0

0
0

文字

分享

0
0
0

我們一開始先談抽象幾何圖形-《這才是數學》

PanSci_96
・2015/03/19 ・2925字 ・閱讀時間約 6 分鐘 ・SR值 441 ・四年級

以下是個美麗的圖案。

qwe

我來告訴你,為什麼我覺得這種圖案很吸引我。首先,裡面有幾種我很喜歡的形狀。

zxc

這幾種形狀簡單又對稱,所以我很喜歡。像這樣由直線構成的形狀,叫做多邊形(polygon)。所有的邊與每個角都相等的多邊形,稱為正多邊形。所以我想我應該要說:我喜歡正多邊形。

這個圖案設計吸引我的另一個原因是,當中的組成元件拼接得天衣無縫。鋪磚之間沒有縫隙,也不會重疊(我喜歡把這些元件想成瓷磚,就像馬賽克裝飾藝術)。至少看上去是如此。請記住,我們所談的東西,其實是假想的完美形狀。不能因為圖案看起來很好,便認為就是這麼回事。無論多麼費心製作的圖片,都是實體世界的產物;圖片不可能告訴我們關於假想數學物件的真理。幾何形狀做自己想做的事,不是做我們希望它們做的事。

那我們怎麼能確定,這些多邊形真的拼貼得完美無缺?對於這些幾何物件,我們真能知道些什麼嗎?問題的關鍵是,我們要度量這些多邊形──不是用尺或量角器這類笨拙的實體器具,而是靠心智去度量。我們需要找一種方法,能單單用哲學論證去衡量這些形狀。

有沒有注意到,在這個例子裡我們需要量的是角度?為了檢查類似的馬賽克拼貼圖案做得出來,我們必須確認在地磚之間的每個接角,各多邊形的角度加起來是一整圈360度。譬如最普通的正方形鋪磚,正方形的各角是四分之一圈,所以四個正方形加起來剛好一圈。

zxcas

附帶一提,我喜歡用一整圈來當作角度的度量單位,而不喜歡用度。我個人覺得這樣更簡單,也比把一圈分成360等份更自然些(你當然可以選擇自己喜歡的方式)。所以我的說法就會是:正方形各角的角度是1/4。

跟角度有關的第一件驚人發現是,不管是哪種形狀的三角形,內角和始終相同,加起來都是半圈(或180度,如果你必須從俗的話)。

iop

如果想實際感受一下,不妨拿紙做幾個三角形,把角裁下來,然後排在一起,你就會看到它們一定能排成一條直線。多漂亮的發現呀!但我們怎麼知道真的就是如此?

有一種方法是,把三角形改畫在兩條平行線之間。

fygh

請注意看,這兩條直線與三角形其中兩邊構成的Z字形。(我猜你可能會把右邊的那個稱為倒Z形,不過怎麼稱呼都無所謂。)要請你看的重點是,Z字形的夾角永遠會相等。

vbn

這是因為Z字形是對稱的:假如我們讓它繞著中心點旋轉半圈,看起來會完全相同。這表示上下兩個角必定相等。有道理吧?這就是一個典型的對稱論證。如果一個形狀經過了某一組運動的作用之後仍保持不變,我們就可以由此推斷出,兩個或更多個量度必定相等。

回到剛才兩平行線夾三角形的圖示,我們現在曉得,底部的兩個角分別與頂部的對應角相等。

fth

這也就表示,三角形的三個角湊在一起,會在頂部拼成一條直線。所以,三個角相加一共轉了半圈。這個數學推理很輕鬆愉快吧!

這正是做數學的意義。先做出發現(不管用哪種方法做出來都行,包括紙、繩子、橡皮筋之類的實體模型),然後盡可能以最簡單優雅的方式去解釋。這是數學的藝術,也是數學充滿挑戰與樂趣的地方。

由這項發現產生的其中一個結論是,如果我們的三角形恰好是等邊三角形(即正三角形),那麼三個角會相等,一定都等於1/6。我們還可以換一種方法來看出同樣的結果:想像你是在開車繞著三角形的邊線。

vbntnd

你轉了三個相等的彎之後,就回到起點。由於最後轉了一整圈,因此每個彎必定剛好等於1/3。請注意,我們所轉的角度實際上是三角形的外角。

thmd

由於內角與外角合起來是半圈,所以內角和就等於rrbwer特別是,六個正三角形可以剛好鋪成一個接角。

se4tmxth

嘿,這不就做出了一個正六邊形!我們額外得到了一個結論:正六邊形的每個角必為正三角形各角的兩倍,也就是1/3。這表示,三個正六邊形可以拼在一起。

drtmxerg

因此,我們還是有可能對這些形狀有些認識。尤其是,我們現在明白了為什麼最初的那幅馬賽克圖案拼得出來。

bdf

在圖案的每個接角,都有一個正六邊形、兩個正方形、一個正三角形。這些角度相加起來會等於wnter所以拼得起來!

