0

0
0

文字

分享

0
0
0

飛行機器人最前線!虎尾科大航空機電系統整合實驗室專訪

馥林文化_96
・2015/02/02 ・4270字 ・閱讀時間約 8 分鐘 ・SR值 548 ・八年級
相關標籤:

-----廣告,請繼續往下閱讀-----

圖、文/謝瑩霖
協助採訪/虎尾科大航空機電系統整合實驗室

圖a1
無人飛行器。

第一次聽到無人飛行器的讀者,應該都會馬上聯想到出現在電影中執行軍事偵察的無人飛行器吧!但其實不管是航空攝影、環境空汙品質監測、農漁業觀測、交通監測,甚至是危險環境的調查,都可以看到飛行器的蹤影。近年來更是出現許多來自大專院校或私人單位的無人飛行器社團,此次非常有幸可以來到國立虎尾科技大學的飛機工程學系,採訪由鄒杰烔老師所引領的航空機電系統整合實驗室(AESI),現在就跟著他們一起翱翔天際吧!

實驗室沿革

負責指導AESI 的鄒杰烔教授。
負責指導AESI 的鄒杰烔教授。

虎尾科技大學的飛機工程學系共可分為「航空科技」與「電子科技」兩大組別, 而在民國100 年成立航空機電系統整合實驗室之前,原本的研究方向是以居家照護機器人、服務型機器人與六足機器人為主。之後便以「系統整合」為教學重點, 結合不同領域的學生們,希望藉此發展出一套結合航空機電技術、智慧型機器人與無人飛行器的完整系統。而帶領AESI實驗室的鄒杰烔老師則認為無人飛行器不僅是只有飛行器(UAV) 而已,必須要搭配一座可以進行資訊接收與傳送的地面導控站,這樣才能成為一套完整的無人飛行器系統(UAS)。

此實驗室成立至今已有三年多的時間,在這段期間內所開發的飛行器都是由學生們自己設計CAD 檔, 再透過三軸CNC 雕刻機加工所製成。更因為實驗室先前的重點是地面機器人,所以也相當熟悉如何應用各種感測器來處理避障與定位等功能。除此之外,AESI 實驗室也在許多比賽中嶄露頭角,先前他們曾榮獲第八屆全國大專生創新設計實作競賽的冠軍,以及臺灣無人飛機創意設計競賽自動導航組的亞軍,更有國內重機團體邀請他們協助拍攝一年一度的重機大集合,可說是經歷豐富。

-----廣告,請繼續往下閱讀-----
實驗室平日使用的三軸CNC 雕刻機。
實驗室平日使用的三軸CNC 雕刻機。

無人飛行器與其他硬體

一進到AESI 實驗室,放眼望去全是無人飛行器,不論是定翼機、雙旋翼或多旋翼,幾乎想得到的類型這裡通通有,接著,就讓我們依照螺旋槳的數目,來瀏覽各種類型的飛行器吧!

單旋翼(一顆DC 無刷馬達、四顆伺服機)

單旋翼飛行器僅使用一顆DC 無刷馬達來轉動螺旋槳以提供升力,由於單旋翼的升力有限,為了要使其得以順利升空,機身採用了兩片輕量化珍珠板以交叉的方式組合。但此種做法會產生機身自旋的現象,因此在每一面珍珠板的下半部都需要加裝一顆伺服機來調整舵片角度,以抵消自旋的力量。

單旋翼飛行器。
單旋翼飛行器。

雙旋翼(兩顆DC 無刷馬達、兩顆伺服機)

雙旋翼飛行器又可分成同軸雙槳與左右旋翼兩種,同軸雙槳是將兩個轉動方向相反的螺旋槳裝在同一個轉軸上,藉此來消除自旋的現象,這種做法產生的升力也會比單旋翼來得稍大一些。另一種則是左右旋翼,看起來與一般定翼機非常相似,而這類飛行器也曾在電影《阿凡達》中出現。雙旋翼飛行器利用兩側機翼上轉動方向相反的螺旋槳來抵消自旋現象,並透過改變機翼與機身間的伺服機角度來改變機翼方向,藉此移動整架飛行器。

左右旋翼飛行器。
左右旋翼飛行器。

三旋翼(三顆DC 無刷馬達、單顆伺服機)

