0

0
0

文字

分享

0
0
0

大數據與人道援助 – 群眾標記應用

活躍星系核_96
・2015/02/26 ・3496字 ・閱讀時間約 7 分鐘 ・SR值 598 ・九年級

-----廣告,請繼續往下閱讀-----

作者:潘人豪助理教授,元智大學大數據與數位匯流創新中心

「人道援助」,乍聽這個詞,或許大家腦海中浮出的,是穿著白袍的醫生坐在簡陋環境裡義診,也可能是大批穿著制服協助難民撤逃的軍人們,又或者是寫著UN(United Nations)聯合國的白色四輪驅動越野車奔馳在災區中進行調查支援。有沒有曾經想像過,雲端計算、大數據應用,這樣的前端資通訊技術,也有可能應用在人道援助的場域中呢?

這幾年雲端技術、大數據應用的蓬勃發展,早已深入每一個人日常生活中,更不用說在各個商業領域的前端應用。然而在這樣全球火熱且全面關注的議題中,卻鮮少有人意識到,大數據也同時悄悄的應用到人道援助、國際合作領域中。

每當我們撥出一通電話、購買某個商品、使用社群媒體,甚至僅僅打開網頁瀏覽,都在不知不覺中產生大量資訊,加上自動化感測裝置的連續資料,無論是從政府單位或是私人企業產生儲存,這些無數的大數據資訊源與其交互組合可解釋的問題幾乎可以涵蓋各種議題,而當今的人道援助、國際合作機構,便是企圖利用各種大數據資訊或雲端計算科技,解決當下所面臨的問題,給予目標族群(vulnerable communities)更快速、有效的援助服務。

-----廣告,請繼續往下閱讀-----

然而對於這樣的大數據、雲端服務應用,其實並不是近幾年大數據技術流行才有的,早在2007年,位於東非的肯亞(Kenya)共和國因為俱爭議總統大選後的全國性暴動,種族對立衝突造成超過一千三百人喪生與三十五萬人被迫離開家園躲避內亂。

政府軍隊進行武力鎮壓 (Photo: Evelyn Hockstein, The New York Times)
政府軍隊進行武力鎮壓 (Photo: Evelyn Hockstein, The New York Times   )
肯亞國內Kikuyu 族群民眾抗爭(Photo : Evelyn Hockstein, The New York Times)
肯亞國內Kikuyu 族群民眾抗爭(Photo : Evelyn Hockstein, The New York Times

而在肯亞內亂當時,一群當地程式設計師與網路團體開發出名為Ushahidi計畫,Ushahidi為肯亞當地Swahili語言的證言(testimony)之意,Ushahidi計畫發展出一個網路平台,使用者可以透過手機SMS(Short Message Service)簡訊或網站進行暴力事件通報,隨後Ushahidi平台利用Google map進行地理位置標定,藉此跳脫國內媒體受控制或失去機能的狀態,直接由人民發聲向國際尋求援助,也因為Ushahidi的通報與傳播,國際組織得以快速動員進行人道援助救援與物資提供。

2008年後Ushahida計畫也擴展為國際人道援助平台,企圖提供全球進行事件通報與群眾標記(crowdmapping),並運用於諸多國家,如美國亞特蘭大(Atlanta)犯罪事件追蹤、印度(Republic of India)與墨西哥(United Mexican States)選舉結果的提報追蹤,甚至是2010年海地(Republic of Haiti)大地震與2011年日本東北大地震(2011 Tōhoku earthquake and tsunami)的事件追蹤標記。

2011年日本東北大地震Ushahidi應用(圖片來源:livedoor news) 右圖:Ushahidi 平台介面(圖片來源: Jim Craner , Advancing Your Mission With GIS Tools)
2011年日本東北大地震Ushahidi應用(圖片來源:livedoor news
Ushahidi 平台介面(圖片來源: Jim Craner , Advancing Your Mission With GIS Tools)
Ushahidi 平台介面(圖片來源: Jim Craner , Advancing Your Mission With GIS Tools

