0

0
0

文字

分享

0
0
0

飛行機器人最前線!虎尾科大航空機電系統整合實驗室專訪

馥林文化_96
・2015/02/02 ・4270字 ・閱讀時間約 8 分鐘 ・SR值 548 ・八年級
相關標籤:

-----廣告,請繼續往下閱讀-----

圖、文/謝瑩霖
協助採訪/虎尾科大航空機電系統整合實驗室

圖a1
無人飛行器。

第一次聽到無人飛行器的讀者,應該都會馬上聯想到出現在電影中執行軍事偵察的無人飛行器吧!但其實不管是航空攝影、環境空汙品質監測、農漁業觀測、交通監測,甚至是危險環境的調查,都可以看到飛行器的蹤影。近年來更是出現許多來自大專院校或私人單位的無人飛行器社團,此次非常有幸可以來到國立虎尾科技大學的飛機工程學系,採訪由鄒杰烔老師所引領的航空機電系統整合實驗室(AESI),現在就跟著他們一起翱翔天際吧!

實驗室沿革

負責指導AESI 的鄒杰烔教授。
負責指導AESI 的鄒杰烔教授。

虎尾科技大學的飛機工程學系共可分為「航空科技」與「電子科技」兩大組別, 而在民國100 年成立航空機電系統整合實驗室之前,原本的研究方向是以居家照護機器人、服務型機器人與六足機器人為主。之後便以「系統整合」為教學重點, 結合不同領域的學生們,希望藉此發展出一套結合航空機電技術、智慧型機器人與無人飛行器的完整系統。而帶領AESI實驗室的鄒杰烔老師則認為無人飛行器不僅是只有飛行器(UAV) 而已,必須要搭配一座可以進行資訊接收與傳送的地面導控站,這樣才能成為一套完整的無人飛行器系統(UAS)。

此實驗室成立至今已有三年多的時間,在這段期間內所開發的飛行器都是由學生們自己設計CAD 檔, 再透過三軸CNC 雕刻機加工所製成。更因為實驗室先前的重點是地面機器人,所以也相當熟悉如何應用各種感測器來處理避障與定位等功能。除此之外,AESI 實驗室也在許多比賽中嶄露頭角,先前他們曾榮獲第八屆全國大專生創新設計實作競賽的冠軍,以及臺灣無人飛機創意設計競賽自動導航組的亞軍,更有國內重機團體邀請他們協助拍攝一年一度的重機大集合,可說是經歷豐富。

-----廣告,請繼續往下閱讀-----
實驗室平日使用的三軸CNC 雕刻機。
實驗室平日使用的三軸CNC 雕刻機。

無人飛行器與其他硬體

一進到AESI 實驗室,放眼望去全是無人飛行器,不論是定翼機、雙旋翼或多旋翼,幾乎想得到的類型這裡通通有,接著,就讓我們依照螺旋槳的數目,來瀏覽各種類型的飛行器吧!

單旋翼(一顆DC 無刷馬達、四顆伺服機)

單旋翼飛行器僅使用一顆DC 無刷馬達來轉動螺旋槳以提供升力,由於單旋翼的升力有限,為了要使其得以順利升空,機身採用了兩片輕量化珍珠板以交叉的方式組合。但此種做法會產生機身自旋的現象,因此在每一面珍珠板的下半部都需要加裝一顆伺服機來調整舵片角度,以抵消自旋的力量。

單旋翼飛行器。
單旋翼飛行器。

雙旋翼(兩顆DC 無刷馬達、兩顆伺服機)

雙旋翼飛行器又可分成同軸雙槳與左右旋翼兩種,同軸雙槳是將兩個轉動方向相反的螺旋槳裝在同一個轉軸上,藉此來消除自旋的現象,這種做法產生的升力也會比單旋翼來得稍大一些。另一種則是左右旋翼,看起來與一般定翼機非常相似,而這類飛行器也曾在電影《阿凡達》中出現。雙旋翼飛行器利用兩側機翼上轉動方向相反的螺旋槳來抵消自旋現象,並透過改變機翼與機身間的伺服機角度來改變機翼方向,藉此移動整架飛行器。

左右旋翼飛行器。
左右旋翼飛行器。

三旋翼(三顆DC 無刷馬達、單顆伺服機)

此類型的飛行器又可稱為「Y3」,在三片間隔120 度的機翼上分別裝上無刷馬達,同樣利用馬達間的差速變化來移動;但「Y3」在飛行時的自旋現象抵消程度比雙旋翼來得差一些,因此必須要透過裝有伺服機的尾舵螺旋槳來保持平衡。也因為如此,在調整這類型飛行器時,必須要正確地設定PID 控制參數的數值, 一旦尾舵的螺旋槳沒有配合好,整架飛行器就會有墜落的危險。

-----廣告,請繼續往下閱讀-----
三旋翼飛行器。
三旋翼飛行器。

四旋翼(四顆DC 無刷馬達)

在無人飛行器中, 最廣為人知的莫過於四旋翼飛行器了,其中又分為「十4」、「X4」與「Y4」三種機身結構,目前有許多飛行器玩家喜愛使用四旋翼飛行器來進行空拍攝影;但由於「十4」的馬達會擋到攝影機的鏡頭,所以大部分的空拍攝影都會選擇「X4」的結構。而較少見的「Y4」則是在尾舵用一組同軸雙槳的無刷馬達來代替原本的伺服機,藉此降低容易導致自旋現象產生的馬達轉距。

市面上最常見的四旋翼飛行器。
市面上最常見的四旋翼飛行器。

六旋翼(六顆DC 無刷馬達)

要增加升力與載重能力, 最簡單的方法便是增加更多的螺旋槳。而一般的六旋翼飛行器又可分成「米6」、「Y6」與「H6」三種結構。較常見的「米6」是「X4」的強化版本, 在六片夾角同為60 度的機翼裝上螺旋槳,提高無人飛行器的升力;但另一方面,這會使得飛行器的體積變大,耗電量也會變得比較高。於是為了在縮小體積的同時避免自旋現象產生,便將原先的「Y3」結構改造成具有三組同軸雙槳的「Y6」,雖然升力比「米6」小了一點,但是體積與靈敏性卻可彌補這項不足。

圖7-2
六旋翼飛行器,「米6」結構。
圖7-1
「Y6」結構。

定翼機與傾轉旋翼

定翼機看起來其實就像滑翔翼,但為了要讓滑翔翼飛得更遠,必須利用機身後方的大型螺旋槳來提供較大的推力;而為了可以承載機身中央的重量, 機翼的外型必須設計成大且長。為了要讓這樣的機體可以順利起飛,學生們特別設計了一座發射架,藉由彈簧的拉力將定翼機推向空中。

-----廣告,請繼續往下閱讀-----

定翼機。
定翼機。
定翼機發射架。
定翼機發射架。

其中,最特別的莫過於傾轉旋翼的設計。這種做法同時結合了定翼機與旋翼機的特色,在起降時可以利用四顆DC 馬達驅動螺旋槳,來進行垂直起降,或是與一般定翼機一樣利用長跑道來減速降落。若是垂直起飛到一定高度之後,可以再改變螺旋槳的角度切換成定翼機的推進模式。此外,透過機翼的輔助也能拉長飛行的時間與距離。

傾轉旋翼機。
傾轉旋翼機。

飛行輔助工具

當然,除了螺旋槳之外,還是需要配置其他硬體才能做到影像拍攝、飛行器定位與地形量測的功能。現在最流行的空拍攝影機則非「GoPro」莫屬,但有了攝影機還是不夠的,必須要額外加裝能夠安裝攝影機的全向雲臺。若想知道雲臺的製作方法可以參考《Make》國際中文版Vol.13 中的〈如何製造四旋翼〉一章。

再來則是飛行器的定位功能,可以大致分成室內與室外這兩種環境。目前市售的飛控板通常都會內建GPS 定位系統,所以在室外飛行時,可以透過GPS 回傳的訊號找出飛行器的所在位置。若換成室內,則可以選擇使用超音波距離感測器,利用超音波發射與接收的時間差來算出飛行器與環境中障礙物的距離,並藉此反向推導出飛行器的位置。在起降時也可透過超音波感測器來計算出飛行器與地面相隔的距離,以避免飛行器降落過快而摔壞。

