是雪地裡的足跡。長方形正是一根棍子側向移動留下的「足跡」。

-----廣告,請繼續往下閱讀-----

dgfb

重點是,許多漂亮的形狀可以視為某種運動的結果。

你能不能想出兩種把圓柱體解釋成運動軌跡的方式?

問題是,以這種方式來解釋一個形狀,對於度量是否有任何幫助。描述與量度之間的關係,是幾何學上一再出現的主題。物件的量度會如何隨著描述方式的不同而改變?

尤其,一個物件如果是某個更簡單形狀的運動軌跡,它的量度與這個簡單形狀及其移動方式,究竟有何關係?這是一千六百年前帕普斯提出的問題,而我想要解釋的,正是他的偉大發現。

-----廣告,請繼續往下閱讀-----

我就從我們在前面看過的鳳梨片開始好了。

fjviospe

我們現在所講的,是夾在兩個同心圓之間的空間。這種區域叫做環形(annulus)。對於這個形狀,我們很自然會想成是中間去掉了一個小圓的圓形區域。

另一方面,環形也可以看成一根棍子沿圓形路徑運動所掃出的形狀,就像鏟雪車繞著一棵樹鏟完雪的結果。

fjvpsei

假如棍子(或鏟雪車)是直線行進,當然就會掃出一個矩形。現在我們就能把環形與矩形,視為與同一個概念有關連的不同面貌──此概念就是「由棍棒的運動所形成的形狀」。這很有意思,因為環形與矩形在幾何上大不相同。譬如說,如果你試圖把矩形彎成一個環形,可能不會太順利;內圈的邊會扭曲變形,而外圈的邊會扯破。這情景不大妙。

-----廣告,請繼續往下閱讀-----

與環形和矩形有關的有趣問題,就是該怎樣比較兩者的面積。假設我們手邊有根棍子,讓它繞著圓形路徑掃一圈,構成一個環形。那麼需要多長的直線路徑,才能夠掃出同樣的面積?這正是帕普斯想知道的事情。

sdfjsiod

如果預期正確答案介於環的內、外圓周長之間,這很合理。最自然的猜測是兩圓周長的中間值。我們就假設可以特別安排,讓矩形的長度剛好等於這個「平均」圓周長。那麼兩者的面積一定相符嗎?

結果真的相同。事實上,還有個好方法可以看出這件事,這個方法關連到巴比倫的平方差公式rfvwr

概念如下。這個環形完全由內、外圓的半徑來決定。令外圓半徑為R,內圓半徑為r。當我們把這個環形想成兩圓的差,它的面積就會等於wem

-----廣告,請繼續往下閱讀-----

對於矩形,我們需要知道棍子的長度以及路徑長。棍子的長度很容易,就是R – r。知道為什麼嗎?而通過環形中央的圓,它的半徑是內、外圓半徑的平均,所以就此意義來說確實是平均值。換句話說,中間圓的半徑是fowr

由於圓周長永遠是2p 乘以半徑,因此路徑長(連同矩形的長度)必為

jmpo 最後,矩形的面積等於長寬的乘積,也就是

mpi

恰好是環形的面積。我很喜歡代數與幾何像這樣互相連結起來。屬於代數的平方差公式,由環與矩形的幾何等價關係呈現出來。

-----廣告,請繼續往下閱讀-----

不妨把中間的圓形,想成是棍子中心點的移動軌跡。換句話說,中心點行進的距離才是重點。具體來說,我們已經發現,如果棍子的中心點沿著圓形路徑移動一段長度,所掃出的面積會和沿著直線路徑時的面積相同。不管是直線還是圓形路徑,掃出的面積都等於棍子長度與路徑長的乘積。

這個例子正說明了描述(把環形描述成棍子的移動)對於量度(棍子和路徑很巧妙地決定了面積)的影響。就像我先前講過的,幾何學討論的正是描述與量度之間的關係。

這個例子還可以進一步延伸。假設我們是沿著任意路徑推棍子(的中心點)。

kpmk

這樣我們仍然會得出同樣的結果嗎?我們仍能說,所掃出區域的面積會和直線路徑的情形相同?面積就等於棍長與路徑長的乘積嗎?或說我們根本就是得寸進尺?

