0

0
0

文字

分享

0
0
0

飛行機器人最前線!虎尾科大航空機電系統整合實驗室專訪

馥林文化_96
・2015/02/02 ・4270字 ・閱讀時間約 8 分鐘 ・SR值 548 ・八年級

圖、文/謝瑩霖
協助採訪/虎尾科大航空機電系統整合實驗室

圖a1
無人飛行器。

第一次聽到無人飛行器的讀者,應該都會馬上聯想到出現在電影中執行軍事偵察的無人飛行器吧!但其實不管是航空攝影、環境空汙品質監測、農漁業觀測、交通監測,甚至是危險環境的調查,都可以看到飛行器的蹤影。近年來更是出現許多來自大專院校或私人單位的無人飛行器社團,此次非常有幸可以來到國立虎尾科技大學的飛機工程學系,採訪由鄒杰烔老師所引領的航空機電系統整合實驗室(AESI),現在就跟著他們一起翱翔天際吧!

實驗室沿革

負責指導AESI 的鄒杰烔教授。
負責指導AESI 的鄒杰烔教授。

虎尾科技大學的飛機工程學系共可分為「航空科技」與「電子科技」兩大組別, 而在民國100 年成立航空機電系統整合實驗室之前,原本的研究方向是以居家照護機器人、服務型機器人與六足機器人為主。之後便以「系統整合」為教學重點, 結合不同領域的學生們,希望藉此發展出一套結合航空機電技術、智慧型機器人與無人飛行器的完整系統。而帶領AESI實驗室的鄒杰烔老師則認為無人飛行器不僅是只有飛行器(UAV) 而已,必須要搭配一座可以進行資訊接收與傳送的地面導控站,這樣才能成為一套完整的無人飛行器系統(UAS)。

此實驗室成立至今已有三年多的時間,在這段期間內所開發的飛行器都是由學生們自己設計CAD 檔, 再透過三軸CNC 雕刻機加工所製成。更因為實驗室先前的重點是地面機器人,所以也相當熟悉如何應用各種感測器來處理避障與定位等功能。除此之外,AESI 實驗室也在許多比賽中嶄露頭角,先前他們曾榮獲第八屆全國大專生創新設計實作競賽的冠軍,以及臺灣無人飛機創意設計競賽自動導航組的亞軍,更有國內重機團體邀請他們協助拍攝一年一度的重機大集合,可說是經歷豐富。

實驗室平日使用的三軸CNC 雕刻機。
實驗室平日使用的三軸CNC 雕刻機。

無人飛行器與其他硬體

一進到AESI 實驗室,放眼望去全是無人飛行器,不論是定翼機、雙旋翼或多旋翼,幾乎想得到的類型這裡通通有,接著,就讓我們依照螺旋槳的數目,來瀏覽各種類型的飛行器吧!

單旋翼(一顆DC 無刷馬達、四顆伺服機)

單旋翼飛行器僅使用一顆DC 無刷馬達來轉動螺旋槳以提供升力,由於單旋翼的升力有限,為了要使其得以順利升空,機身採用了兩片輕量化珍珠板以交叉的方式組合。但此種做法會產生機身自旋的現象,因此在每一面珍珠板的下半部都需要加裝一顆伺服機來調整舵片角度,以抵消自旋的力量。

單旋翼飛行器。
單旋翼飛行器。

雙旋翼(兩顆DC 無刷馬達、兩顆伺服機)

雙旋翼飛行器又可分成同軸雙槳與左右旋翼兩種,同軸雙槳是將兩個轉動方向相反的螺旋槳裝在同一個轉軸上,藉此來消除自旋的現象,這種做法產生的升力也會比單旋翼來得稍大一些。另一種則是左右旋翼,看起來與一般定翼機非常相似,而這類飛行器也曾在電影《阿凡達》中出現。雙旋翼飛行器利用兩側機翼上轉動方向相反的螺旋槳來抵消自旋現象,並透過改變機翼與機身間的伺服機角度來改變機翼方向,藉此移動整架飛行器。

左右旋翼飛行器。
左右旋翼飛行器。

三旋翼(三顆DC 無刷馬達、單顆伺服機)

此類型的飛行器又可稱為「Y3」,在三片間隔120 度的機翼上分別裝上無刷馬達,同樣利用馬達間的差速變化來移動;但「Y3」在飛行時的自旋現象抵消程度比雙旋翼來得差一些,因此必須要透過裝有伺服機的尾舵螺旋槳來保持平衡。也因為如此,在調整這類型飛行器時,必須要正確地設定PID 控制參數的數值, 一旦尾舵的螺旋槳沒有配合好,整架飛行器就會有墜落的危險。

三旋翼飛行器。
三旋翼飛行器。

四旋翼(四顆DC 無刷馬達)

在無人飛行器中, 最廣為人知的莫過於四旋翼飛行器了,其中又分為「十4」、「X4」與「Y4」三種機身結構,目前有許多飛行器玩家喜愛使用四旋翼飛行器來進行空拍攝影;但由於「十4」的馬達會擋到攝影機的鏡頭,所以大部分的空拍攝影都會選擇「X4」的結構。而較少見的「Y4」則是在尾舵用一組同軸雙槳的無刷馬達來代替原本的伺服機,藉此降低容易導致自旋現象產生的馬達轉距。

市面上最常見的四旋翼飛行器。
市面上最常見的四旋翼飛行器。

六旋翼(六顆DC 無刷馬達)