此外針對急難應用與災害救援事件,Google藉由其所擁有的計算資源,結合其自家Google App Engine分散計算引擎與儲存架構,以及Picasa 影像平台,於2010年時針對中美洲海地地震提出了Google Person Finder服務,針對災區進行災民尋找與通報服務;該服務後續亦提供之後2010智利(Chile)大地震、2011年日本東北大地震,甚至是前年(2013)於菲律賓造成嚴重災情的海燕颱風等災害救援。而Google Person Finder在2011年日本東北大地震期間曾創下高達六十萬姓名資訊紀錄的規模,堪為短時間內人道援助資訊蒐集彙整之成功案例。

-----廣告,請繼續往下閱讀-----
2010 海地大地震時Google推出之Person Finder服務 (Image from : Wikipedia)
2010 海地大地震時Google推出之Person Finder服務
(Image from : Wikipedia

同樣透過大數據群眾標記進行人道救援案例,還有哈佛醫學院Rumi學者,透過社群媒體進行對傳染疾病傳播於地理位置擴散標定的流行病學研究,該研究發表於2012年American Journal of Tropical Medicine and Hygiene期刊,該作者透過自動網路媒體調查平台HealthMap,針對海地自2010年10月20號爆發霍亂(Cholera)疫情開始100天,紀錄由網路平台HealthMap、Twitter所產生之社群網路與關鍵字”Cholera”相關訊息,並透過訊息自動標定其地理位置,藉由時間推演與地理資訊標的,進一步對照海地政府公共衛生部(Ministère de la Santé Publique et de la Population, MSPP)提供之實際通報個案數據。

其結果發現網路數據的呈現與地理位置分布,符合MSPP所提供之事後通報個案資料分布與趨勢,證明透過社群媒體進行大數據資料探勘之方法,可以以低成本的方式進行傳染性疾病早期偵測,並達到快速反應與提早實施防疫策略之使用,針對醫療發展落後、醫療資訊蒐集傳遞機制不健全之國家 實為一個創新的應用。

Rumi學者透過社群媒體數據所獲得之禍亂發生、擴散分布圖。 (圖片來源  doi:10.4269/ajtmh.2012.11-0597)
Rumi學者透過社群媒體數據所獲得之禍亂發生、擴散分布圖。
(圖片來源 doi:10.4269/ajtmh.2012.11-0597

發展中國家的公共衛生改善與發展,直接影響該國家人民的生存條件與健康條件,目前各國雖透過社群媒體大數據探勘技術企圖進行早期偵測,但如同文獻與相關報導中所提及,因為城鄉差異過大,資訊能力素養不齊,資料過度集中於高人口密度區域如首都太子港(Port-au-Prince)造成評估上的誤差與偏鄉地區的低估。

2014.02 筆者於Saint-Michel-de-l'Attalaye地區拍攝之霍亂隔離病房
2014.02 筆者於Saint-Michel-de-l’Attalaye地區拍攝之霍亂隔離病房
2014.07 筆者重返Saint-Michel-de-l'Attalaye地區, 該區正爆發霍亂疫情病患擠滿霍亂隔離病房(因病患隱私,未拍攝內部照片)
2014.07 筆者重返Saint-Michel-de-l’Attalaye地區,
該區正爆發霍亂疫情病患擠滿霍亂隔離病房(因病患隱私,未拍攝內部照片)

上述之偏差狀況,由筆者近幾年數度至海地進行人道援助計畫時可得到驗證,今年七月筆者與桃園醫院國際衛生中心再度訪問海地北部Artibonite省之偏鄉Saint-Michel-de-l’Attalaye地區時,遭遇該區域爆發嚴重霍亂疫情,然而時隔2010初次爆發至今已將近三年之久,卻仍無法有效控制疫情散布,原因除了當地缺乏公共衛生工程礎建設、民眾公共衛生教育素養不足外,當地醫療機構僅使用紙本文件進行病患診斷紀錄,缺乏病患追蹤、主動式訊息通報機制,導致衛生單位無法立即獲取第一手疾病資訊以進行疫情防堵,亦是主要原因之一。

-----廣告,請繼續往下閱讀-----

因此如何導入全國醫療資訊傳遞網路,由政府端建立真正醫療大數據平台,進行即時傳染性疾病事件通報、監控、追蹤機制,才是治標治本之道。

2014.07 筆者與桃園醫院國際衛生中心 於海地衛生部(MSPP)進行醫療資訊應用課程
2014.07 筆者與桃園醫院國際衛生中心 於海地衛生部(MSPP)進行醫療資訊應用課程

大數據小辭典:

