0

0
0

文字

分享

0
0
0

知識大圖解:巨行星(Mega planets)

知識大圖解_96
・2015/02/24 ・2542字 ・閱讀時間約 5 分鐘 ・SR值 529 ・七年級
Mega planets
請點擊看大圖。

氣態巨型行星與地球這樣的岩質行星有何不同?

想像有一顆行星上的風暴竟然大到足以吞噬地球,行星本身卻又輕盈得可以漂浮在海面上,前提是找得到夠大的海洋;此外,行星上還吹著直逼兩倍音速的強風。這種巨大行星並非科幻小說裡的產物,而是真實存在於太陽系裡,叫做氣態巨行星(gas giant)。

我們的太陽系可分成兩個主要部分。內圍區的天體比較小而緊密,也比較溫暖,這裡的行星組成大致跟地球差不多,包括水星、金星、地球與火星。過了火星繼續向外走,有一個由小型岩質天體形成的大環,這些小型天體是當初沒有形成行星的碎片,而這個大環被稱為小行星帶(Asteroid Belt)。

太陽系外圍區是個廣袤而空曠的空間,有四顆巨行星在此出沒,以與太陽的距離由近而遠排列依序為木星、土星、天王星和海王星。

這四顆行星的巨大程度超越我們在岩質行星上的日常經驗。舉幾個例子來說明它們到底有多大:木星可以裝進1300顆地球,土星只比木星小一點點。天王星跟海王星的大小很接近,雖然只有另外兩位鄰居的一半,依然大到足以一口吞掉地球。除此之外,這幾顆行星的構造也與地球和地球的鄰居天差地遠。內太陽系的行星主要由高密度的岩石物質組成,有些行星表面覆蓋著一層薄薄的氣體跟水。然而外太陽系的這幾顆巨行星截然不同,幾乎完全由氣體組成(或是氣體受到巨大壓力凝結而成的液體),因此被稱為「氣態巨行星」。

每顆氣態巨行星都有一層厚厚的外大氣層,包覆著由化學物質組成的巨大內部「地函」,從上方傳來的壓力會讓行星深處的化學物質從氣態變成液態,甚至是更奇特的狀態。氣態巨行星的固態核心至多跟地球一樣大,與外圍的氣體層相比簡直微不足道。雖然在我們眼中,氣體似乎很脆弱,但是巨行星光靠本身的巨大重力就能維持完整。(舉例來說,木星的雲頂重力是地球的2.5倍)。

氣態巨行星的高層大氣裡有劇烈的天氣系統,包括強烈風暴與颶風級強風;驅動這些天氣系統的力量除了來自太陽的熱能,也來自行星內部的能量。至少有三顆巨行星內部存在著「發電廠」,能量的來源包括核心的重力塌縮,以及高密度粒子往內層移動和較輕的粒子往外層移動的運動;在寒冷的太陽系深處,這個過程製造的能量遠遠超過單由陽光傳來的能量。目前已知唯一沒有內在能源的氣態巨行星是天王星,因此天王星的劇烈天氣成因仍是個謎。

雖說體積龐大,但是氣態巨行星的自轉速度很快,也因此一天的時間遠比地球短。木星和土星一天的時間分別是9.9小時和10.7小時,天王星與海王星分別是17.2小時與16.1小時。如此的高轉速有助於天氣系統包覆行星,在行星上各自形成獨特的雲帶。以木星與土星為例,兩者自轉的速度都快到導致赤道明顯突出,因為這裡的氣體幾乎快被甩出去了。

氣態巨行星是如何誕生的呢?又為什麼跟地球和地球附近的岩質行星如此不同?最明確的解釋是早期太陽系發生了一次重要分裂形成了一條「雪線」,位在雪線以外的揮發性化學物質(沸點比較低)不會沸騰消失,然後被年輕太陽的強烈輻射吹進星際空間。新生的太陽把這些物質吹出內太陽系,只留下岩石碎屑形成像地球這樣的行星,於是便有一大圈輕盈的氣體與結冰的化學物質在外圍繞行。接下來發生的事情有兩派理論。