此類型的飛行器又可稱為「Y3」,在三片間隔120 度的機翼上分別裝上無刷馬達,同樣利用馬達間的差速變化來移動;但「Y3」在飛行時的自旋現象抵消程度比雙旋翼來得差一些,因此必須要透過裝有伺服機的尾舵螺旋槳來保持平衡。也因為如此,在調整這類型飛行器時,必須要正確地設定PID 控制參數的數值, 一旦尾舵的螺旋槳沒有配合好,整架飛行器就會有墜落的危險。

-----廣告,請繼續往下閱讀-----
三旋翼飛行器。
三旋翼飛行器。

四旋翼(四顆DC 無刷馬達)

在無人飛行器中, 最廣為人知的莫過於四旋翼飛行器了,其中又分為「十4」、「X4」與「Y4」三種機身結構,目前有許多飛行器玩家喜愛使用四旋翼飛行器來進行空拍攝影;但由於「十4」的馬達會擋到攝影機的鏡頭,所以大部分的空拍攝影都會選擇「X4」的結構。而較少見的「Y4」則是在尾舵用一組同軸雙槳的無刷馬達來代替原本的伺服機,藉此降低容易導致自旋現象產生的馬達轉距。

市面上最常見的四旋翼飛行器。
市面上最常見的四旋翼飛行器。

六旋翼(六顆DC 無刷馬達)

要增加升力與載重能力, 最簡單的方法便是增加更多的螺旋槳。而一般的六旋翼飛行器又可分成「米6」、「Y6」與「H6」三種結構。較常見的「米6」是「X4」的強化版本, 在六片夾角同為60 度的機翼裝上螺旋槳,提高無人飛行器的升力;但另一方面,這會使得飛行器的體積變大,耗電量也會變得比較高。於是為了在縮小體積的同時避免自旋現象產生,便將原先的「Y3」結構改造成具有三組同軸雙槳的「Y6」,雖然升力比「米6」小了一點,但是體積與靈敏性卻可彌補這項不足。

圖7-2
六旋翼飛行器,「米6」結構。
圖7-1
「Y6」結構。

定翼機與傾轉旋翼

定翼機看起來其實就像滑翔翼,但為了要讓滑翔翼飛得更遠,必須利用機身後方的大型螺旋槳來提供較大的推力;而為了可以承載機身中央的重量, 機翼的外型必須設計成大且長。為了要讓這樣的機體可以順利起飛,學生們特別設計了一座發射架,藉由彈簧的拉力將定翼機推向空中。

-----廣告,請繼續往下閱讀-----

定翼機。
定翼機。
定翼機發射架。
定翼機發射架。

其中,最特別的莫過於傾轉旋翼的設計。這種做法同時結合了定翼機與旋翼機的特色,在起降時可以利用四顆DC 馬達驅動螺旋槳,來進行垂直起降,或是與一般定翼機一樣利用長跑道來減速降落。若是垂直起飛到一定高度之後,可以再改變螺旋槳的角度切換成定翼機的推進模式。此外,透過機翼的輔助也能拉長飛行的時間與距離。

傾轉旋翼機。
傾轉旋翼機。

飛行輔助工具

當然,除了螺旋槳之外,還是需要配置其他硬體才能做到影像拍攝、飛行器定位與地形量測的功能。現在最流行的空拍攝影機則非「GoPro」莫屬,但有了攝影機還是不夠的,必須要額外加裝能夠安裝攝影機的全向雲臺。若想知道雲臺的製作方法可以參考《Make》國際中文版Vol.13 中的〈如何製造四旋翼〉一章。

再來則是飛行器的定位功能,可以大致分成室內與室外這兩種環境。目前市售的飛控板通常都會內建GPS 定位系統,所以在室外飛行時,可以透過GPS 回傳的訊號找出飛行器的所在位置。若換成室內,則可以選擇使用超音波距離感測器,利用超音波發射與接收的時間差來算出飛行器與環境中障礙物的距離,並藉此反向推導出飛行器的位置。在起降時也可透過超音波感測器來計算出飛行器與地面相隔的距離,以避免飛行器降落過快而摔壞。