  • 群眾外包(crowdsourcing):此為《連線》(Wired)雜誌記者Jeff Howe於2006年發明的一個專業術語,用來描述一種新的商業模式透過網際網路上的使用者所組成的群體,進行創意的發想、工作執行與技術問題解決等。參與群眾外包成員,針對特定執行項目大多僅收取小額報酬或無償提供服務,因此建立了一種新的勞動結構。
  • 群眾標記(crowdmapping):透過網際網路、行動裝置,群眾使用者可以於平台上標記任何虛擬化事件資訊,包含文字、影像、視訊多媒體、地理資訊、健康醫療紀錄等等,為群眾外包 (crowdsourcing)的延伸應用。常見的群眾標記服務多與地理資訊系統整合,提供具備地理位址之事件資訊。
  • 社群網路(Social Network):是為一群擁有相同興趣與活動的人連結而成的線上社群。針對這類社群所提供的類服務往往是基於網際網路並為用戶提供各種聯繫、交流的互動通路,如電子信件、即時訊息服務或線上網路平台等。常見社群網路平台Facebook, Twitter, Plurk, Google+, LinkedIn, 人人網, 新浪微博, 騰訊微博, Instagram等等。
  • 社群媒體資料探勘(Social Media Mining):社群媒體資料探勘是透過針對社群網物所產生的資料,所進行的資訊擷取、彙整、分析,企圖取得特殊目的、族群的目標模式,透過統計方法、機器學習、網站分析、網路科學等等不同領域的方法,進行對社群網路資料所產生的龐大數據資料尋找其有意義的應用資訊與現象。
  • 社群網路分析 (Social Network Analysis):有別於社群媒體資料探勘,社群網路分析主要過社群網路上每個使用者與其彼此間的關聯性透過電腦科學中的圖學理論、網路理論,將社群網路的事件關聯轉化為圖學上的節點與線段連接,藉此便可以使用數據分析方法中針對圖學、網路關聯分析技術進行判斷,找出其中的群聚、分類、特殊事件與趨勢等標的。

想了解更多大數據知識,歡迎訂閱元智大學大數據匯流電子報

文章難易度
活躍星系核_96
752 篇文章 ・ 122 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

2

3
0

文字

分享

2
3
0
數據塑造生活與社會,讓人既放心但又不安?——《 AI 世代與我們的未來》
聯經出版_96
・2022/12/28 ・2760字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

數位世界已經改變了我們日常生活的體驗,一個人從早到晚都會接受到大量數據,受益於大量數據,也貢獻大量數據。這些數據龐大的程度,和消化資訊的方式已經太過繁多,人類心智根本無法處理。

與數位科技建立夥伴關係

所以人會本能地或潛意識地倚賴軟體來處理、組織、篩選出必要或有用的資訊,也就是根據用戶過去的偏好或目前的流行,來挑選要瀏覽的新項目、要看的電影、要播放的音樂。自動策劃的體驗很輕鬆容易,又能讓人滿足,人們只會在沒有自動化服務,例如閱讀別人臉書塗鴉牆上的貼文,或是用別人的網飛帳號看電影時,才會注意到這服務的存在。

有人工智慧協助的網路平臺加速整合,並加深了個人與數位科技間的連結。人工智慧經過設計和訓練,能直覺地解決人類的問題、掌握人類的目標,原本只有人類心智才能管理的各種選擇,現在能由網路平臺來引導、詮釋和記錄(儘管效率比較差)。

日常生活中很少察覺到對自動策劃的依賴。圖/Pexels

網路平臺收集資訊和體驗來完成這些任務,任何一個人的大腦在壽命期限內都不可能容納如此大量的資訊和體驗,所以網路平臺能產出看起來非常恰當的答案和建議。例如,採購員不管再怎麼投入工作,在挑選冬季長靴的時候,也不可能從全國成千上萬的類似商品、近期天氣預測、季節因素、回顧過去的搜尋記錄、調查物流模式之後,才決定最佳的採購項目,但人工智慧可以完整評估上述所有因素。

-----廣告,請繼續往下閱讀-----

因此,由人工智慧驅動的網路平臺經常和我們每個人互動,但我們在歷史上從未和其他產品、服務或機器這樣互動過。當我們個人在和人工智慧互動的時候,人工智慧會適應個人用戶的偏好(網際網路瀏覽記錄、搜尋記錄、旅遊史、收入水準、社交連結),開始形成一種隱形的夥伴關係。