太陽系的四顆巨行星各有特色。木星體積最大,色彩也最豐富;木星表面有巨大的風暴肆虐,其中最有名的風暴絕對是大紅斑(Great Red Spot)。大紅斑持續長達數世紀,大得足以吞噬超過兩顆地球。木星還有一個巨大磁場,據信是由一大片導電的「液態金屬氫」海洋製造出來的;液態金屬氫的成因是正常的液態氫(也就是氫分子)因為木星核心附近的高壓力解離而成。

大家都知道土星有美麗的土星環,但是土星本身乍看之下卻平淡無奇;千萬別被它的外表騙了。據信土星這顆第六行星的內部與木星非常相似,也可以產生與木星同樣劇烈的天氣系統,不過土星的重力比較小,因此上層氣體的壓縮程度較低,使得這顆行星的整體密度甚至比水還小。再加上太陽輻射變少,高層大氣溫度較低,裡面的氨凝結後形成乳白色霧霾,不但覆蓋住整顆行星,也遮住了下面劇烈的天氣系統。

天王星與海王星跟內圈的木星與土星完全不同,除了體積較小、顏色互異之外(天王星與海王星分別是藍色跟綠色,而非乳白色跟棕色),內部組成也不一樣。木星與土星有90%以上的成分是氫,而天王星與海王星的內層主要成分是化合物,例如氨、甲烷跟水(行星學上都稱之為「冰」)。在天王星與海王星表層底下,凝結的冰使內部宛如「冰沙」,因此這兩顆行星有時也被稱為「冰巨星」(ice giant),而不是真正的氣態巨行星。

天王星是一個難解之謎,它並非「直立」而是以98度的角度傾斜繞行太陽,原因可能是誕生初期遭受巨大撞擊,也因此繞行太陽一圈要84地球年的天王星擁有氣候極端的季節。當航海家2號(Voyager 2)在1986年飛越天王星的時候,天王星的一端正值長達42年的夏季,另一端則是漫長又寒冷的隆冬黑夜。(航海家2號是唯一探索過這些遙遠行星的太空探測器)。當時的探測結果令人失望,因為天王星看起來似乎沒有任何天氣系統。幾年後,哈伯太空望遠鏡(Hubble Space Telescope)的照片顯示天王星的天氣出現了「甦醒」跡象。現在的看法是當季節處於最極端的狀態時,會抑制天王星的正常天氣型態(甚至會隱藏內在能源存在的證據)。

如果天王星寧靜得令人失望,航海家號探測器發現以攝氏負200度的環境來說,海王星的活動異常活躍。時速超過2000公里的強風把天氣系統吹到海王星各處,而內在能源製造的能量超過來自太陽的能量2.5倍。這種現象或許跟海王星內部獨特的化學成分改變有關:甲烷分子分解後,釋放出來的碳被壓縮成微小的鑽石結晶後紛紛落在海王星核上。

太陽系的四顆氣態巨行星都是令人驚嘆的獨特世界,有足夠的祕密與未解之謎靜待研究人員花費數十年去探索。不過,彷彿這些謎團還不夠多似的,過去二十年來天文學家又發現了幾百顆氣態巨行星,原因是他們發現了繞行其他恆星的行星。目前發現的太陽系外行星都是巨行星,不只是因為巨行星本來就比岩質行星常見,更是因為目前的探測方式比較容易發現巨行星。雖然我們顯然對這些遙遠又陌生的世界認識有限,但是它們已經為我們帶來一些重大驚喜。(可以確定的是,這些龐然大物還有更多尚待了解的地方。)

本文節錄自《How It Works知識大圖解 國際中文版》第05期(2015年2月號)

更多精彩內容請上知識大圖解

相關標籤:
文章難易度
知識大圖解_96
76 篇文章 ・ 3 位粉絲
How It Works擅長將複雜的知識轉化為活潑有趣的圖解知識,編輯方式以圖像化百科呈現,精簡易懂、精采動人、深入淺出的圖文編排,讓各年齡層的讀者們都能輕鬆閱讀。


1

4
2

文字

分享

1
4
2

什麼是「造父變星」?標準燭光如何幫助人類量測天體距離?——天文學中的距離(四)