-----廣告,請繼續往下閱讀-----

實際上,不管路徑是何形狀,上述的結果都是對的。看我能不能解釋一下為什麼如此。首先可以觀察到,這個結果也適用於圓弧(整個圓的局部)路徑。

pm;o

這是因為,弧長及所掃出的面積,都會與整個環形的弧長及所掃面積成比例。特別是,對於環形「小段」和非常細的矩形,此結果也會成立。概念就是,把這些小碎片拼組成更複雜的形狀。

jilo

棍子中心點的各種移動軌跡,合起來就構成了一條大的路徑,細部來看是由許多圓弧線段及直線段組成。我們還可以經由適當的安排,讓所做出的路徑盡可能接近我們想達成的路徑形狀。

特別是,我們可以(透過這樣的無窮逼近)讓路徑的總長度,接近我們所想的路徑的長度,而組成小段的總面積,也會接近我們所想的區域的實際面積。由於面積近似值是棍長與路徑長的乘積,且逼近做得越好時,這仍是對的,因此對於我們所想的實際區域,這必然也是對的。窮盡法又幫了大忙。

這正是第一個例子,可說明帕普斯發現的結果適用範圍廣泛:移動棍子而掃出的區域面積,就等於棍長乘上棍子中心點的移動距離。

但有幾個微妙的細節。第一點是,棍子必須隨時與運動方向保持垂直。如果成一個角度斜著推棍子,情況會變得一團糟。

ko8i

舉例來說,對於歪斜的矩形,帕普斯定理就束手無策了。因為形狀是由小片的環與矩形組成(至少大致上是),而在這些小片上棍子和路徑始終成直角,因此垂直運動是這個方法可處理的唯一一種移動方式。垂直運動正是帕普斯哲學的重要元素之一。

第二個問題是自相交的情形。

jisfd

如果路徑彎得太劇烈,部分區域就會重複掃過,重疊處的面積也會重複計算。只要保持垂直,並防止急轉彎,就一切順利。

由移動的棍子所掃出的區域周長是多少?

unnamed本文摘自泛科學2015三月選書《這才是數學:從不知道到想知道的探索之旅》,經濟新潮社出版。

0

0
0

文字

分享

0
0
0
我們一開始先談抽象幾何圖形-《這才是數學》
PanSci_96
・2015/03/19 ・2925字 ・閱讀時間約 6 分鐘 ・SR值 441 ・四年級

以下是個美麗的圖案。

qwe

我來告訴你,為什麼我覺得這種圖案很吸引我。首先,裡面有幾種我很喜歡的形狀。

zxc

這幾種形狀簡單又對稱,所以我很喜歡。像這樣由直線構成的形狀,叫做多邊形(polygon)。所有的邊與每個角都相等的多邊形,稱為正多邊形。所以我想我應該要說:我喜歡正多邊形。

這個圖案設計吸引我的另一個原因是,當中的組成元件拼接得天衣無縫。鋪磚之間沒有縫隙,也不會重疊(我喜歡把這些元件想成瓷磚,就像馬賽克裝飾藝術)。至少看上去是如此。請記住,我們所談的東西,其實是假想的完美形狀。不能因為圖案看起來很好,便認為就是這麼回事。無論多麼費心製作的圖片,都是實體世界的產物;圖片不可能告訴我們關於假想數學物件的真理。幾何形狀做自己想做的事,不是做我們希望它們做的事。

-----廣告,請繼續往下閱讀-----

那我們怎麼能確定,這些多邊形真的拼貼得完美無缺?對於這些幾何物件,我們真能知道些什麼嗎?問題的關鍵是,我們要度量這些多邊形──不是用尺或量角器這類笨拙的實體器具,而是靠心智去度量。我們需要找一種方法,能單單用哲學論證去衡量這些形狀。

有沒有注意到,在這個例子裡我們需要量的是角度?為了檢查類似的馬賽克拼貼圖案做得出來,我們必須確認在地磚之間的每個接角,各多邊形的角度加起來是一整圈360度。譬如最普通的正方形鋪磚,正方形的各角是四分之一圈,所以四個正方形加起來剛好一圈。

zxcas

附帶一提,我喜歡用一整圈來當作角度的度量單位,而不喜歡用度。我個人覺得這樣更簡單,也比把一圈分成360等份更自然些(你當然可以選擇自己喜歡的方式)。所以我的說法就會是:正方形各角的角度是1/4。

跟角度有關的第一件驚人發現是,不管是哪種形狀的三角形,內角和始終相同,加起來都是半圈(或180度,如果你必須從俗的話)。

-----廣告,請繼續往下閱讀-----

iop

如果想實際感受一下,不妨拿紙做幾個三角形,把角裁下來,然後排在一起,你就會看到它們一定能排成一條直線。多漂亮的發現呀!但我們怎麼知道真的就是如此?

有一種方法是,把三角形改畫在兩條平行線之間。

fygh

請注意看,這兩條直線與三角形其中兩邊構成的Z字形。(我猜你可能會把右邊的那個稱為倒Z形,不過怎麼稱呼都無所謂。)要請你看的重點是,Z字形的夾角永遠會相等。

vbn

這是因為Z字形是對稱的:假如我們讓它繞著中心點旋轉半圈,看起來會完全相同。這表示上下兩個角必定相等。有道理吧?這就是一個典型的對稱論證。如果一個形狀經過了某一組運動的作用之後仍保持不變,我們就可以由此推斷出,兩個或更多個量度必定相等。

-----廣告,請繼續往下閱讀-----

回到剛才兩平行線夾三角形的圖示,我們現在曉得,底部的兩個角分別與頂部的對應角相等。

fth

這也就表示,三角形的三個角湊在一起,會在頂部拼成一條直線。所以,三個角相加一共轉了半圈。這個數學推理很輕鬆愉快吧!