個人用戶逐漸依賴這樣的平臺來完成一串功能,但這些功能過去可能由郵政、百貨公司,或是接待禮賓、懺悔自白的人和朋友,或是企業、政府或其他人類一起來完成。

網路平臺和用戶之間是既親密又遠距的聯繫。圖/Envato Elements

個人、網路平臺和平臺用戶之間的關係,是一種親密關係與遠距聯繫的新穎組合。人工智慧網路平臺審查大量的用戶數據,其中大部分是個人數據(如位置、聯絡資訊、朋友圈、同事圈、金融與健康資訊);網路會把人工智慧當成嚮導,或讓人工智慧來安排個人化體驗。

人工智慧如此精準、正確,是因為人工智慧有能力可以根據數億段類似的關係,以及上兆次空間(用戶群的地理範圍)與時間(集合了過去的使用)的互動來回顧和反應。網路平臺用戶與人工智慧形成了緊密的互動,並互相學習。

-----廣告,請繼續往下閱讀-----

網路平臺的人工智慧使用邏輯,在很多方面對人類來說都難以理解。例如,運用人工智慧的網路平臺在評估圖片、貼文或搜尋時,人類可能無法明確地理解人工智慧會在特定情境下如何運作。谷歌的工程師知道他們的搜尋功能若有人工智慧,就會有清楚的搜尋結果;若沒有人工智慧,搜尋結果就不會那麼清楚,但工程師沒辦法解釋為什麼某些結果的排序比較高。

要評鑑人工智慧的優劣,看的是結果實用不實用,不是看過程。這代表我們的輕重緩急已經和早期不一樣了,以前每個機械的步驟或思考的過程都會由人類來體驗(想法、對話、管理流程),或讓人類可以暫停、檢查、重複。

人工智慧陪伴現代人的生活

例如,在許多工業化地區,旅行的過程已經不需要「找方向」了。以前這過程需要人力,要先打電話給我們要拜訪的對象,查看紙本地圖,然後常常在加油站或便利商店停下來,確認我們的方向對不對。現在,透過手機應用程式,旅行的過程可以更有效率。

透過導航,為旅途帶來不少便利。圖/Pexels

這些應用程式不但可以根據他們「所知」的交通記錄來評估可能的路線與每條路線所花費的時間,還可以考量到當天的交通事故、可能造成延誤的特殊狀況(駕駛過程中的延誤)和其他跡象(其他用戶的搜尋),來避免和別人走同一條路。

-----廣告,請繼續往下閱讀-----

從看地圖到線上導航,這轉變如此方便,很少人會停下來想想這種變化有多大的革命性意義,又會帶來什麼後果。個人用戶、社會與網路平臺和營運商建立了新關係,並信任網路平臺與演算法可以產生準確的結果,獲得了便利,成為數據集的一部分,而這數據集又在持續進化(至少會在大家使用應用程式的時候追蹤個人的位置)。

在某種意義上,使用這種服務的人並不是獨自駕駛,而是系統的一部分。在系統內,人類和機器智慧一起協作,引導一群人透過各自的路線聚集在一起。

持續陪伴型的人工智慧會愈來愈普及,醫療保健、物流、零售、金融、通訊、媒體、運輸和娛樂等產業持續發展,我們的日常生活體驗透過網路平臺一直在變化。

網路平台協助我們完成各種事項。圖/Pexels

當用戶找人工智慧網路平臺來協助他們完成任務的時候,因為網路平臺可以收集、提煉資訊,所以用戶得到了益處,上個世代完全沒有這種經驗。這種平臺追求新穎模式的規模、力量、功能,讓個人用戶獲得前所未有的便利和能力;同時,這些用戶進入一種前所未有的人機對話中。

-----廣告,請繼續往下閱讀-----

運用人工智慧的網路平臺有能力可以用我們無法清楚理解,甚至無法明確定義或表示的方式來形塑人類的活動,這裡有一個很重要的問題:這種人工智慧的目標功能是什麼?由誰設計?在哪些監管參數範圍裡?

類似問題的答案會繼續塑造未來的生活與未來的社會:誰在操作?誰在定義這些流程的限制?這些人對於社會規範和制度會有什麼影響?有人可以存取人工智慧的感知嗎?有的話,這人是誰?

