0

1
0

文字

分享

0
1
0

零號機將朗基奴斯之槍投上月球需要多大的臂力?[第貳話]

活躍星系核_96
・2015/02/17 ・1109字 ・閱讀時間約 2 分鐘 ・SR值 579 ・九年級

-----廣告,請繼續往下閱讀-----

プロジェクトキービジュアル ©カラー
プロジェクトキービジュアル ©カラー

文/華生

在《新世紀福音戰士》中,零號機最後擲出朗基奴斯之槍,消滅了遠在地球軌道上的使徒「亞拉爾」(Arael,アラエル),但長槍也突破第一宇宙速度進入了繞月軌道無法回收。到底零號機需要多大的臂力,才能把長槍投射到月球呢?

經過了精采的第一輪討論,讓我們來看看另一種的解題方式吧!

 source:photozou
source:photozou

行前須知

要解這個問題前,先要了解一些問題:

-----廣告,請繼續往下閱讀-----

1.EVA有多高?

約40公尺。[1]

圖片來源:Evangelion Wiki!
source:Evangelion Wiki

2.第15使徒位於高度?

同溫層外。[2]

source:秋本動漫
第15使徒。source:秋本動漫

3.同溫層有多高?

距地10~50公里。[3]

4.朗基努斯之槍需要多快的速度?

據影片看來,其實不需到達到第一宇宙速度:0:22時卡在AT力場前,幾乎呈靜止狀態。

-----廣告,請繼續往下閱讀-----

5.朗基努斯槍需要射到哪裡?

依據影片0:25時,朗基奴斯槍形變出噴嘴結構實施加速,故後續突破AT力場、射穿使徒為朗基奴斯槍自體加速導致,所以零號機手持拋出至少需到達第15使徒所處位置。

6.EVA手臂有多長?

假設比例同人體,手臂長度約肩關節至手指3個頭高。假設EVA屬大個子,算9頭身,所以手臂長佔全身長1/3。換言之,手臂長為40/3公尺。[4]

7.朗基奴斯槍多重?

真實世界打造的3.3公尺,重22.2公斤。按比例,實際朗基奴斯槍大約為EVA身高1.5倍長,應為60公尺。

長度為真實世界打造的18倍,故體積為18³,重量為22.2×18³=129470.4公斤。[5]

-----廣告,請繼續往下閱讀-----
プロジェクトキービジュアル ©カラー
プロジェクトキービジュアル ©カラー

正片開始

根據影片,朗基奴斯槍至少需要到達第15使徒所產生的AT力場前,換言之即為第15使徒所處高度。期間如果不考慮空氣阻力等因素,只考慮動能與重力位能,也就是僅考慮動能與重力位能間的互換,在此狀況下計算公式如下:

04

所以當h=10km時,零號機至少要施力:F≈4.751×10 N,大約48.5噸重

也可以換算成是1065個在吃營養午餐的明日香。

 source:blogimg
source:blogimg

參考資料:

-----廣告,請繼續往下閱讀-----
  1. EVA條目,wikipedia。
  2. 使徒一覽表,淡江動漫網。
  3. 大氣物理條目,中華百科全書。
  4. 人體比例結構,遊戲動畫美術基礎教程。
  5. 朗基努斯之槍,剪客。
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

4

2
1

文字

分享

4
2
1
鋼彈與福音戰士交戰的話,哪邊會勝利?—《空想科學讀本:大咖對決誰比較厲害》
遠流出版_96
・2016/09/02 ・3698字 ・閱讀時間約 7 分鐘 ・SR值 534 ・七年級

019

鋼彈 v.s. 福音戰士!日本最具代表性的兩大「人型載人武器」動畫作品,堪稱世紀最大的決鬥。

《機動戰士鋼彈》是 1979 年在電視上播映,之後爆發性的大受歡迎。故事中,把人類乘坐在其中所操縱的機械,根據「將人類的能力擴大」的意思而稱之為 Mobile Suit(機動服)。如果沒有特別說明,「鋼彈」指的就是主角阿姆羅.雷操縱的 Mobile Suit「RX-78-2 GUNDAM」。