-----廣告,請繼續往下閱讀-----
裝設在飛行器前端的超音波感測器。
裝設在飛行器前端的超音波感測器。

上面所提到的空拍影像與定位功能,都需要有一個可以接收訊號的地面導控站與追蹤天線。先利用追蹤天線接收飛行器送回的GPS 定位座標與其他偵測結果,經過導控站的計算與判斷之後,再經由更改裝設在追蹤天線上的Arduino 數值來改變兩顆伺服機的角度,使得追蹤天線永遠朝向飛行器的位置。同一時間,地面導控站上的螢幕也會顯示出飛行器的所在位置、電量、飛行路線與偵測到的各項資訊,這樣一來才稱得上是一套完整的無人飛行器系統。

圖13
地面導控站。
追蹤天線。
追蹤天線。

研究方向與未來應用

目前AESI 實驗室有許多有趣的研究方向,包含:視覺暫留、視覺辨識、超音波定位、充電平臺、非對稱多旋翼、傾轉旋翼與油電混合飛行器。

非對稱多旋翼飛行器。
非對稱多旋翼飛行器。
搭配視覺暫 留的多旋翼 飛行器。
搭配視覺暫留的多旋翼飛行器。
採用油電混合動力的多旋翼飛行器。
採用油電混合動力的多旋翼飛行器。

-----廣告,請繼續往下閱讀-----

負責開發嵌入式機器視覺的張東琳同學表示,室內的定位通常會採用超音波和紅外線感測器;但為了要使飛行器具有更高的智能表現,他們打算透過攝影機使飛行器可以自主辨識起降點的顏色與位置,並打算搭載目前熱門的Raspberry Pi 單板電腦,讓飛行器可以不用再回傳資訊到地面的導控站進行運算,而是在空中完成拍攝、辨識、運算與控制這些動作。一旦飛行器具有自動辨識起降點的功能之後,便可與自動充電平臺相互結合,使其成為一架完全自主的飛行機器人。

到目前為止, 一般多旋翼飛行器可持續的飛行時數大約是20 分鐘左右,若是要產生更強大的升力,則會大幅縮短續航時數;為了改善此問題,AESI 實驗室也設計出油電混合的多旋翼飛行器,在上面搭載一般市售大型遙控飛機的汽油引擎,不只提高升力,也延長了續航的時間。

結語

看著老師或學生們在介紹無人飛行器時的神情, 可以想見對他們而言,這些飛行器不單純只是一個研究專題而已,更重要的是過程中所學到的知識,以及看見飛行器順利升空的那股喜悅。另外,鄒杰烔老師也認為:「學校應該推廣機電整合教育,結合不同科系的學生們互相學習,結合動手作的精神,讓學生們可以親手設計與製造各種專題。或是舉辦各種年齡層的比賽,從小紮根,以培養出更多基礎深厚的人才。」

無論是在臺灣還是在世界上,無人飛行器的發展可說正處於從學術、軍事應用轉入商業應用的階段,相信未來也會是大熱門。AESI 實驗室的設立與他們進行的研究,可說是為國內該領域注入了開發的活水。希望AESI實驗室能夠繼續秉持著他們對飛行機器人的熱情,突破現有的領域,開發出更多不同類型的嶄新飛行器;同時也把這股熱情傳遞出去,帶動飛行機器人的各種應用研究,進而開創新產業的契機,讓臺灣在國際上展翅高飛。

-----廣告,請繼續往下閱讀-----
AESI 實驗室成員合照。
AESI 實驗室成員合照。

虎尾科技大學航空機電系統整合實驗室
https://sites.google.com/site/nfumulticopter/

文章原文刊載於《ROBOCON》國際中文版2015/1月號

-----廣告,請繼續往下閱讀-----
文章難易度
馥林文化_96
54 篇文章 ・ 5 位粉絲
馥林文化是由泰電電業股份有限公司於2002年成立的出版部門,有鑒於21世紀將是數位、科技、人文融合互動的世代,馥林亦出版科技機械類雜誌及相關書籍。馥林文化出版書籍http://www.fullon.com.tw/

0

0
0

文字

分享

0
0
0
一顆科技巨星的隕落(下)—英特爾的沒落
賴昭正_96
・2025/03/20 ・4190字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

商業上的成功蘊含著自身毀滅的種子:成功會滋生自滿,自滿會導致失敗。只有偏執狂才能生存。
-Andrew Grove(英特爾首席執行官)