-----廣告,請繼續往下閱讀-----
裝設在飛行器前端的超音波感測器。
裝設在飛行器前端的超音波感測器。

上面所提到的空拍影像與定位功能,都需要有一個可以接收訊號的地面導控站與追蹤天線。先利用追蹤天線接收飛行器送回的GPS 定位座標與其他偵測結果,經過導控站的計算與判斷之後,再經由更改裝設在追蹤天線上的Arduino 數值來改變兩顆伺服機的角度,使得追蹤天線永遠朝向飛行器的位置。同一時間,地面導控站上的螢幕也會顯示出飛行器的所在位置、電量、飛行路線與偵測到的各項資訊,這樣一來才稱得上是一套完整的無人飛行器系統。

圖13
地面導控站。
追蹤天線。
追蹤天線。

研究方向與未來應用

目前AESI 實驗室有許多有趣的研究方向,包含:視覺暫留、視覺辨識、超音波定位、充電平臺、非對稱多旋翼、傾轉旋翼與油電混合飛行器。

非對稱多旋翼飛行器。
非對稱多旋翼飛行器。
搭配視覺暫 留的多旋翼 飛行器。
搭配視覺暫留的多旋翼飛行器。
採用油電混合動力的多旋翼飛行器。
採用油電混合動力的多旋翼飛行器。

-----廣告,請繼續往下閱讀-----

負責開發嵌入式機器視覺的張東琳同學表示,室內的定位通常會採用超音波和紅外線感測器;但為了要使飛行器具有更高的智能表現,他們打算透過攝影機使飛行器可以自主辨識起降點的顏色與位置,並打算搭載目前熱門的Raspberry Pi 單板電腦,讓飛行器可以不用再回傳資訊到地面的導控站進行運算,而是在空中完成拍攝、辨識、運算與控制這些動作。一旦飛行器具有自動辨識起降點的功能之後,便可與自動充電平臺相互結合,使其成為一架完全自主的飛行機器人。

到目前為止, 一般多旋翼飛行器可持續的飛行時數大約是20 分鐘左右,若是要產生更強大的升力,則會大幅縮短續航時數;為了改善此問題,AESI 實驗室也設計出油電混合的多旋翼飛行器,在上面搭載一般市售大型遙控飛機的汽油引擎,不只提高升力,也延長了續航的時間。

結語

看著老師或學生們在介紹無人飛行器時的神情, 可以想見對他們而言,這些飛行器不單純只是一個研究專題而已,更重要的是過程中所學到的知識,以及看見飛行器順利升空的那股喜悅。另外,鄒杰烔老師也認為:「學校應該推廣機電整合教育,結合不同科系的學生們互相學習,結合動手作的精神,讓學生們可以親手設計與製造各種專題。或是舉辦各種年齡層的比賽,從小紮根,以培養出更多基礎深厚的人才。」

無論是在臺灣還是在世界上,無人飛行器的發展可說正處於從學術、軍事應用轉入商業應用的階段,相信未來也會是大熱門。AESI 實驗室的設立與他們進行的研究,可說是為國內該領域注入了開發的活水。希望AESI實驗室能夠繼續秉持著他們對飛行機器人的熱情,突破現有的領域,開發出更多不同類型的嶄新飛行器;同時也把這股熱情傳遞出去,帶動飛行機器人的各種應用研究,進而開創新產業的契機,讓臺灣在國際上展翅高飛。

-----廣告,請繼續往下閱讀-----
AESI 實驗室成員合照。
AESI 實驗室成員合照。

虎尾科技大學航空機電系統整合實驗室
https://sites.google.com/site/nfumulticopter/

文章原文刊載於《ROBOCON》國際中文版2015/1月號

文章難易度
馥林文化_96
54 篇文章 ・ 5 位粉絲
馥林文化是由泰電電業股份有限公司於2002年成立的出版部門,有鑒於21世紀將是數位、科技、人文融合互動的世代,馥林亦出版科技機械類雜誌及相關書籍。馥林文化出版書籍http://www.fullon.com.tw/

0

0
0

文字

分享

0
0
0
【suno AI】五音不全也沒關係,讓 AI 幫你唱歌!這些 AI 是怎麼做到音樂生成的?
泛科學院_96
・2024/04/18 ・459字 ・閱讀時間少於 1 分鐘

-----廣告,請繼續往下閱讀-----

不知道大家有沒有被傳說中的OO緊縮術攻擊,總之小編是中招了。

有時候一個人上網也是挺無助的,手足無措的我就想了解一下歌曲生成的魔法是怎麼出現的。

今天就讓我們來評測一下線上歌曲生成的服務,順便說說這些聲音生成是怎麼做出來的。

廢話不多說,讓我們開始吧!

-----廣告,請繼續往下閱讀-----

你有用過什麼更好笑,更好用的 AI 音樂生成工具呢?

我們最近有在研究怎麼用 AI 剪片,還有……AI 女友。

想看剪片的打+1,想看女友的打 <3

有其他想要看的 AI 測試或相關問題,也可以留言分享喔!

-----廣告,請繼續往下閱讀-----

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

討論功能關閉中。

泛科學院_96
29 篇文章 ・ 38 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

0

0
0

文字

分享

0
0
0
降低罹癌風險這樣做!肝癌預防、晚期治療一把罩
careonline_96
・2024/04/17 ・2301字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

罹癌就得放棄工作?晚期肝癌口服標靶藥助彈性兼顧工作與生活!晚期肝癌治療圖文懶人包

台灣肝癌每年約有上萬名新確診的肝癌個案,其中又以 45 歲以上、具備勞動生產力的族群佔多數 。而肝癌因早期症狀不明顯,直到腫瘤較大才可能出現腹脹、腹痛、黃疸等症狀,等到確診肝癌時已有約三成患者為不適合手術治療的晚期〔1〕,且疾病惡化速度快〔2〕。臺大醫院癌症微創中心黃凱文主任指出,根據最新的癌症登記報告,110 年新增的罹病數中 45 歲以上男性近七成〔1〕。可見對於勞動階級的威脅之大,罹病後可能嚴重他們的生活與生計。

發現時為時已晚的肝癌

晚期肝癌新藥藏自費風險,健保申請成功率不到五成

針對早期肝癌,一般會先評估進行手術治療。黃凱文醫師說明,中晚期肝癌除了使用手術局部治療外,若病人的狀況許可,還可進行全身性藥物治療,包括標靶藥物、免疫藥物等。晚期肝癌的健保用藥中,目前有一線藥物三種藥物,病人只要符合相關條件,醫師便會協助申請使用,其中有一項是新通過的標靶加免疫藥物的免疫治療組合〔3〕

然而最新的藥物並不一定對病患就是最好的藥物。黃凱文醫師提醒:「目前健保規定三種藥物中只能擇一給付,倘若治療效果不明顯想改用其他藥物,接下來病人有可能要自費使用。」而新藥標靶加免疫的治療組合,相對於另外兩款藥物,健保給付條件較嚴格,如果半年內腫瘤沒有持續縮小,健保便不再給付〔4〕。若要自費繼續使用,經濟負擔就相當沉重。

「就我個人的經驗而言,第一次申請新藥大約只有四成晚期病人可以滿足健保給付條件,而後續第二、三次申請中,目前僅有一半病人能夠續用新藥。」對於健保續用狀況,黃凱文醫師如此分享。

-----廣告,請繼續往下閱讀-----
晚期肝癌治療解析

選擇適合的治療方式,穩定用藥維持生活品質

健保通過新藥後,肝癌治療選擇增加,黃凱文醫師指出,標靶加免疫的治療組合與口服標靶藥物的反應率、治療成效相近,不過標靶加免疫的治療組合採用針劑注射,病人需要每三週回診接受治療;而口服標靶藥,只要在家服藥每日一到兩次,病人無需每月來回跑醫院,回診次數相對少很多,對生活及工作影響也較小。

現階段晚期肝癌的治療,標靶藥物與免疫藥物都能發揮治療成效。在這些治療選項中並沒有絕對較好的選擇,重點在於適不適合。黃凱文醫師說明,醫師都會與家屬、病人詳細討論。綜合考量,每個人的健康狀況、家庭環境、經濟考量後,共同決策選擇合適的藥物。

由於肝癌早期沒有症狀,具有危險因子的民眾一定要定期追蹤檢查,早期發現、早期治療能夠達到較佳的預後。黃凱文醫師提醒,B 型肝炎或 C 型肝炎帶原者應該及早接受治療,現在已有成效卓越的抗病毒藥物,能夠避免肝臟持續發炎,降低罹癌風險。若確診中晚期肝癌,請不要灰心。黃凱文醫師說,肝癌的治療藥物持續在進步,治療選擇也越來越多。病人只要和醫療團隊密切配合,按部就班接受治療,便有機會達到長期存活!

降低肝癌風險

筆記重點整理

一、 肝癌初期大多沒有症狀,在台灣,新增的肝癌個案中約三成肝癌患者在確定診斷時便是中晚期肝癌,不適合接受手術治療。肝癌的危險因子有很多,包括病毒性肝炎(如 B 型肝炎、C 型肝炎)、肝硬化、脂肪肝、體重過重、酒精性肝炎、抽菸、黃麴毒素、家族病史等。

-----廣告,請繼續往下閱讀-----

二、 針對早期肝癌,一般會先評估進行手術或消融治療。而中晚期肝癌,除了使用手術局部治療外,若病人的狀況許可,還可進行全身性藥物治療,包括標靶藥物、免疫藥物等。

三、 標靶加免疫的治療組合與口服標靶藥物的反應率、治療成效相近,不過標靶加免疫的治療組合採用針劑注射,病人需要每三周回診接受治療,而口服標靶藥,只要在家服藥每日一到兩次,有助減少回診次數,對生活與工作的影響較小。

四、 新藥的健保給付條件相對較嚴苛,如果半年內腫瘤沒有持續縮小,健保便不再給付,患者需要自費使用藥物。

五、 現階段晚期肝癌的治療,標靶藥物與免疫藥物都能發揮治療成效。在這些治療選項中並沒有絕對較好的選擇,重點在於適合患者個人的狀況。

-----廣告,請繼續往下閱讀-----

參考資料

  1. 衛生福利部 110 年癌症登記報告
  2. Nathani, P., Gopal, P., Rich, N., Yopp, A., Yokoo, T., John, B., Marrero, J., Parikh, N., & Singal, A. G. (2021). Hepatocellular carcinoma tumour volume doubling time: a systematic review and meta-analysis. Gut, 70(2), 401–407. https://doi.org/10.1136/gutjnl-2020-321040
  3. 衛生福利部 全民健康保險藥物給付項目及支付標準共同擬訂會議藥品部分第 62 次會議紀錄
  4. 衛生福利部 藥品給付規定

討論功能關閉中。

careonline_96
453 篇文章 ・ 271 位粉絲
台灣最大醫療入口網站

0

0
0

文字

分享

0
0
0
少了目鏡的數位顯微鏡
顯微觀點_96
・2024/04/16 ・1996字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

顯微鏡在觀察微小物體上發揮非常重要的作用,但傳統光學顯微鏡通常愈將倍率放大,景深就愈淺,在觀察立體的生物標本或是組織切片,觀察者無論怎樣調焦,依然無法獲得完全清晰的圖片。數位顯微鏡便能解決這樣的問題。

數位顯微鏡和光學顯微鏡最大的差異在於觀察方式。數位顯微鏡不像傳統顯微鏡透過目鏡來觀察,而是使用數位相機獲取畫面,再將即時畫面投影到連接的電腦螢幕。

三要件組成數位顯微鏡

數位顯微鏡結合了傳統光學顯微鏡、數位多媒體和數位處理技術,其成像系統通常包括三個模組:顯微鏡光學模組、資料擷取模組、數位影像處理和軟體控制模組。

-----廣告,請繼續往下閱讀-----

顯微鏡光學模組執行顯微成像的功能,將欲觀察的樣本影像聚焦。一旦聚焦,資料擷取模組就會將影像以數位格式儲存在感光元件,如 CCD(電荷耦合裝置‍)或 CMOS‍(互補式金氧半導體),再透過 USB 或其他介面傳輸到電腦儲存裝置。

軟體控制模組則是整個數位顯微鏡系統的核心,可即時控制、優化擷取的影像,並加以處理、分析測量。尤其隨著功能更強大的電腦出現,數位顯微影像可以得到更有效和高效的處理,例如可以取代手動計數功能,或是快速推疊或拼接影像。

公式

Dtot 表示景深,λ 是照明光的波長,n 是物鏡至觀察物體間介質的折射率,NA 是物鏡的數值孔徑

e 是放置在顯微鏡物鏡圖像中,可分辨的最小距離,M 是橫向總放大倍率

從公式可以看到,景深和總放大倍率幾乎成反比。而以過去難以同時兼備的高倍率和大景深來說,使用顯微鏡調整焦點,搜尋並到達分佈在不同深度的樣本後,再以數位成像設備捕捉分佈在這些深度的所有清晰影像,傳輸到電腦就能產生高品質、清晰的影像。

另外,也可結合雷射和共軛焦顯微鏡觀察不同深度的橫斷切面影像,再利用電腦影像處理和 3D 重建演算法,便能可以獲得高解析度的立體輪廓,進而觀察複雜的細胞骨架、染色體、細胞器和細胞膜。

-----廣告,請繼續往下閱讀-----

數位顯微鏡的電腦即時處理也常應用在動態或活體(in vivo)檢測的研究中,例如細胞膜潛在變化、藥物進入組織或細胞膜的過程等。

902x324p487x175.png

數位顯微鏡的倍率計算

傳統顯微鏡的總放大倍率為目鏡倍率 x 物鏡倍率,既然數位顯微鏡拿掉了目鏡改以數位相機、電腦取代,該如何計算總放大倍率呢?

數位顯微鏡除了光學放大倍率,還必須考慮數位放大倍率,因此總放大倍率=光學放大倍率 x 數位放大倍率

  • 光學放大倍率:物鏡放大倍率 x C 型轉接環放大倍率

由於連接顯微鏡和相機通常有一個 C 型轉接環(C-mount),且內建鏡頭。因此必須先將物鏡放大倍率乘以轉接環的放大倍率。

-----廣告,請繼續往下閱讀-----
  • 數位放大倍率=螢幕(顯示器)尺寸/感光元件尺寸

數位放大倍率必須考慮的元素有螢幕和感光元件。通常螢幕的對角線尺寸以英吋為單位,因此必須先將測量值轉換為毫米(mm);以 19 吋顯示器為例,其對角線測量值則為 19 吋 x 25.4=482.6 (mm)。

感光元件尺寸同樣以對角線的測量值來計算。以 1” 的晶片來說,其對角線測量值為 16(mm)。

感光元件規格(英吋)對角線
1″12.89.316
2/3″8.86.611
1/1.8″7.25.49
1/2″6.44.88
1/2.5″5.84.37
1/3″4.83.66
1/4″3.22.44

因此若以 10X 的物鏡搭配 0.67X 的 C 型轉接環,變焦 5X 後使用 2/3”CMOS 攝錄器拍攝並投影在 24 吋螢幕上。此時總放大倍率為:10 X 0.67 X 5 X 24 X 25.4 / 11 = 1856.5 (倍)

不過,隨著技術的不斷進步,數位顯微鏡和光學顯微鏡間的界限變得越來越模糊,有些數位顯微鏡採用更多光學元件,光學顯微鏡也採用了數位相機技術;相信打破藩籬的那一天指日可待。

-----廣告,請繼續往下閱讀-----

查看原始文章

參考資料

  1. Digital vs. Optical Microscopes: An In-Depth Comparison
  2. How to Calculate Microscope On-Screen Magnification
  3. Chen, X., Zheng, B., & Liu, H. (2011). Optical and digital microscopic imaging techniques and applications in pathology. Analytical cellular pathology (Amsterdam)34(1-2), 5–18.

討論功能關閉中。

顯微觀點_96
3 篇文章 ・ 1 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。