《新世紀福音戰士》則是於 1995 年在電視上播映的。福音戰士是用墜落在南極的未知生命體造出的人造人類,加裝金屬的裝甲而成為「泛用人型決戰武器」,只有適合的 14 歲少年少女才能搭乘並操縱。在此所說的福音戰士也多半是指主角碇真嗣搭乘的初號機。

無論哪一方,都是比既有的機械人更進步的東西,無法找出一個名詞概括這兩者。硬要從型態的機能共通點找個名稱的話,就只能用本文開頭所說的「人類型載人武器」吧。但是因為開發和運用的思想不同,所以鋼彈是 Mobile Suit,福音戰士則是泛用人形決戰武器。正因為兩者都背負著各自的世界觀,才令人想知道哪邊比較強!

-----廣告,請繼續往下閱讀-----

體格差異極大

首先想說明的是,Mobile Suit 和泛用人形決戰武器二者有著極大的體格差距。根據《超級機械人畫報》(竹書房出版),兩者的性能諸元如下:

  • RX-78-2 GUNDAM——全高 18 公尺/自重 43.4 噸 /全備重量 60 噸
  • 福音戰士初號機——全高 40 公尺/重量 700 噸

福音戰士的身高竟然是鋼彈的 2.2 倍,體重也重許多。假如把鋼彈依比例擴大變成和福音戰士一樣高,體重也會變成 2.2 倍的立方,也就是 476 噸。福音戰士雖然看起來苗條卻重達 700 噸,比它重多了!如果把鋼彈比成身高 170 公分、體重 65 公斤的日本人男性平均身材,就像是要他去對戰一名身高 3 公尺 78 公分、體重 1 噸的超巨大大塊頭。要是正面對決,鋼彈根本毫無勝算吧。

但若能靠速度來擾亂敵人,鋼彈應該還有勝算。雖然沒有公布雙方跑步的速度,但如果知道其 1 秒內所能發揮的能量,也就是輸出功率,就可以計算求得。

根據《機動戰士鋼彈 MS 大圖鑑》(BANDAI 出版)一書,鋼彈的發電機功率為 1380 千瓦,換算之後是 1900 馬力,這可比日本陸上自衛隊重 50 噸的 90 式戰車還要高出 25% 喔。

-----廣告,請繼續往下閱讀-----

福音戰士的輸出功率沒有公布,所以就用故事中的活動推測吧。在與第 3 使徒 SAKIEL(水天使)交戰時,福音戰士曾經以蹲姿一口氣從地面跳到身高近 10 倍的高度,並用膝頂擊 SAKIEL 的臉部。在空中的時間為 2.3 秒,由此可以計算出福音戰士的輸出功率為 4600 萬千瓦。和鋼彈相比……哇!大了 3 萬 4 千倍!

輸出功率相差如此之大,想必速度也會大不相同。若根據各自的體格和輸出功率計算,鋼彈能以時速 75 公里奔跑,福音戰士則能跑出時速 1250 公里,相當於音速。

嗚哇,這部泛用人形決戰武器不只身高高了 2.2 倍,體重重了 16 倍,連速度都快了 17 倍!鋼彈想取勝看來是越來越無望了……。

哪一邊的武器比較強力?