如果沒有人類可以完全理解或查看數據,或檢視每個步驟,也就是說假設人類的角色只負責設計、監控和設定人工智慧的參數,那麼對人工智慧的限制應該要讓我們放心?還是讓我們不安?還是既放心又不安?

——本文摘自《 AI 世代與我們的未來:人工智慧如何改變生活,甚至是世界?》,2022 年 12 月,聯經出版公司,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 2
聯經出版_96
27 篇文章 ・ 20 位粉絲
聯經出版公司創立於1974年5月4日,是一個綜合性的出版公司,為聯合報系關係企業之一。 三十多年來已經累積了近六千餘種圖書, 範圍包括人文、社會科學、科技以及小說、藝術、傳記、商業、工具書、保健、旅遊、兒童讀物等。

0

1
0

文字

分享

0
1
0
AI 的 3 種學習形式:不同的目標功能,不同的訓練方式——《 AI 世代與我們的未來》
聯經出版_96
・2022/12/27 ・2368字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

搭配不同的任務,人工智慧的應用方式也不一樣,所以開發人員用來創造人工智慧的科技也不一樣。這是部署機器學習時最基礎的挑戰:不同的目標和功能需要不同的訓練技巧。

機器學習最基礎的挑戰:不同目標和功能需配合不同訓練技巧。圖/Pexels

不過,結合不同的機器學習法,尤其是應用神經網路,就出現不同的可能性,例如發現癌症的人工智慧。

機器的 3 種學習形式

在我們撰寫本章的時候,機器學習的三種形式:受監督式學習、不受監督式學習和增強式學習,都值得注意。

受監督式學習催生了發現海利黴素的人工智慧。總結來說,麻省理工學院的研究人員想要找出有潛力的新抗生素,在資料庫裡放入二千種分子來訓練模型,輸入項目是分子結構,輸出項目是抑菌效果;研究人員把分子結構展示給人工智慧看,每一種結構都標示抗菌力,然後讓人工智慧去評估新化合物的抗菌效果。

-----廣告,請繼續往下閱讀-----

這種技巧稱為受監督式學習,因為人工智慧開發人員利用包含了輸入範例(即分子結構)的資料集,在這裡面,每一筆數據都單獨標示研究人員想要的輸出項目或結果(即抗菌力)。

開發人員已經把受監督式學習的技巧應用於許多處,例如創造人工智慧來辨識影像。為了這項任務,人工智慧先拿已經標示好的圖像來訓練,學著把圖像和標籤,例如把貓的照片和「貓」的標籤,聯想在一起,人工智慧把圖片和標籤的關係編碼之後,就可以正確地辨識新圖片。

貓貓!圖/Pexels

因此,當開發人員有一個資料集,其中每個輸入項目都有期望的輸出項目,受監督式學習就能有效地創造出模型,根據新的輸入項目來預測輸出項目。

不過,當開發人員只有大量資料,沒有建立關係的時候,他們可以透過不受監督式學習來找出可能有用的見解。因為網際網路與資料數位化,比過去更容易取得資料,現在企業、政府和研究人員都被淹沒在資料中。

-----廣告,請繼續往下閱讀-----

行銷人員擁有更多顧客資訊、生物學家擁有更多資料、銀行家有更多金融交易記錄。當行銷人員想要找出客戶群,或詐騙分析師想要在大量交易中找到不一致的資訊,不受監督式學習就可以讓人工智慧在不確定結果的資訊中找出異常模式。

這時,訓練資料只有輸入項目,然後工程師會要求學習演算法根據相似性來設定權重,將資料分類。舉例來說,像網飛(Netflix)這樣的影音串流服務,就是利用演算法來找出哪些觀眾群有類似的觀影習慣,才好向他們推薦更多節目;但要優化、微調這樣的演算法會很複雜:因為多數人有好幾種興趣,會同時出現在很多組別裡。

影音串流服務利用演算法,進而推薦使用者可能喜歡的節目。圖/Pexels

經過不受監督式學習法訓練的人工智慧,可以找出人類或許會錯過的模式,因為這些模式很微妙、數據規模又龐大。因為這樣的人工智慧在訓練時沒有明定什麼結果才「適當」,所以可以產生讓人驚豔的創新見解,這其實和人類的自我教育沒什麼不同——無論是人類自學或是人工智慧,都會產生稀奇古怪、荒謬無理的結果。