這正是做數學的意義。先做出發現(不管用哪種方法做出來都行,包括紙、繩子、橡皮筋之類的實體模型),然後盡可能以最簡單優雅的方式去解釋。這是數學的藝術,也是數學充滿挑戰與樂趣的地方。

由這項發現產生的其中一個結論是,如果我們的三角形恰好是等邊三角形(即正三角形),那麼三個角會相等,一定都等於1/6。我們還可以換一種方法來看出同樣的結果:想像你是在開車繞著三角形的邊線。

-----廣告,請繼續往下閱讀-----

vbntnd

你轉了三個相等的彎之後,就回到起點。由於最後轉了一整圈,因此每個彎必定剛好等於1/3。請注意,我們所轉的角度實際上是三角形的外角。

thmd

由於內角與外角合起來是半圈,所以內角和就等於rrbwer特別是,六個正三角形可以剛好鋪成一個接角。

se4tmxth

嘿,這不就做出了一個正六邊形!我們額外得到了一個結論:正六邊形的每個角必為正三角形各角的兩倍,也就是1/3。這表示,三個正六邊形可以拼在一起。

drtmxerg

因此,我們還是有可能對這些形狀有些認識。尤其是,我們現在明白了為什麼最初的那幅馬賽克圖案拼得出來。

-----廣告,請繼續往下閱讀-----

bdf

在圖案的每個接角,都有一個正六邊形、兩個正方形、一個正三角形。這些角度相加起來會等於wnter所以拼得起來!

(附帶一提,如果你不喜歡分數運算,你隨時可以換掉度量單位,避開分數。譬如你可以用1/12圈當作單位,這樣的話,正六邊形的角度就會是4,正方形的角度會是3,正三角形的角度是2,那麼相加起來就會等於4 + 3 + 3 + 2 = 12;也就是一整圈。)

我特別喜愛這個鑲嵌圖案呈現出來的對稱性。每個接角都有同樣的形狀依序排在周圍:六邊形、正方形、三角形、正方形。這表示一旦我們檢查過其中一個接角能夠拼滿,就能順理成章推知其他接角也不成問題。這個圖案可以無限往外延伸,鋪滿整個無限平面。我不禁納悶,「數學實在」裡還有沒有其他美麗的鑲嵌圖案?

利用正多邊形做出對稱的鑲嵌設計,方法有哪些?

-----廣告,請繼續往下閱讀-----

 當然,我們需要知道各種正多邊形的角度。你能不能想想看該如何量出角度呢?

 正n邊形的角度有多大?

nfg

你可以量出正n角星的角度嗎?

dadc

從正多邊形的其中一角所畫的對角線,會切割出相等的角度嗎?

-----廣告,請繼續往下閱讀-----

 雖然我們現在談的主題是多邊形做出的漂亮圖案,我想讓你看看我的另一個最愛。

dsdcv

這一次我們用了正方形和三角形,但不是鋪成平面,而是做成某種球形。這種幾何體叫做多面體(polyhedron),幾千年來數學家一直在琢磨這種幾何形狀。思考的方法之一,是去想像多面體展開成平面的模樣。譬如剛才這個多面體,從其中一角展開後看起來會像這樣:

df zs

我們可以看到,有兩個正方形及兩個三角形圍繞著一個頂點,但留下了一個縫隙,以便摺成一個球。因此對於多面體來說,角度相加起來必須小於一整圈。

 如果角度之和大於一整圈,會發生什麼情況?

 多面體與平面鑲嵌的另一個差異點,在於多面體的設計只牽涉到有限多個地磚。模式仍舊可以持續進行下去(就某種意義上),但不會無限延伸到外太空去。我當然也對這些模式感到好奇。

 對稱的多面體有哪些?

 換一種問法就是:有哪些方法,可把正多邊形做成多面體,而且在每個角可看到同樣的模式?阿基米德找出了所有可能的方法。你能不能找得出來?

最對稱的多面體,當然是每個面都全等的多面體,譬如立方體。這種多面體稱為正多面體。古人已經發現正多面體只有五種(所謂的柏拉圖立體)。你能不能說出是哪五種?

 有哪五種正多面體?

unnamed本文摘自泛科學2015三月選書《這才是數學:從不知道到想知道的探索之旅》,經濟新潮社出版。

PanSci_96
1226 篇文章 ・ 2337 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。