可是關於輸出功率,鋼彈是根據設定上的數值,福音戰士卻是從故事中的動作推導出的,這樣的比較或許不大公平。因為設定上的數值與故事中的事實不合的現象,在動畫中是經常可見的。更重要的是,要是鋼彈與福音戰士交戰,想來也不會打肉搏戰。所以在此還是應該比較一下他們的基本裝備。

-----廣告,請繼續往下閱讀-----

最具代表性的武器是刀劍。

鋼彈的光束軍刀平常雖然只有刀柄,但戰鬥時就會伸出米諾夫斯基粒子的能束,而成為刀刃長達 10 公尺左右的光劍,發出紅色光芒的刀刃能使金屬熔化甚至蒸發。第一次使用時就曾將薩克的身軀一刀兩斷,由畫面測量切斷所需的時間,從接觸薩克的身體開始大約 1.2 秒左右。

意思是:光束軍刀的溫度非常高。根據前述的《MS 大圖鑑》一書,薩克的裝甲是鈦系的超硬合金。以耐熱的鈦占 100% 的情形計算,光束軍刀的溫度就高達 1 萬 5 千度。這種溫度能將任何物質蒸發,當然福音戰士的裝甲也會被蒸發,光束軍刀會貫穿福音戰士的身體!

另一方面,福音戰士配備的刀劍是 Progressive knife。根據《福音戰士用語事典 第 1 版》(八幡書店出版)的說明,它是「以高震動粒子的刀刃將接觸的物體從分子層次切斷」的武器。

-----廣告,請繼續往下閱讀-----

所謂「從分子層次切斷」,意思是能將原子間的結合切斷吧。在這種情形下,按照刀刃的常理,是無法切斷比自己堅硬的東西的,所以這武器對鋼彈的裝甲是否有用,就取決於 Progressive knife 和鋼彈的月生鈦合金裝甲哪一邊比較堅硬了。單就此事而言,只要沒有實際上真的斬切過就無法斷言。

更令人感興趣的是這兩把刀劍的長度。Progressive knife 因為是短刀,刀身較短。與使用它的福音戰士比較,推測刀身長度約為 3.3 公尺。如前所述鋼彈的光束軍刀是 10 公尺長,所以 Progressive knife 只有光束軍刀 3 分之 1 的長度!

嗯,這樣雙方要如何交戰呢。在福音戰士看來,對手身高雖然不到自己的一半,手上卻拿著比自己的短刀長了3倍以上的高熱軍刀啊。胡亂砍過去的話,搞不好手會被燒斷,戰起來會非常辛苦啊【圖1】。

024

原本不論體格或運動能力都是偏向福音戰士較強,一旦變成刀劍對決時,情況就逆轉而變成對鋼彈比較有利了。

-----廣告,請繼續往下閱讀-----

來吧!決戰開始!

雖然將兩者並列比較過,但光是戰鬥所需的要素比較優秀,實戰未必會勝利。在此還是試著模擬兩者實際交戰會變成怎樣吧。

在第 3 新東京市對峙的鋼彈和福音戰士。因為肉搏戰對鋼彈比較不利,應該會從遠距離發射光束步槍吧。

光束步槍是將與米諾夫斯基粒子結合的 Mega 粒子經過 3 段加速而射出的射擊武器。因為是米諾夫斯基粒子,與前面所見的光束軍刀一樣,所以射出的光束也有 1 萬 5 千度的高溫吧。果然也能將福音戰士的裝甲簡單打穿!

然而仔細一想,這招恐怕會被輕易的反彈回來喔。因為福音戰士是有絕對領域(AT Field)的。在《福音戰士》中的絕對領域,根據說明是一種「一切的生命都擁有的、排他的自我境界領域」,福音戰士和使徒都以它做為強力的防護罩。雖然「排他的自我境界領域」到底是什麼,就科學上來說完全搞不懂,但以防護罩來說,強度倒是說得很明白。故事中曾有過為了打破第 5 使徒 RAMIEL(雷天使)的絕對領域,而必須集中全國 1 億 8 千萬千瓦的電力來驅動正子狙擊步槍的情節。

-----廣告,請繼續往下閱讀-----

鋼彈能打破這絕對領域嗎?如同前述,鋼彈的光束軍刀能在 1.2 秒內將薩克的身體一刀兩斷,由此可計算出光束軍刀的輸出功率為 2600 萬千瓦。啥,根本不夠啊!