話說英特爾於 1986 年冒著丟掉大客戶百年 IBM 的危險,轉向成立僅 3 年多的小電腦公司推銷其最新微處理器的賭博,得到了回報:康柏電腦公司一炮而紅的成功加速客戶對新 80386 晶片的要求。90 年代中後期英特爾更大力投資新的微處理器設計,促進了個人電腦產業的快速成長,成為市場佔有率高達 90% 的微處理器主要供應商,使其自 1992 年以來一直保持半導體銷售額排名第一的地位,於 1999 年將英特爾推上代表美國 30 主要工業的道瓊指數之一成員。

但到了 2000 年代,特別是 2010 年代末期,英特爾面臨日益激烈的競爭,導致其在 PC 市場的主導地位和市場佔有率下降。儘管如此,截至 2024 年第三季度,英特爾仍以 62% 的市佔率遙遙領先 x86 市場、更是筆記型電腦的明顯贏家(72%)。可是為什麼今天英特爾股價竟然倒退了 28 年,回到 1996 年底的價位呢(註一)?為什麼它已經不能再代表美國主要工業,於 2024 年 11 月 8 日被踢出道瓊工業指數,為英偉達(Nvidia,臺灣與香港譯為「輝達」)取代呢?

是什麼原因讓英特爾失去產業龍頭的位置? 圖/pixabay

英特爾的失足

在回答此問題之前,筆者得先指出:個人電腦到了 2000 年初已不再是一高利潤的高科技,而是一種日用商品。當初將英特爾培養壯大的 IBM 於 2004 年年底完全退出了個人電腦的市場;而避免侵權透過逆向工程、製造出第一台 IBM 個人電腦相容機的康柏公司,也在個人電腦市場的價格競爭日益激烈、及想打入主機電腦市場的錯誤政策下,於 2002 年被惠普 ( Hewlett-Packard ) 收購「消失」了。

冰凍三尺,非一日之寒。Google 的人工智慧謂:「英特爾在晶片產業落後的主要原因是多種因素」,包括:
(1)未能洞悉智慧型手機的崛起,在行動晶片市場明顯落後,錯失創新機會給高通(Qualcomm Inc.)等競爭對手;
(2)依賴過時的製造流程,未能像台積電、AMD、和英偉達(註二)一樣採用更靈活晶片設計和外包製造,來應付快速不斷變化的市場需求,導致失去了高效能運算和人工智慧等關鍵領域的市場;
(3)一些分析師認為英特爾在個人電腦市場長期佔據主導地位可能導致高階主管自滿,不願適應不斷變化的產業動態。

-----廣告,請繼續往下閱讀-----

筆者認為前述的(1)及(2)都是果,真正的原因只有(3)一個。80 年代,當英特爾的晶片和微軟的軟體成為快速發展之個人電腦行業的雙引擎時,公司充滿活力,專注於其在個人電腦和資料中心伺服器的特殊領域。英特爾高層曾半開玩笑地將公司描述為「地球上最大的單細胞有機體」:一個孤立的、獨立的世界。像 IBM 一樣,數十年的成功和高利潤也催生了英特爾目中無人及自大之企業文化!這種開會又開會、討論又討論、開不完的會、討不完的論正是公司成熟的標註。

英特爾企業文化

想當初英特爾剛成立時,諾伊斯只聽了幾秒鐘霍夫有關微處理器的激進想法後,就立即說:「做吧」!真是不可同日而語。又如到了 1983 年,其主要記憶體晶片業務受到日本半導體製造商加劇競爭而大大降低獲利能力時,格羅夫立即迅速地不怕「…微處理器是個非常大的麻煩」,脫胎換骨成為微處理器主要供應商━又豈是 90 年代不遺餘力地捍衛其微處理器市場地位而與 AMD 鬥爭的英特爾所能比?

事實上英特爾也曾多次嘗試成為人工智慧晶片領域的領導者,但都以失敗告終(註三):專案被創建、持續多年,然後要麼是因為英特爾領導層失去耐心,要麼是技術不足而突然被關閉。為了保護和擴大公司的賺錢支柱(x86 的數代晶片),英特爾對新型晶片設計的投資總是退居二線。史丹佛大學電機工程教授、英特爾前董事普盧默 ( James Plummer ) 曾謂:「這項技術是英特爾皇冠上的寶石——專有且利潤豐厚——他們會盡一切努力來維持這一點的」。英特爾的領導者有時也承認這個問題,例如英特爾前執行長巴雷特 ( Craig Barrett ) 就曾將 x86 晶片業務比作一種毒害周圍競爭植物的雜酚油灌木叢。

微軟 Copilot AI

英特爾能再放光芒嗎?

在一連串的機會錯失,決策錯誤及執行不力下,英特爾於 2021 年任命曾經主導其發展人工智慧晶片、2009 年離職去擔任 EMC 總裁的基辛格(Patrick Gelsinger)回來當執行長,積極嘗試透過其所謂的「五年、四個節點」進程追趕台積電。這位浪子回頭,被請回來拯救公司的基辛格於去年 4 月 25 日宣稱:即將推出的英特爾 3 奈米製程伺服器晶片的需求很高,可以贏得那些轉找競爭對手的客戶,謂『我們正在重建客戶信任。他們現在看著我們說:「哦,英特爾回來了。」』…但半年後,董事會對他的扭虧為盈計畫完全失去了信心,給了他辭職或被解僱的選擇。基辛格於 12 月 1 日辭職,現由領導英特爾全球財務部門和投資者關係的津斯納 ( David Zinsner ) 擔任臨時聯合執行長,正在務色下一任執行長。

-----廣告,請繼續往下閱讀-----

英特爾現在的處境事實上很像 1993 年的 IBM:在官僚體制、大型電腦利潤下滑,及失去個人電腦的主導權後,其股票從 1987 年 7 月的最高點倒退了 26 年!當總裁兼執行長阿克斯(John Ackers ) 於當年元月宣布首次下調股息 55% 及離職後,遴選委員會竟然找不到任何人願意來收拾這個爛攤子━曾幾何時 IBM 執行長還是眾人夢寐以求的職位呀!最後選委會只好推薦自告奮勇、完全外行(註四)、銷售菸草和食品的 RJR Nabisco 公司的首席執行官郭士納(Louis Gerstner Jr.)!郭士納在自傳中回憶說:重振 IBM 所面臨的最嚴峻挑戰是改變其企業文化。現 IBM 雖然不再像以前在科技界一言九鼎,但其股票已「趕上時代」屢創歷史新高,為道瓊工業指數中歷史最悠久的高科技成員(1979 年起);郭士納也被視為美國商界的偶像,IBM 轉型和重拾技術領導地位的救星。

IBM 和英特爾的股價走勢圖。圖/作者提供

股票名嘴克萊默(Jim Cramer)在年初謂:「我們需要將英特爾視為資產負債表非常糟糕的國寶」,因此有必要幫助英特爾公司渡過難關。美國政府顯然也同意,商務部根據 CHIPS 激勵計劃的商業製造設施資助機會,已經給英特爾公司提供高達 78.65 億美元的直接資助。但如前面所提到的 IBM 如何啟動發展個人電腦,錢真的是萬能嗎?英特爾能重新燃燒發光嗎?

英特爾不像 1993 年的 IBM 具有百年的歷史,各方面人才濟濟:多項技術創新和最多的專利,包括自動櫃員機、動態隨機存取記憶體 、軟碟、硬碟、磁條卡、關聯式資料庫、Fortran 和 SQL 程式語言、UPC 條碼、以及本文所提到之個人電腦等;其研究部是世界上最大的工業研究機構,員工因科學研究和發明而獲得了各種認可,包括六項諾貝爾獎和六項圖靈獎(Turing Award,註五)。因此筆者懷疑英特爾能夠重新奪回業界領先地位;CFRA Research 技術分析師齊諾 ( Angelo Zino ) 表示:「目前來看,它們重返輝煌的可能性非常渺茫。」

以目前來看,英特爾技術劣勢難以逆轉,重返業界領導地位機會渺茫。圖/unsplash

結論

這顆科技巨星真的要隕落了嗎?真的是「一失足成千古恨,再回頭已百年身」嗎?英特爾第三任首席執行官(1987-1998)格羅夫真的不幸言中了嗎:「商業上的成功蘊含著自身毀滅的種子」?當然,像英特爾這麼有成就的公司要徹底消失是不太可能,因此最可能的命運應該是分割拍賣或像仙童半導體公司一樣被其它公司收購(註六)。事實上去年高通公司就曾與英特爾洽談收購事宜,但最終放棄了這個想法。

-----廣告,請繼續往下閱讀-----

最後讓我們在這裡以同時被 IBM 培養狀大、在個人電腦上一起嘯吒風雲的微軟公司,其創辦人蓋茨(Bill Gates)元月 8 日的美聯社訪談來結束本文吧。蓋茨聲稱:如果英特爾沒有在 70 年代初期取得技術突破,創造出能夠驅動個人電腦的微型晶片,他的職業道路可能會有所不同。他接著表示:微軟也像英特爾一樣,在 18 年前錯過了從個人電腦到智慧型手機的轉變,但微軟已經恢復元氣,而英特爾的困境卻惡化到需要尋找新執行長的地步(註七),他說:

他們錯過了人工智慧晶片革命,(因為晶片設計和製造方面落後)其製造能力達不到英偉達和高通等公司認為是簡單的標準。我認為基辛格非常勇敢,他敢說:「不,我要解決設計方面的問題,我要解決晶圓廠方面的問題。」我(曾)希望為了他自己、為了國家,他能夠成功。我希望英特爾能夠復甦,但目前看來它們的處境相當艱難。

今天微軟公司已是全美市值最大的前三名公司之一,而英特爾卻淪落至此,能不讓人感嘆造化弄人嗎?

(2025 年 2 月 3 日補註)本文完稿於元月 15 日;英特爾元月 30 日第四季業績報告謂:營收連續三季下滑,較去年同期下降 7%;本季淨虧損總計 1.26 億美元(即每股 3 美分),而去年同期的淨收入為 26.7 億美元(即每股 63 美分)。今年第一季的業績指引令分析師失望!

備註

  • (註一)同一期間道瓊股指上升了 7 倍多。
  • (註二)這三家公司現在全是中國人在主導。在英特爾全盛時期,這三家全是在後者的陰影下求生存;而現今這三家的市值均遠遠超過英特爾!
  • (註三)2005 年,當英特爾的晶片在大多數個人電腦中充當了大腦時,執行長歐德寧( Paul Otellini)就已經意識到了圖形晶片最終可能會在資料中心承擔重要的工作,向董事會提出了一個令人震驚的想法:以高達 200 億美元收購電腦圖形晶片的矽谷新貴英偉達(英偉達的市值現已超過 3 兆美元)。但因英特爾在吸收公司方面的記錄不佳,董事會拒絕了這個提議,歐德寧退縮了!反觀 AMD 於 2006 年收購英偉達對手 Array Technology Inc. 後,現正挑戰英偉達的圖形晶片市場。
  • (註四)在 1993 年三月宣布將擔任執行長的記者招待會上,被問及用什麼牌子的計算機時,新執行長說他有一台筆記本電腦,但不記得是什麼牌子。
  • (註五)公認為計算機科學領域的最高榮譽,被稱為「計算機界的諾貝爾獎」。
  • (註六)仙童半導體公司於 2016 年 9 月被安森美(ON)半導體收購,品牌已不存在。
  • (註七)英特爾於 2025 年 3 月任命陳立武出任新執行長。

延伸閱讀:圖形處理單元與人工智能

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
46 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
別讓心臟悄悄衰竭!二尖瓣閉鎖不全的風險與最新治療解析
careonline_96
・2025/03/19 ・1957字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

圖 / 照護線上

60 多歲的陳女士(化名)患有中度二尖瓣閉鎖不全,某天因突然喘得厲害,而被送到急診室。衛生福利部雙和醫院心臟血管外科主治醫師李紹榕表示,「經過檢查後,發現二尖瓣閉鎖不全已惡化為重度,導致急性症狀發生,故安排患者接受了二尖瓣修補手術,讓瓣膜恢復正常功能,並持續觀察。」

頭暈、胸悶、喘 當心二尖瓣膜出問題!嚴重恐心臟衰竭

「心臟裡有四個瓣膜,幫助維持血液流動的方向,而二尖瓣位於左心房與左心室間,會在左心房收縮時打開,左心室收縮時關閉。」李紹榕醫師指出,二尖瓣膜可能出現狹窄或逆流的狀況,二尖瓣狹窄(Mitral Stenosis)的原因可能與風濕性心臟病有關,由於瓣膜鈣化、組織增厚,導致瓣膜無法完全開啟,讓血液無法順利從左心房流至左心室,造成左心房壓力上升,可能引發肺高壓、心房顫動、呼吸困難等問題;二尖瓣逆流(Mitral Regurgitation)的原因包括瓣膜鬆弛、瓣膜腱索異常、瓣膜結構破壞等,導致瓣膜閉鎖不全。當左心室收縮時,部分血液逆流回左心房,造成左心室與左心房負荷增加,長期可能導致心臟衰竭。

二尖瓣出問題時,患者可能出現頭暈、胸悶、心悸、呼吸急促等症狀,活動耐受度也逐漸下降,李紹榕醫師提醒,二尖瓣疾病的治療必須依據病患的年齡、瓣膜狀況、併發症風險及整體健康狀況來判斷,為了避免心臟功能持續惡化,一定要及早接受治療。

瓣膜損壞不擔心 置換手術專家解析

針對二尖瓣狹窄,大多會建議更換人工瓣膜,幫助患者獲得穩定且明確的療效;二尖瓣逆流,則大多會先嘗試進行瓣膜修補手術,但若是感染已對瓣膜造成嚴重破壞便得考慮瓣膜置換手術。李紹榕醫師進一步分享,「案例陳女士經討論後,雖先採二尖瓣修補手術,但是在幾個月後二尖瓣閉鎖不全的狀況又漸漸惡化,為避免病情加劇,建議患者接受二尖瓣膜置換手術。」

-----廣告,請繼續往下閱讀-----

二尖瓣置換手術可以採用傳統開胸手術或微創手術。李紹榕醫師分析,傳統開胸手術的優點是視野清晰,且可以同時處理多個瓣膜或其他心臟問題;微創手術的優點是傷口較小、術後疼痛較輕、恢復期較短,但是因為視野受限,不易處理多重病變。在手術前,醫師都會和患者與家屬詳細討論,根據患者的年齡、健康狀況、病情嚴重度等,共同選擇合適的手術方式。

瓣膜選擇不擔心 置換手術專家解析

除了手術方式之外,人工瓣膜的選擇也是術前必須討論的重點。李紹榕醫師說,一般而言,65 歲以上患者常優先考慮「生物瓣膜」,50 歲以下患者較傾向使用「機械瓣膜」。

機械瓣膜的使用年限較長(約20-30年),但若未來瓣膜再次受損,通常需重新使用傳統開胸手術更換瓣膜;生物瓣膜的使用年限雖較機械瓣膜稍短,但優點是若未來瓣膜退化,可透過經導管瓣膜置換術進行,侵入性較低。

新型乾式瓣膜使用年限增加、開口面積更大
圖 / 照護線上

隨著科技進步,目前有新型乾式生物瓣膜,材質經過特殊處理,可以突破傳統生物瓣膜的使用年限,可上達約 10-15 年,趨近於機械瓣膜。另外,新型乾式牛瓣膜較豬瓣膜具更大的瓣膜有效開口面積(EOA),提供給病患在生活上更佳的血液流動力。

-----廣告,請繼續往下閱讀-----

李紹榕醫師說,針對心臟相關術式,患者不必過於擔心與畏懼,現臨床手術經驗越來越完善,過程中可能附帶的中風風險僅約 1-3%,且越年輕風險越低,提醒患者可以透過共享決策(SDM),與醫師共同討論,將有助於選擇適合的手術方式與瓣膜類型。並以雙和醫院心臟血管外科團隊為例,能夠提供多元且全方位的心臟血管外科治療,無論是傳統開胸手術、微創手術、達文西機械手臂輔助手術、經導管手術,均能熟練執行,提供給患者完善的照護。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
不再無解!晚期肝癌新突破,釔-90 微球合併免疫療法,創造手術新機會
careonline_96
・2025/03/14 ・2230字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

圖 / 照護線上

肝癌是台灣重要的健康議題,因為沒有明顯症狀,患者往往會在較晚期才發現肝癌。高雄長庚醫院放射診斷科教授鄭汝汾醫師表示,當腫瘤較大、較多或侵犯重要血管時,可能無法直接進行切除或肝臟移植,必需考慮多種整合性治療,包括肝動脈栓塞、標靶治療、免疫治療、釔-90 微球放射治療等。接受這些治療後,如果能夠讓腫瘤降期,患者便有機會接受手術切除或肝臟移植。

釔-90(Yttrium-90)微球放射治療是經由肝動脈將放射性微球注入肝臟腫瘤,利用釔-90 釋放的 β 射線殺死癌細胞。鄭汝汾醫師說,有些患者的肝臟已經佈滿腫瘤,像滿天星一般,在接受釔-90 微球放射治療後達到完全緩解,而有機會接受後續的手術治療。