(附帶一提,如果你不喜歡分數運算,你隨時可以換掉度量單位,避開分數。譬如你可以用1/12圈當作單位,這樣的話,正六邊形的角度就會是4,正方形的角度會是3,正三角形的角度是2,那麼相加起來就會等於4 + 3 + 3 + 2 = 12;也就是一整圈。)

我特別喜愛這個鑲嵌圖案呈現出來的對稱性。每個接角都有同樣的形狀依序排在周圍:六邊形、正方形、三角形、正方形。這表示一旦我們檢查過其中一個接角能夠拼滿,就能順理成章推知其他接角也不成問題。這個圖案可以無限往外延伸,鋪滿整個無限平面。我不禁納悶,「數學實在」裡還有沒有其他美麗的鑲嵌圖案?

利用正多邊形做出對稱的鑲嵌設計,方法有哪些?

 當然,我們需要知道各種正多邊形的角度。你能不能想想看該如何量出角度呢?

 正n邊形的角度有多大?

nfg

你可以量出正n角星的角度嗎?

dadc

從正多邊形的其中一角所畫的對角線,會切割出相等的角度嗎?

 雖然我們現在談的主題是多邊形做出的漂亮圖案,我想讓你看看我的另一個最愛。

dsdcv

這一次我們用了正方形和三角形,但不是鋪成平面,而是做成某種球形。這種幾何體叫做多面體(polyhedron),幾千年來數學家一直在琢磨這種幾何形狀。思考的方法之一,是去想像多面體展開成平面的模樣。譬如剛才這個多面體,從其中一角展開後看起來會像這樣:

df zs

我們可以看到,有兩個正方形及兩個三角形圍繞著一個頂點,但留下了一個縫隙,以便摺成一個球。因此對於多面體來說,角度相加起來必須小於一整圈。

 如果角度之和大於一整圈,會發生什麼情況?

 多面體與平面鑲嵌的另一個差異點,在於多面體的設計只牽涉到有限多個地磚。模式仍舊可以持續進行下去(就某種意義上),但不會無限延伸到外太空去。我當然也對這些模式感到好奇。

 對稱的多面體有哪些?

 換一種問法就是:有哪些方法,可把正多邊形做成多面體,而且在每個角可看到同樣的模式?阿基米德找出了所有可能的方法。你能不能找得出來?

最對稱的多面體,當然是每個面都全等的多面體,譬如立方體。這種多面體稱為正多面體。古人已經發現正多面體只有五種(所謂的柏拉圖立體)。你能不能說出是哪五種?

 有哪五種正多面體?

unnamed本文摘自泛科學2015三月選書《這才是數學:從不知道到想知道的探索之旅》,經濟新潮社出版。

文章難易度
PanSci_96
1208 篇文章 ・ 1893 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
2

文字

分享

0
2
2
【成語科學】運籌帷幄:古人不用筆算數學?一隻小竹棍居然可以開三次方根、解方程式!
張之傑_96
・2023/07/28 ・1261字 ・閱讀時間約 2 分鐘

劉邦(漢高祖)打敗項羽,取得天下,建立漢朝。一天舉行盛大宴會,他問群臣:「我為什麼會勝?項羽為什麼會敗?」群臣都說劉邦善於用人,項羽恰恰相反。劉邦點頭稱是,司馬遷在《史記‧高祖本紀》記下劉邦說的一段話

夫運籌帷幄之中,決勝於千里之外,吾不如子房。

帷幄,指營帳子房,是張良的字籌,指算籌,是古時的運算工具。這段話的意思是說,張良在營帳中運用算籌計算,就能決勝千里之外,這方面我(劉邦)不如張良。因此,這個成語的原意是在營帳中策劃謀略,後來泛指謀劃或指揮。讓我們造兩個句吧。

要不是孔明運籌帷幄,劉備哪有三分天下的機會!

在里長的運籌帷幄下,為社區更新取得有利的條件。

不用筆,那用什麼?