不管是受監督式學習法或不受監督式學習法,人工智慧都是運用資料來執行任務,以發現新趨勢、識別影像或做出預測。在資料分析之外,研究人員想要訓練人工智慧在多變的環境裡操作,第三種機器學習法就誕生了。

-----廣告,請繼續往下閱讀-----

增強式學習:需要理想的模擬情境與回饋機制

若用增強式學習,人工智慧就不是被動地識別資料間的關聯,而是在受控的環境裡具備「能動性」,觀察並記錄自己的行動會有什麼反應;通常這都是模擬的過程, 把複雜的真實世界給簡化了,在生產線上準確地模擬機器人比較容易,在擁擠的城市街道上模擬就困難得多了。

但即使是在模擬且簡化的環境裡,如西洋棋比賽,每一步都還是會引發一連串不同的機會與風險。因此,引導人工智慧在人造環境裡訓練自己,還不足以產生最佳表現,這訓練過程還需要回饋。

西洋棋比賽中的每一步會引發一連串機會與風險。圖/Pexels

提供反饋和獎勵,可以讓人工智慧知道這個方法成功了。沒有人類可以有效勝任這個角色:人工智慧因為在數位處理器上運作,所以可以在數小時或數日之內就訓練自己幾百次、幾千次或幾十億次,人類提供的回饋相比之下根本不切實際。

軟體工程師將這種回饋功能自動化,謹慎精確地說明這些功能要如何操作,以及這些功能的本質是要模擬現實。理想情況下,模擬器會提供擬真的環境,回饋功能則會讓人工智慧做出有效的決定。

-----廣告,請繼續往下閱讀-----

阿爾法元的模擬器就很簡單粗暴:對戰。阿爾法元為了評估自己的表現,運用獎勵功能,根據每一步創造的機會來評分。

增強式學習需要人類參與來創造人工智慧的訓練環境(儘管在訓練過程中不直接提供回饋):人類要定義模擬情境和回饋功能,人工智慧會在這基礎上自我訓練。為產生有意義的結果,謹慎明確地定義模擬情境和回饋功能至關重要。

——本文摘自《 AI 世代與我們的未來:人工智慧如何改變生活,甚至是世界?》,2022 年 12 月,聯經出版公司,未經同意請勿轉載。

聯經出版_96
27 篇文章 ・ 20 位粉絲
聯經出版公司創立於1974年5月4日,是一個綜合性的出版公司,為聯合報系關係企業之一。 三十多年來已經累積了近六千餘種圖書, 範圍包括人文、社會科學、科技以及小說、藝術、傳記、商業、工具書、保健、旅遊、兒童讀物等。

1

8
2

文字

分享

1
8
2
花粉揭秘:黑死病災情,歐洲各地很不一樣
寒波_96
・2022/02/21 ・4340字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

14 世紀中葉,歐洲各地陸續爆發鼠疫。瘟疫在當時的歐洲並不稀罕,可是這回實在嚴重,大量人口慘遭消滅,後世稱之為「黑死病」。疫情主要發生在公元 1347 到 1352 年,有些學者估計令歐洲在短期內減少 30 到 50% 人口,或許高達 5000 萬人之多。

一項新上市的研究根據花粉分析,卻得到結論:黑死病對歐洲各地的影響差異不小,有些區域確實大受打擊,但是有些地區輕微得多。我們該怎麼解讀這些研究呢?

受到義大利黑死病爆發為背景的《十日談》啟發的畫作。圖/wiki 公有領域

瘟疫殺死歐洲一半人!真的嗎?