在六十多年前,有醫學論文發現針對原發部位進行體外放射治療後,轉移至遠端的腫瘤也跟著消失。鄭汝汾醫師說,釔-90 治療屬於體內放射治療,醫學研究也曾發表類似的結果,並稱之為「遠端效應(Abscopal effect)」。

釔-90治療有機會誘發遠端反應
圖 / 照護線上

「遠端效應」被認為與免疫系統活化有關,因為局部放射治療造成腫瘤細胞崩解,釋放出腫瘤抗原,進而誘發全身性的免疫反應,而一併消滅轉移至遠端的腫瘤。鄭汝汾醫師說,「有位七十多歲的肝癌患者,除了右側肝臟中的大腫瘤外,還有多顆散佈的小腫瘤。當時我們針對大腫瘤進行釔-90 治療,不過在後續的電腦斷層影像中,可以發現大腫瘤與小腫瘤皆完全消失。」

-----廣告,請繼續往下閱讀-----

根據這樣的發現,大家開始思考釔-90 治療搭配免疫治療的可能性。鄭汝汾醫師說,Mazzaferro 是制定肝臟移植規範的重要人物,至今仍是肝臟移植的重要依據。Mazzaferro 發現接受釔-90 治療後約一個月時,患者體內的免疫反應達到高峰。若結合免疫療法增強治療效果,理想時機點可能落在此高峰期內。

下圖是一位晚期肝癌患者,原本有顆很大的腫瘤,在 2020 年 6 月接受釔-90 治療合併免疫治療。鄭汝汾醫師說,三個月後的電腦斷層影像顯示,腫瘤完全壞死,後續的胎兒蛋白 AFP 也降到小於 2ng/ml。至今已追蹤 4 年多,患者的狀況穩定,腫瘤沒有復發的跡象。

釔-90合併免疫治療扭轉晚期肝癌
圖 / 照護線上

另一位晚期肝癌患者的肝臟佈滿腫瘤,像滿天星一般。鄭汝汾醫師說,經過肝癌團隊討論,決定先由外科醫師切除右側肝臟的大腫瘤,後續再進行釔-90 治療合併免疫治療。

接受釔-90 治療合併免疫治療後,電腦斷層影像顯示原本像滿天星般的腫瘤已全部緩解,幫助患者達到較佳的預後。

-----廣告,請繼續往下閱讀-----
釔-90合併免疫治療扭轉晚期肝癌
圖 / 照護線上

根據高雄長庚醫院的經驗,晚期肝癌患者接受釔-90 治療合併免疫治療後,若達到完全緩解,其兩年存活率達 100%,對晚期肝癌患者而言,是相當優異的結果。鄭汝汾醫師說,原本無法接受肝臟移植的晚期肝癌患者,有機會在降期之後,重新評估肝臟移植的可能性,釔-90 治療已是促使肝癌降期的重要工具,幫助患者達到較佳的預後。

肝癌的治療持續進步,即使是晚期肝癌,仍有機會獲得完全緩解。患者要和醫療團隊密切配合,共同選擇適合的治療方式!

筆記重點整理

  • 肝臟腫瘤的血液供應約 99% 來自肝動脈,經由肝動脈能精準地將藥物或放射線聚集於腫瘤部位,減少對正常肝臟組織的影響。釔-90 是一種放射性同位素可釋放 β 射線,半衰期約 64.1 小時。β 射線的穿透深度僅 1.1 公分,使放射能量主要侷限於腫瘤內部,正常肝組織的輻射劑量相對較少
  • 「遠端效應」被認為與免疫系統活化有關,因為局部放射治療造成腫瘤細胞崩解,釋放出腫瘤抗原,進而誘發全身性的免疫反應,而一併消滅轉移至遠端的腫瘤。
  • 接受釔-90 治療後約一個月時,患者體內的免疫反應達到高峰。若結合免疫療法增強治療效果,理想時機點可能落在此高峰期內。釔-90 治療合併免疫治療有機會讓晚期肝癌患者達到完全緩解或部分緩解。
  • 原本無法接受肝臟腫瘤切除手術或移植的晚期肝癌患者,有機會在降期之後,重新評估肝臟手術或移植的可能性,釔-90 治療已是促使肝癌降期的重要工具,幫助患者達到較佳的預後。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。