那麼,光束步槍呢?據說光束步槍擁有將 Mobile Suit 一槍擊破的威力。因為光束軍刀也能一招擊破薩克,所以把光束步槍的輸出功率想成和光束軍刀相同也是理所當然的吧。這麼說來,鋼彈的光束步槍和光束軍刀都等於沒用了……。

面對無法攻擊的鋼彈,福音戰士也會開火射擊吧。可是福音戰士的 Barrett 步槍雖然是主力武器之一,故事中卻很少能發揮出足以左右戰況的威力。想來鋼彈的月生鈦合金裝甲對上薩克的機關槍毫無問題,這步槍的子彈也應該能反彈回去吧。

但就算是反彈回去,鋼彈被打中也未必能平安無事。因為拿槍的是身長 40 公尺的福音戰士,所以這機關槍也應該巨大得一塌糊塗。以現實中的機關槍為本計算一下,它用的可是口徑 28 公分、重 770 公斤的巨大無比的子彈啊。若是這子彈也與現實的機關槍子彈速度相同,以秒速 928 公尺正面撞擊的話,鋼彈會以時速 120 公里的速度被打飛 44 公尺遠【圖2】!

-----廣告,請繼續往下閱讀-----

026

換句話說,福音戰士的機關槍雖然無法破壞鋼彈,卻能持續的把他打飛得遠遠的。在配合絕對領域的防禦之下,就算自己贏不了,也絕不會輸。真是相當便利好用的戰法啊。

最後笑的會是誰?

若是照福音戰士這種步調戰下去,鋼彈就毫無勝算了。對鋼彈來說,無論如何都必須打破絕對領域才行。那麼該怎麼辦呢?

要說勝算在哪,就在於用光束軍刀突刺的戰法。一如用紅外線雷射光將金屬熔斷的情形,左右切斷能力的是單位照射面積上的輸出功率。雖然說光束軍刀整體的輸出功率並沒有 1 億 8 千萬千瓦,但若像劍道的突刺一樣,把能量集中在狹小的面積上,能否突破絕對領域呢?

試著計算看看吧。能突破 RAMIEL 絕對領域的正子狙擊步槍的光束,根據目測直徑約 1 公尺,若是將 1 億 8 千萬千瓦的輸出全部集中在這一小塊面積上,每 1 平方公尺受到的輸出功率為 2 億 3 千萬千瓦。相對的,光束軍刀的直經約 30公分,若是將 2600 萬千瓦集中於其上,每 1 平方公尺就會受到 3 億 7 千萬千瓦。喔!比正子狙擊步槍還高!這下終於能打破絕對領域了!

果真變成這樣,對鋼彈來說就是壓倒性的有利了。用光束步槍破壞 Progressive knife 和 Barrett 步槍,讓福音戰士變成赤手空拳的話,就只需要對付其本體了。用光束軍刀攻擊能打得到的範圍,如腿部和腰部,打不到的地方就用光束步槍亂射,這一來勝利就在眼前啦。

對鋼彈來說還有一個好消息。福音戰士是用連接在背後的臍帶電纜供應電力來活動的。將電纜切斷的話它就會切換成使用內部電源,但最久只能戰鬥 5 分鐘。基於這點,只要用光束軍刀切斷它的電纜,再撐過 5 分鐘的話,就確定能勝利啦!

—高興得太早了一點。福音戰士還有那招。對,就是失控暴走!一旦進入失控暴走,他就會變成沒有時間限制,受損部位還會立刻復原的瘋狂大鬧。在與 SAKIEL 交戰中失控暴走的福音戰士,勝利之後頭部還掉落在地上。也就是說,這個泛用人形決戰武器就算腦袋瓜被砍下來也能繼續戰鬥!?嗯,對上這樣的傢伙,武器幾乎毫無意義。原本體力就壓倒性的強的福音戰士,就算裝甲被蒸發了,就算手被砍斷了,也會完全無所謂的攻擊過來吧。嗚哇!