黑死病的病原體是鼠疫桿菌(Yersinia pestis),可藉由老鼠和跳蚤輔助傳播。近年來由遺骸取得古代 DNA 的研究大行其道,令我們得知超過五千年前,便有人感染鼠疫桿菌。鼠疫桿菌能搭乘跳蚤便車,關鍵在於 ymtYersinia murine toxin)基因,晚於四千年前的鼠疫桿菌皆已經具備。

歷史上三次大爆發:6世紀的查士丁尼瘟疫,14 世紀的黑死病,以及 19 世紀末的全球流行,人們面對的都是傳染力升級的細菌版本;除此之外,還有多次規模較小的流行。 遺傳變化有限的病原體,在不同時空的疫情差異很大。

-----廣告,請繼續往下閱讀-----

歷次鼠疫桿菌導致的疫情中,黑死病的衝擊最大,有些研究甚至認為它消滅當時歐洲 50% 人口。這類死亡率的評估,主要來自歷史資料,如文書、稅務等紀錄;然而,這類資訊來源未必準確,有時文字會誇大不實,和實際數字有所差異。

還有一點侷限在,歷史資料主要紀錄人口聚居的城鎮,可是黑死病那個時候,歐洲超過 75% 人住在城市之外。人擠人的城市碰上鼠疫這類傳染病,通常受害較大,所以根據城市評估而得的結果,也許會高估瘟疫的危害。

另一方面,不同地區的受災程度很可能不同,就像正在進行的 COVID-19(武漢肺炎、新冠肺炎)疫情,遺傳上相同的病毒重擊秘魯,對澳洲的傷害卻相對有限。而黑死病也是如此,既有資料已經足以看出,相比於義大利深受打擊,波蘭更加輕微。幾處地區的狀況,不能擴大代表整個歐洲。

概念:在黑死病死亡率低的地區,農耕不太受到影響;死亡率高的地區則影響較大,產業轉為畜牧,甚至是恢復野生狀態;這些植物變化會反映在沉積物中的花粉。圖/參考資料 3

花粉大數據

要評估黑死病這類歷史大事件的影響,沒有一種理想辦法,一定要從不同方面尋找證據切入、互補,而環境變化可以作為切入點。突然爆發的疾病,導致大量人口死亡之後,也將造成經濟與社會的動盪,可想而知,自然環境也會受到牽連。

歐洲各地花粉的取樣地點。圖/參考資料 3

新發表的研究選擇以花粉作為指標,探討黑死病的影響,還創造一個看似 fancy 的新名詞描述:「大數據古生態學(big data palaeoecology,簡稱 BDP)」,反正大數據就是那樣。

概念是,受到黑死病負面影響愈嚴重的地區,人類活動會減少愈多,可以由花粉變化看出。具體樣本來自歐洲各地 261 處遺址,一共 1634 個沉積層樣本;年代介於公元 1250 到 1450 年,大致涵蓋黑死病發生之前到之後的各一百年,也就是前後約 4 代人。短時間內大量人口死亡,影響可能延續數代。

-----廣告,請繼續往下閱讀-----

不同植物會生成不同花粉,有些花粉落到湖泊等環境,變成湖底的沉積物,有機會保存下來,成為歷史切片的見證。而人類活動影響環境,使得植物生態有別,便會留下不同的花粉組合。

例如農耕發達的地區,會留下大量農作物的花粉,畜牧業普及區則會是另一種風貌;若是人口減少令農牧活動降低,野生植物的花粉便會增加,不同階段又會生長不同野生植物。

地段,地段,地段!

新的分析思維看似很有道理,但是能相信嗎?研究者首先分析資訊最豐富的兩處地點:瑞典、波蘭。許多證據表示黑死病過去後,瑞典慘遭打擊,波蘭反而明顯成長;倘若花粉呈現的狀況一致,便說明這套分析是可靠的。結果花粉分析順利通過考驗。

波蘭和瑞典的比較,瑞典在黑死病之後明顯衰退,波蘭則否。圖/參考資料 3

花粉分析擴大到歐洲全境,最肯定的結論是:各地差異不小。黑死病前後,一些地區差異有限,有些甚至逆風高飛;農牧活動減少最多的地區位於斯堪地那維亞(北歐)、法國、德國西部、希臘、義大利中部。

有個假設是:瘟疫使人口減少以後,產業可能由勞力密集的農耕,轉向較不需要人力的畜牧。但是這回研究指出,所有農耕下降的地區, 畜牧也跟著減少;唯一例外是德國西南部,畜牧反而增長。

考察文獻得知,義大利、法國深受黑死病危害,這也反映在當地的花粉中,證實歷史紀錄的準確。農業開墾往往是森林的敵人,黑死病過後,義大利的森林甚至重新蓬勃復育;慘烈至此,難怪有薄伽丘《十日談》的誕生。