成語的出典說了,句子也造了,接下去就要談談這個成語的科學意義。我們現在演算數學,都是用筆在紙上運算,也就是筆算。古人呢?古人從來不用筆算,而是使用工具運算。元代以前使用算籌,元代以後使用算盤

算盤一直使用到 1980 年代,小朋友家裡可能還有。至於算籌,只有少數博物館裡才能看到。

國立自然科學博物館內藏的漢朝骨製算籌複製品。圖/wikipedia

其實算籌只是一根根小竹棍,外形和筷子差不多。小朋友千萬不要看輕這些小竹棍,中國古代的數學曾經輝煌一時,就是用這些小竹棍運算出來的。

驚人的運算能力 曾經輝煌一時的數學成就

算盤被木框框住,計算能力受到限制。凡是算盤能算的,算籌一定能算。反過來,算籌所能算的,算盤就不見得勝任。算盤主要是生意人用的,算籌可作各種運算,數學家喜歡用它。中國的數學宋代發展到顛峰,元代以後不進反退,到了明代已沒人懂得宋代的數學了。

算籌平時放在算袋裡,繫在腰上,運算時取出,在席子上或桌子上擺弄。除了加減乘除,還能開平方、開立方,甚至解高次方程等高中才學得到的數學!關於算袋,有個小故事,傳說秦皇島東巡時,把算袋扔到海裡,變成了烏賊,所以烏賊又稱算袋魚。

十四世紀朱世傑《四元玉鑒》中的「古法七乘方圖」,紀錄宋代展出的「楊輝三角形」,就是我們現在所說的「巴斯卡三角形」。圖中一根根長條物就是當時用來計算的「算籌」。楊輝三角形的產生也顯見宋代數學已經發展出高次多項式的乘法。圖/wikipedia

數學家用算籌運算時,有時擺弄得極快,不要說外行人,連內行人的眼睛幾乎都跟不上,所以古人用「運籌如飛」來形容。因此,用算籌運算,運算過程不會留下記錄,一陣擺弄之後,最後得出答案。這對一般才質的人來說,學起來的確有點困難。

張之傑_96
103 篇文章 ・ 221 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。

2

2
2

文字

分享

2
2
2
買樂透真的可以賺錢?大數法則揭示了賭博的真相!——《統計,讓數字說話》
天下文化_96
・2023/03/05 ・2394字 ・閱讀時間約 4 分鐘

  • id S. Moore、諾茨 William I. Notz
  • 譯者:鄭惟厚、吳欣蓓

什麼是大數法則?

期望值的定義是:它是可能結果的一種平均,但在計算平均時,機率大的結果占的比重較高。我們認為期望值也是另一種意義的平均結果,它代表了如果我們重複賭很多次,或者隨機選出很多家戶,實際上會看到的長期平均。這並不只是直覺而已。數學家只要用機率的基本規則就可以證明,用機率模型算出來的期望值,真的就是「長期平均」。這個有名的事實叫做大數法則。

大數法則
大數法則(law of large numbers)是指,如果結果為數值的隨機現象,獨立重複執行許多次,實際觀察到的結果的平均值,會趨近期望值。

大數法則和機率的概念密切相關。在許多次獨立的重複當中,每個可能結果的發生比例會接近它的機率,而所得到的平均結果就會接近期望值。這些事實表達了機遇事件的長期規律性。正如我們在第 17 章提過的,它們是真正的「平均數定律」。

大數法則解釋了:為什麼對個人來說是消遣甚至是會上癮的賭博,對賭場來說卻是生意。經營賭場根本就不是在賭博。大量的賭客贏錢的平均金額會很接近期望值。賭場經營者事先就算好了期望值,並且知道長期下來收入會是多少,所以並不需要在骰子裡灌鉛或者做牌來保證利潤。

賭場只要花精神提供不貴的娛樂和便宜的交通工具,讓顧客川流不息進場就行了。只要賭注夠多,大數法則就能保證賭場賺錢。保險公司的運作也很像賭場,他們賭買了保險的人不會死亡。當然有些人確實會死亡,但是保險公司知道機率,並且依賴大數法則來預測必須給付的平均金額。然後保險公司就把保費訂得夠高,來保證有利潤。

  • 在樂透彩上做手腳

我們都在電視上看過樂透開獎的實況轉播,看到號碼球上下亂跳,然後由於空氣壓力而隨機彈跳出來。我們可以怎麼樣對開出的號碼做手腳呢? 1980 年的時候,賓州樂透就曾被面帶微笑的主持人以及幾個舞台工作人員動了手腳。

他們把 10 個號碼球中的 8 顆注入油漆,這樣做會把球變重,因此可保證開出中獎號碼的 3 個球必定有那 2 個沒被注入油漆的號碼。然後這些傢伙就下注買該 2 個號碼的所有組合。當 6-6-6 跳出來的時候,他們贏了 120 萬美元。是的,他們後來全被逮到。

歷史上曾有主持人在樂透上做手腳,後來賺了 120 萬美元隨後被逮捕。圖/envatoelements

深入探討期望值

跟機率一樣,期望值和大數法則都值得再花些時間,探討相關的細節問題。

  • 多大的數才算是「大數」?

大數法則是說,當試驗的次數愈來愈多,許多次試驗的實際平均結果會愈來愈接近期望值。可是大數法則並沒有說,究竟需要多少次試驗,才能保證平均結果會接近期望值。這點是要看機結果的變異性決定。

結果的變異愈大,就需要愈多次的試驗,來確保平均結果接近期望值。機遇遊戲一定要變化大,才能保住賭客的興趣。即使在賭場待上好幾個鐘頭,結果也是無法預測的。結果變異性極大的賭博,例如累積彩金數額極大但極不可能中獎的州彩券,需要極多次的試驗,幾乎要多到不可能的次數,才能保證平均結果會接近期望值。

(州政府可不需要依賴大數法則,因為樂透彩金不像賭場的遊戲,樂透彩用的是同注分彩系統。在同注分彩系統裡面,彩金和賠率是由實際下注金額決定的。舉例來說,各州所辦的樂透彩金,是由全部賭金扣除州政府所得部分之後的剩餘金額來決定的。賭馬的賠率則是決定於賭客對不同馬匹的下注金額。)

雖然大部分的賭博遊戲不及樂透彩這樣多變化,但要回答大數法則的適用範圍,較實際的答案就是:賭場的贏錢金額期望值是正的,而賭場玩的次數夠多,所以可以靠著這個期望值贏錢。你的問題則是,你贏錢金額的期望值是負的。全體賭客玩的次數合起來算的話,當然和賭場一樣多,但因為期望值是負的,所以以賭客整體來看,長期下來一定輸錢。

然而輸的金額並不是由賭客均攤。有些人贏很多錢,有些人輸很多,而有些人沒什麼輸贏。賭博帶給人的誘惑,大部分是來自賭博結果的無法預測。而賭博這門生意仰賴的則是:對賭場來說,結果並非不可測的。

對賭場來說,贏錢金額期望值為正。圖/envatoelements
  • 有沒有保證贏錢的賭法?

把賭博很當回事的賭客常常遵循某種賭法,這種賭法每次下注的金額,是看前幾次的結果而定。比如說,在賭輪盤時,你可以每次把賭注加倍,直到你贏為止—或者,當然,直到你輸光為止。即使輪盤並沒有記憶,這種玩法仍想利用你有記憶這件事來贏。

你可以用一套賭法來戰勝機率嗎?不行,數學家建立的另一種大數法則說:如果你沒有無窮盡的賭本,那麼只要遊戲的各次試驗(比如輪盤的各次轉動)之間是獨立的,你的平均獲利(期望值)就會是一樣的。抱歉啦!

  • 高科技賭博

全美國有超過 700,000 台吃角子老虎(拉霸)。從前,你丟硬幣進去再拉下把手,轉動三個輪子,每個輪子有 20 個圖案。但早就不是這樣了。現在的機器是電動遊戲,會閃出許多很炫的畫面,而結果是由隨機數字產生器決定的。

機器可以同時接受許多硬幣,有各種讓你眼花撩亂的中獎結果,還可以多台連線,共同累積成連線大獎。賭徒仍在尋找可以贏錢的賭法,但是長期下來,隨機數字產生器會保證賭場有 5% 的利潤。

——本文摘自《統計,讓數字說話》,2023 年 1 月,天下文化出版,未經同意請勿轉載。

所有討論 2
天下文化_96
132 篇文章 ・ 615 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

2
2

文字

分享

0
2
2
假藥也能治療?安慰劑效應的原因:「不」隨機化實驗!——《統計,讓數字說話》
天下文化_96
・2023/03/03 ・1932字 ・閱讀時間約 4 分鐘

  • 作者:墨爾 David S. Moore、諾茨 William I. Notz
  • 譯者:鄭惟厚、吳欣蓓

實驗法中「隨機化」的必要性

隨機化比較實驗是統計學裡面最重要的概念之一。它的設計是要讓我們能夠得到釐清因果關係的結論。我們先來弄清楚隨機化比較實驗的邏輯:

  • 用隨機化的方法將受試者分組,所分出的各組在實施處理之前,應該各方面都類似。
  • 之所以用「比較」的設計,是要確保除了實驗上的處理外,其他所有因素都會同樣作用在所有的組身上。
  • 因此,反應變數的差異必定是處理的效應所致。

我們用隨機方法選組,以避免人為指派時可能發生的系統性偏差。例如在鐮形血球貧血症的研究中,醫師有可能下意識就把最嚴重的病人指派到羥基脲組,指望這個正在試驗的藥能對他們有幫助。那樣就會使實驗有偏差,不利於羥基脲。

從受試者中取簡單隨機樣本來當作第一組,會使得每個人被選入第一組或第二組的機會相等。我們可以預期兩組在各方面都接近,例如年齡、病情嚴重程度、抽不抽菸等。舉例來說,隨機性通常會使兩組中的吸菸人數差不多,即使我們並不知道哪些受試者吸菸。

實驗組與對照組除主要測量變數外,其餘條件必需盡可能相似。圖/envatoelements

新藥研究上不隨機分組帶來的後果:安慰劑效應

如果實驗不採取隨機方式,潛藏變數會有什麼影響呢?安慰劑效應就是潛藏變數,只有受試者接受治療後才會出現。如果實驗組別是在當年不同時間進行治療,所以有些組別是在流感季節治療,有些則不是,那麼潛藏變數就是有些組別暴露在流感的程度較多。

在比較實驗設計中,我們會試著確保這些潛藏變數對全部的組別都有相似的作用。例如為了確保全部的組別都有安慰劑效應,他們會接受相同的治療,全部的組別會在相同的時間接受相同的治療,所以暴露在流感的程度也相同。

要是告訴你,醫學研究者對於隨機化比較實驗接受得很慢,應該不會讓你驚訝,因為許多醫師認為一項新療法對病人是否有用,他們「只要看看」就知道。但事實才不是這樣。有很多醫療方法只經過單軌實驗後就普遍使用,但是後來有人起疑,進行了隨機化比較實驗後,卻發覺其效用充其量不過是安慰劑罷了,這種例子已經不勝枚舉。

曾有人在醫學文獻裡搜尋,經過適當的比較實驗研究過的療法,以及只經過「歷史對照組」實驗的療法。用歷史對照組做的研究不是把新療法的結果和控制組比,而是和過去類似的病人在治療後的效果做比較。結果,納入研究的 56 種療法當中,用歷史對照組來比較時,有 44 種療法顯示出有效。然而在經過使用合適的隨機化比較實驗後,只有 10 種通過安慰劑測試。即使有跟過去的病人比,醫師的判斷仍過於樂觀。

過去醫學史上常出現新藥實際沒療效,只能充當安慰劑效果的情況。圖/envatoelements

目前來說,法律已有規定,新藥必須用隨機化比較實驗來證明其安全性及有效性。但是對於其他醫療處置,比如手術,就沒有這項規定。上網搜尋「comparisons with historical controls」(以歷史對照組來比較)這個關鍵字,可以找到最近針對曾使用歷史對照組試驗的其他醫療處置,所做的研究。

對於隨機化實驗有一件重要的事必須注意。和隨機樣本一樣,隨機化實驗照樣要受機遇法則的「管轄」。就像抽一個選民的簡單隨機樣本時,有可能運氣不好,抽到的幾乎都是相同政治傾向一樣,隨機指派受試者時,也可能運氣不好,把抽菸的人幾乎全放在同一組。

我們知道,如果抽選很大的隨機樣本,樣本的組成和母體近似的機會就很大。同樣的道理,如果我們用很多受試者,加上利用隨機指派方式分組,也就有可能與實際情況非常吻合。受試者較多,表示實驗處理組的機遇變異會比較小,因此實驗結果的機遇變異也比較小。「用足夠多的受試者」和「同時比較數個處理」以及「隨機化」,同為「統計實驗設計」的基本原則。

實驗設計的原則
統計實驗設計的基本原則如下:
1. 要控制潛在變數對反應的影響,最簡單的方法是同時比較至少兩個處理。
2. 隨機化:用非人為的隨機方法指派受試者到不同的實驗處理組。
3. 每一組的受試者要夠多,以減低實驗結果中的機遇變異。

——本文摘自《統計,讓數字說話》,2023 年 1 月,天下文化出版,未經同意請勿轉載。

天下文化_96
132 篇文章 ・ 615 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。