事已至此,鋼彈束手無策了,快逃啊!


基本 CMYK

 

 

本文摘自《空想科學讀本:大咖對決誰比較厲害》,遠流出版。

-----廣告,請繼續往下閱讀-----
所有討論 4
遠流出版_96
59 篇文章 ・ 30 位粉絲
遠流出版公司成立於1975年,致力於台灣本土文化的紮根與出版的工作,向以專業的編輯團隊及嚴謹的製作態度著稱,曾獲日本出版之《台灣百科》評為「台灣最具影響力的民營出版社」。遠流以「建立沒有圍牆的學校」、滿足廣大讀者「一生的讀書計畫」自期,積極引進西方新知,開發作家資源,提供全方位、多元化的閱讀生活,矢志將遠流經營成一個「理想與勇氣的實踐之地」。

0

1
0

文字

分享

0
1
0
零號機將朗基奴斯之槍投上月球需要多大的臂力?[第參話]
活躍星系核_96
・2015/02/25 ・2344字 ・閱讀時間約 4 分鐘 ・SR值 547 ・八年級

-----廣告,請繼續往下閱讀-----

unnamed (1)

文/ARpow

經典的動畫《新世紀福音戰士》動畫版第22集中,為了殲滅使徒,由EVA零號機投擲的朗基努斯之槍,飛出地球貫穿目標,最終到達遙遠的月球。

而能夠突破大氣阻力及重力的速度非比尋常,將朗基努斯槍擲出並達到突破第一宇宙速度想必也需要驚人的臂力!?

經計算後發現,理論上臂力的大小關鍵在於投出花費的時間與朗基努斯槍的質量,然而用手臂投擲長槍頂多施力1秒中就會擲出,所以真正的影響關鍵在於朗基努斯槍的質量,所以越輕所需的臂力則越小。

-----廣告,請繼續往下閱讀-----

以下是推導計算,會分成兩部分,其一是不考慮空氣阻力與插上月球所需力道等因素,其二是納入因素將臂力理論值上修,才會接近實際值。

背景題要

  1. EVA的世界觀中,在地球的洪荒時期,天地精氣孕集,生長出生命之樹,後來生命之樹的瓦解,剩下一點點沒爛掉的根鬚便化成朗基努斯之槍,朗基努斯之槍擁有強大力量,可以突破AT力場(絕對領域)。
  2. 據傳庵野秀明在構思EVA時參照了昭和系奧特曼的平均高度也就是40米左右,再從圖片中相對比率大小去推,朗基努斯之槍長約100米。

基礎假設

  1. 朗基努斯之槍為一個木材製品。
  2. 朗基努斯之槍硬度為世界之冠,以便忽略插上月球表面時所需的力道。
  3. 不考慮空氣阻力及其他能量損耗,朗基努斯之槍飛行時僅受重力。
  4. 朗基努斯之槍長100m,比起地球月球之間距極小,可視為質點
  5. 忽略朗基努斯之槍頭的不規則形狀,以普通長槍來估計。

為計算之方便性,利用代數符號表示相對應實際已知數值

地球質量 ME=5.97×1024 kg

月球質量 Mm=7.36×1022 kg ≈ 1/81 ME

地球半徑  R=6400 km

-----廣告,請繼續往下閱讀-----

月球半徑 R=1740 km ≈ 1/4 R

地球與月球的距離 REm=384400 km ≈ 60R

宇宙第一速度 √GME/R =7.9 km/s

《第一部份》

示意圖:

-----廣告,請繼續往下閱讀-----

unnamed (2)

討論一:(初速度V需要多少,朗基努斯之槍才能飛到月球)

已知朗基努斯之槍飛行過程僅受重力作用,又重力為保守力,因此力學能守恆,用此力學能守恆觀點處理問題則可以不用處理向量問題,直接處理量值問題,即不用理會飛到月球的路徑如何,只要能飛到月亮即可。