CASE PRESS_96
・2021/10/22 ・3033字 ・閱讀時間約 6 分鐘
  • 撰文|許世穎

「造父」是周穆王的專屬司機,也是現在「趙」姓的始祖。以它為名的「造父變星」則是標準燭光的一種,讓我們可以量測外星系的距離。這幫助哈柏發現了宇宙膨脹,大大開拓了人們對宇宙的視野。然而發現這件事情的天文學家勒梅特卻沒有獲得她該有的榮譽。

宇宙中的距離指引:標準燭光

經過了三篇文章的鋪陳以後,我們終於要離開銀河系,開始量測銀河系以外的星系距離。在前作<天有多大?宇宙中的距離(3)—「人口普查」>中,介紹了距離和亮度的關係。想像一支燃燒中、正在發光的蠟燭。距離愈遠,發出來的光照射到的範圍就愈大,看起來就會愈暗。

我們把「所有發射出來的光」稱為「光度」,而用「亮度」來描述實際上看到的亮暗程度,而它們之間的關係就是平方反比。一旦我們知道一支蠟燭的光度,再搭配我們看到的亮度,很自然地就可以推算出這支蠟燭所在區域的距離。

舉例來說,我們可以在台北望遠鏡觀測金門上的某支路燈亮度。如果能夠找到到那支路燈的規格書,得知這支路燈的光度,就可以用亮度、光度來得到這支路燈的距離。如果英國倫敦也安裝了這支路燈,那我們也可以用一樣的方法來得知倫敦離我們有多遠。

我們把「知道光度的天體」稱為「標準燭光(Standard Candle)」。可是下一個問題馬上就來了:我們哪知道誰是標準燭光啊?經過許多的研究、推論、歸納、計算等方法,我們還是可以去「猜」出一些標準燭光的候選。接下來,我們就來實際認識一個最著名的標準燭光吧!

「造父」與「造父變星」

「造父」是中國的星官之一。傳說中,「造父」原本是五帝之一「顓頊」的後代。根據《史記‧本紀‧秦本紀》記載:造父很會駕車,因此當了西周天子周穆王的專屬司機。後來徐偃王叛亂,造父駕車載周穆王火速回城平亂。平亂後,周穆王把「趙城」(現在的中國山西省洪洞縣一帶)封給造父,而後造父就把他的姓氏就從本來地「嬴」改成了「趙」。因此,造父可是趙姓的始祖呢!(《史記‧本紀‧秦本紀》:造父以善御幸於周繆王……徐偃王作亂,造父為繆王御,長驅歸周,一日千里以救亂。繆王以趙城封造父,造父族由此為趙氏。)

圖一:危宿敦煌星圖。造父在最上方。圖片來源/參考資料 2

回到星官「造父」上。造父是「北方七宿」中「危宿」的一員(圖一),位於西洋星座中的「仙王座(Cepheus)」。一共有五顆恆星(造父一到造父五),清代的星表《儀象考成》又加了另外五顆(造父增一到造父增五)。[3]

英籍荷蘭裔天文學家約翰‧古德利克(John Goodricke,1764-1786)幼年因為發燒而失聰,也無法說話。1784 年古德利克(John Goodricke,1764-1786)發現「造父一」的光度會變化,代表它是一顆「變星(Variable)」。2 年後,年僅 22 歲的他就當選了英國皇家學會的會員。卻在 2 週後就就不幸因病去世。[4]

造父一這顆變星的星等在 3.48 至 4.73 間週期性地變化,變化週期大約是 5.36 天(圖二)。經由後人持續的觀測,發現了更多不同的變星。其中一群變星的性質(週期、光譜類型、質量……等)與造父一接近,因此將這一類變星統稱為「造父變星(Cepheid Variable)」。[5]

圖二:造父一的亮度變化圖。橫軸可以看成時間,縱軸可以看成亮度。圖片來源:ThomasK Vbg [5]

勒維特定律:週光關係

時間接著來到 1893 年,年僅 25 歲的亨麗埃塔‧勒維特(Henrietta Leavitt,1868-1921)她在哈佛大學天文台的工作。當時的哈佛天文台台長愛德華‧皮克林(Edward Pickering,1846-1919)為了減少人事開銷,將負責計算的男性職員換成了女性(當時的薪資只有男性的一半)。[6]

這些「哈佛計算員(Harvard computers)」(圖三)的工作就是將已經拍攝好的感光板拿來分析、計算、紀錄等。這些計算員們在狹小的空間中分析龐大的天文數據,然而薪資卻比當時一般文書工作來的低。以勒維特來說,她的薪資是時薪 0.3 美元。順帶一提,這相當於現在時薪 9 美元左右,約略是台灣最低時薪的 1.5 倍。[6][7][8]

圖三:哈佛計算員。左三為勒維特。圖片來源:參考資料 9

勒維特接到的目標是「變星」,工作就是量測、記錄那些感光板上變星的亮度 。她在麥哲倫星雲中標示了上千個變星,包含了 47 顆造父變星。從這些造父變星的數據中她注意到:這些造父變星的亮度變化週期與它們的平均亮度有關!愈亮的造父變星,變化的週期就愈久。麥哲倫星雲離地球的距離並不遠,可以利用視差法量測出距離。用距離把亮度還原成光度以後,就能得到一個「光度與週期」的關係(圖四),稱為「週光關係(Period-luminosity relation)」,又稱為「勒維特定律(Leavitt’s Law)」。藉由週光關係,搭配觀測到的造父變星變化週期,就能得知它的平均光度,能把它當作一支標準燭光![6][8][10]

圖四:造父變星的週光關係。縱軸為平均光度,橫軸是週期。光度愈大,週期就愈久。圖片來源:NASA [11]

從「造父變星」與「宇宙膨脹」

發現造父變星的週光關係的數年後,埃德溫‧哈柏(Edwin Hubble,1889-1953)就在 M31 仙女座大星系中也發現了造父變星(圖五)。數個世紀以來,人們普遍認為 M31 只是銀河系中的一個天體。但在哈柏觀測造父變星之後才發現, M31 的距離遠遠遠遠超出銀河系的大小,最終確認了 M31 是一個獨立於銀河系之外的星系,也更進一步開拓了人類對宇宙尺度的想像。後來哈柏利用造父變星,得到了愈來愈多、愈來愈遠的星系距離。發現距離我們愈遠的星系,就以愈快的速度遠離我們。從中得到了「宇宙膨脹」的結論。[10]

圖五:M31 仙女座大星系裡的造父變星亮度隨時間改變。圖片來源:NASA/ESA/STSci/AURA/Hubble Heritage Team [1]

造父變星作為量測銀河系外星系距離的重要工具,然而勒維特卻沒有獲得該有的榮耀與待遇。當時的週光關係甚至是時任天文台的台長自己掛名發表的,而勒維特只作為一個「負責準備工作」的角色出現在該論文的第一句話。哈柏自己曾數度表示勒維特應受頒諾貝爾獎。1925 年,諾貝爾獎的評選委員之一打算將她列入提名,才得知勒維特已經因為癌症逝世了三年,由於諾貝爾獎原則上不會頒給逝世的學者,勒維特再也無法獲得這個該屬於她的殊榮。[12]

本系列其它文章:

天有多大?宇宙中的距離(1)—從地球到太陽
天有多大?宇宙中的距離(2)—從太陽到鄰近恆星
天有多大?宇宙中的距離(3)—「人口普查」
天有多大?宇宙中的距離(4)—造父變星

參考資料:

[1] Astronomy / Meet Henrietta Leavitt, the woman who gave us a universal ruler
[2] wiki / 危宿敦煌星圖
[3] wiki / 造父 (星官)
[4] wiki / John Goodricke
[5] wiki / Classical Cepheid variable
[6] wiki / Henrietta Swan Leavitt
[7] Inflation Calculator
[8] aavso / Henrietta Leavitt – Celebrating the Forgotten Astronomer
[9] wiki / Harvard Computers
[10] wiki / Period-luminosity relation
[11] Universe Today / What are Cepheid Variables?
[12] Mile Markers to the Galaxies

所有討論 1
CASE PRESS_96
156 篇文章 ・ 373 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策