然而不少地區的農牧活動,黑死病前後的差異有限,或是顯著成長,像是伊比利、愛爾蘭,以及中歐、東歐多數地點。這些分析指出黑死病對歐洲各地的影響有別,整體死亡率大概沒有 50% 那麼誇張。

歐洲各地在黑死病前後的變化:穀物、畜牧、植被演替。圖/參考資料 3

其實還是不清楚黑死病的死亡率

該如何看待上述論點呢?花粉分析有優點,也有缺點。一如文字、稅務等切入方向,花粉也有自己方法學上的侷限。它能告訴我們歐洲各地的死亡率不均值,卻無法真正評估死亡率高低。

-----廣告,請繼續往下閱讀-----

根據花粉組成在不同年代的相對變化,可以推論當地農牧活動的改變,卻不直接等同於人口的死亡程度。

一個地區在黑死病後一段時間,農牧活動明顯增長,不見得意謂瘟疫時沒有死很多人,也可能是恢復速度很快,或是還有黑死病以外的其他因素。

也要注意這兒的評估是相對的,某地相對的受災比較輕微,不等於災情不嚴重。一個地區在幾十年的時段內,如果損失 30% 人口當然是大災難,但是就算死亡「只有」5%,也不可能馬照跑,舞照跳。

歐洲各地在黑死病前後的變化統整,偏紅色為衰退,偏綠色為成長。圖中名號是當時的政權疆域。圖/參考資料 3

評估大瘟疫更廣泛的社會影響

儘管無法準確判斷死亡率,花粉能評估傳染病對社會更廣泛的影響。黑死病這類大瘟疫,不是只有鼠疫桿菌殺死多少人而已,還會牽連更廣泛的社會運作,累積間接傷害。

即使是一個較小的地理範圍,受災程度也可能有內部差異,如城鎮中心及其周圍的郊區、鄉村。沉積物中的花粉,是一個地區一段時間內的集合紀錄,似乎較能避免城鄉差距的影響。

有學者認為,黑死病過後一個地區之所以沒有衰退,也可能是外地人口填補所致,故質疑新研究的論點。就算真是如此,新遷入的人口也是來自歐洲其他地方,同樣支持新論點的大方向:歐洲各地受災程度有異,並非每處一樣嚴重。何況過往公認疫情嚴重的地區,新分析中也看得出來。

-----廣告,請繼續往下閱讀-----

有趣的是,一項 2019 年發表的研究在檢視多重證據後,也認為查士丁尼瘟疫的災情言過其實,不如過往認知的那麼嚴重。提醒各位千萬不能忽略「沒有那麼嚴重,跟不嚴重是兩回事」。

花粉無法回答的問題是:黑死病為什麼在各地影響有別?有人推測是鼠疫桿菌的品系不同,在西歐的殺傷力較強,東歐較弱。但是此一論點缺乏遺傳學、病理學的證據。

2019 年底至今的全球瘟疫清楚告訴我們,遺傳上一模一樣的品系,在不同國家的傳播與傷害天差地別,涉及許多複雜的因素。黑死病比當下冠狀病毒造成的疫情嚴重很多,基本道理大概還是一樣的。

延伸閱讀

參考資料

  1. Susat, J., Lübke, H., Immel, A., Brinker, U., Macāne, A., Meadows, J., … & Krause-Kyora, B. (2021). A 5,000-year-old hunter-gatherer already plagued by Yersinia pestis. Cell Reports, 35(13), 109278.
  2. Spyrou, M. A., Tukhbatova, R. I., Wang, C. C., Valtueña, A. A., Lankapalli, A. K., Kondrashin, V. V., … & Krause, J. (2018). Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague. Nature Communications, 9(1), 1-10.
  3. Izdebski, A., Guzowski, P., Poniat, R., Masci, L., Palli, J., Vignola, C., … & Masi, A. (2022). Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic. Nature Ecology & Evolution, 1-10.
  4. Black death mortality not as widespread as believed
  5. Did the ‘Black Death’ Really Kill Half of Europe? New Research Says No
  6. Mordechai, L., Eisenberg, M., Newfield, T. P., Izdebski, A., Kay, J. E., & Poinar, H. (2019). The Justinianic Plague: an inconsequential pandemic?. Proceedings of the National Academy of Sciences, 116(51), 25546-25554.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
所有討論 1
寒波_96
193 篇文章 ・ 1016 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。