考慮當朗基努斯之槍垂直從地球表面A處已初速度V出發飛到月球表面處時(可見示意圖),速度剛好為0,則根據力學能守恆:

A處和B處之力學能守恆:EA=EB (A處力學能=B處力學能)

而總力學能Ei= Eki+ Uei+ Umi

-----廣告,請繼續往下閱讀-----

(Ek為動能,Ue為地球所貢獻之位能,Um為月球所貢獻之位能)

A處力學能⇒ 1

B處力學能⇒ 2

又 22

-----廣告,請繼續往下閱讀-----

⇒ 23

因此得到當朗基努斯之槍初速度最小值 3

又第一宇宙速度為 4

則 5,故可得到第一個結論:當朗基努斯槍初速度 就可從地球表面飛到月球並插在月球表面上,也就可停留在繞月軌道上。

-----廣告,請繼續往下閱讀-----

討論二:(需要多少臂力才能讓朗基努斯之槍達到初速度 呢?)

投擲長槍的動作會影響到所需用到的臂力大小,因此簡化問題,只計算作用在朗基努斯之槍的力量大小,這計算可由衝量 6 關係獲得。

假設朗基努斯之槍的質量為m及臂力作用時間為 Δt,則

7

上式即為臂力的關係式,可見臂力大小僅與朗基努斯之質量和臂力作用時間有關。而在一般的投擲長槍動作過程中,臂力作用時間頂多1秒或甚至更短,但由動畫影片推估約1秒,故可得第二個結論 8

討論三:(朗基努斯之槍究竟多重?)

因朗基努斯之槍為生命之樹的根鬚,因此為木頭材質,木頭的比重為0.8g/cm3  (即800kg/m3),且朗基努斯之槍為100m、半徑為1m(此皆為由圖片相對大小取出),忽略其槍頭形狀,則

-----廣告,請繼續往下閱讀-----

朗基努斯之槍質量= 朗基努之槍體積× 木頭比重

⇒ m= 100× 1²× π× 800= 80 公噸

故可得第三個結論:朗基努斯之槍質量m=80公噸

即表示需要200個金氏世界紀錄的舉重冠軍用盡全身力氣才能舉起。

第二、第三結論之結合:

臂力大小9 ,且 m= 80公噸,則

10

故臂力的理論值為8.64× 108 而這臂力大小 11大約是將88163頭大象舉起的力量大小。

《第二部份》

進階討論:(實際值臂力)

如要探討實際值需要再多考慮以下問題:

  1. 投擲出朗基努斯之槍的角度及投擲朗基努斯之槍的緯度對初速度的影響(參考下圖)
  • unnamed (3)緯度影響:在一個具有速度的平台上,會讓物體先具有一初始動能,而地球自轉就類似這種平台,而不同緯度給的初始動能亦不同。
  • 角度影響:原本只考慮垂直射離地球,但有角度時,就會多考慮進去分量問題。

假設上述影響的動能為13 ,而實際初動能為14 ,則

15     2.  空氣阻力造成的能量耗損

即力學能守恆要改使用能量守恆⇒ EA+ EB+ Eh ,而假設16

3.  插上月球表面上所需的能量

即需一個末動能為17

假設投擲朗基奴斯之槍的軌道已經測量好(即緯度、仰角都已經決定),則由能量守恆處理,則

18

19

此處 γ為自定義的修正係數,20 (且 1<γ,γ受緯度、仰角、空氣阻力、插上月球所需能量影響。)

經過了千辛萬苦的推論後,我們可以知道理論值的臂力大小為

21

總結論

真的要投擲上去,東西的質量是很大的問題,東西太重需要的臂力太大,太輕又很容易被外力影響而偏離軌道,而動畫中的EVA力氣果然之大……竟然大到可將88163頭大象舉起的力量大小(汗)。

-----廣告,請繼續往下閱讀-----
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia