2008年後Ushahida計畫也擴展為國際人道援助平台,企圖提供全球進行事件通報與群眾標記(crowdmapping),並運用於諸多國家,如美國亞特蘭大(Atlanta)犯罪事件追蹤、印度(Republic of India)與墨西哥(United Mexican States)選舉結果的提報追蹤,甚至是2010年海地(Republic of Haiti)大地震與2011年日本東北大地震(2011 Tōhoku earthquake and tsunami)的事件追蹤標記。
此外針對急難應用與災害救援事件,Google藉由其所擁有的計算資源,結合其自家Google App Engine分散計算引擎與儲存架構,以及Picasa 影像平台,於2010年時針對中美洲海地地震提出了Google Person Finder服務,針對災區進行災民尋找與通報服務;該服務後續亦提供之後2010智利(Chile)大地震、2011年日本東北大地震,甚至是前年(2013)於菲律賓造成嚴重災情的海燕颱風等災害救援。而Google Person Finder在2011年日本東北大地震期間曾創下高達六十萬姓名資訊紀錄的規模,堪為短時間內人道援助資訊蒐集彙整之成功案例。
-----廣告,請繼續往下閱讀-----
2010 海地大地震時Google推出之Person Finder服務 (Image from : Wikipedia)
同樣透過大數據群眾標記進行人道救援案例,還有哈佛醫學院Rumi學者,透過社群媒體進行對傳染疾病傳播於地理位置擴散標定的流行病學研究,該研究發表於2012年American Journal of Tropical Medicine and Hygiene期刊,該作者透過自動網路媒體調查平台HealthMap,針對海地自2010年10月20號爆發霍亂(Cholera)疫情開始100天,紀錄由網路平台HealthMap、Twitter所產生之社群網路與關鍵字”Cholera”相關訊息,並透過訊息自動標定其地理位置,藉由時間推演與地理資訊標的,進一步對照海地政府公共衛生部(Ministère de la Santé Publique et de la Population, MSPP)提供之實際通報個案數據。
社群媒體資料探勘(Social Media Mining):社群媒體資料探勘是透過針對社群網物所產生的資料,所進行的資訊擷取、彙整、分析,企圖取得特殊目的、族群的目標模式,透過統計方法、機器學習、網站分析、網路科學等等不同領域的方法,進行對社群網路資料所產生的龐大數據資料尋找其有意義的應用資訊與現象。
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。