要增加升力與載重能力, 最簡單的方法便是增加更多的螺旋槳。而一般的六旋翼飛行器又可分成「米6」、「Y6」與「H6」三種結構。較常見的「米6」是「X4」的強化版本, 在六片夾角同為60 度的機翼裝上螺旋槳,提高無人飛行器的升力;但另一方面,這會使得飛行器的體積變大,耗電量也會變得比較高。於是為了在縮小體積的同時避免自旋現象產生,便將原先的「Y3」結構改造成具有三組同軸雙槳的「Y6」,雖然升力比「米6」小了一點,但是體積與靈敏性卻可彌補這項不足。

圖7-2
六旋翼飛行器,「米6」結構。
圖7-1
「Y6」結構。

定翼機與傾轉旋翼

定翼機看起來其實就像滑翔翼,但為了要讓滑翔翼飛得更遠,必須利用機身後方的大型螺旋槳來提供較大的推力;而為了可以承載機身中央的重量, 機翼的外型必須設計成大且長。為了要讓這樣的機體可以順利起飛,學生們特別設計了一座發射架,藉由彈簧的拉力將定翼機推向空中。

定翼機。
定翼機。
定翼機發射架。
定翼機發射架。

其中,最特別的莫過於傾轉旋翼的設計。這種做法同時結合了定翼機與旋翼機的特色,在起降時可以利用四顆DC 馬達驅動螺旋槳,來進行垂直起降,或是與一般定翼機一樣利用長跑道來減速降落。若是垂直起飛到一定高度之後,可以再改變螺旋槳的角度切換成定翼機的推進模式。此外,透過機翼的輔助也能拉長飛行的時間與距離。

傾轉旋翼機。
傾轉旋翼機。

飛行輔助工具

當然,除了螺旋槳之外,還是需要配置其他硬體才能做到影像拍攝、飛行器定位與地形量測的功能。現在最流行的空拍攝影機則非「GoPro」莫屬,但有了攝影機還是不夠的,必須要額外加裝能夠安裝攝影機的全向雲臺。若想知道雲臺的製作方法可以參考《Make》國際中文版Vol.13 中的〈如何製造四旋翼〉一章。

再來則是飛行器的定位功能,可以大致分成室內與室外這兩種環境。目前市售的飛控板通常都會內建GPS 定位系統,所以在室外飛行時,可以透過GPS 回傳的訊號找出飛行器的所在位置。若換成室內,則可以選擇使用超音波距離感測器,利用超音波發射與接收的時間差來算出飛行器與環境中障礙物的距離,並藉此反向推導出飛行器的位置。在起降時也可透過超音波感測器來計算出飛行器與地面相隔的距離,以避免飛行器降落過快而摔壞。

裝設在飛行器前端的超音波感測器。
裝設在飛行器前端的超音波感測器。

上面所提到的空拍影像與定位功能,都需要有一個可以接收訊號的地面導控站與追蹤天線。先利用追蹤天線接收飛行器送回的GPS 定位座標與其他偵測結果,經過導控站的計算與判斷之後,再經由更改裝設在追蹤天線上的Arduino 數值來改變兩顆伺服機的角度,使得追蹤天線永遠朝向飛行器的位置。同一時間,地面導控站上的螢幕也會顯示出飛行器的所在位置、電量、飛行路線與偵測到的各項資訊,這樣一來才稱得上是一套完整的無人飛行器系統。

圖13
地面導控站。
追蹤天線。
追蹤天線。

研究方向與未來應用

目前AESI 實驗室有許多有趣的研究方向,包含:視覺暫留、視覺辨識、超音波定位、充電平臺、非對稱多旋翼、傾轉旋翼與油電混合飛行器。

非對稱多旋翼飛行器。
非對稱多旋翼飛行器。
搭配視覺暫 留的多旋翼 飛行器。
搭配視覺暫留的多旋翼飛行器。
採用油電混合動力的多旋翼飛行器。
採用油電混合動力的多旋翼飛行器。

負責開發嵌入式機器視覺的張東琳同學表示,室內的定位通常會採用超音波和紅外線感測器;但為了要使飛行器具有更高的智能表現,他們打算透過攝影機使飛行器可以自主辨識起降點的顏色與位置,並打算搭載目前熱門的Raspberry Pi 單板電腦,讓飛行器可以不用再回傳資訊到地面的導控站進行運算,而是在空中完成拍攝、辨識、運算與控制這些動作。一旦飛行器具有自動辨識起降點的功能之後,便可與自動充電平臺相互結合,使其成為一架完全自主的飛行機器人。

到目前為止, 一般多旋翼飛行器可持續的飛行時數大約是20 分鐘左右,若是要產生更強大的升力,則會大幅縮短續航時數;為了改善此問題,AESI 實驗室也設計出油電混合的多旋翼飛行器,在上面搭載一般市售大型遙控飛機的汽油引擎,不只提高升力,也延長了續航的時間。

結語

看著老師或學生們在介紹無人飛行器時的神情, 可以想見對他們而言,這些飛行器不單純只是一個研究專題而已,更重要的是過程中所學到的知識,以及看見飛行器順利升空的那股喜悅。另外,鄒杰烔老師也認為:「學校應該推廣機電整合教育,結合不同科系的學生們互相學習,結合動手作的精神,讓學生們可以親手設計與製造各種專題。或是舉辦各種年齡層的比賽,從小紮根,以培養出更多基礎深厚的人才。」

無論是在臺灣還是在世界上,無人飛行器的發展可說正處於從學術、軍事應用轉入商業應用的階段,相信未來也會是大熱門。AESI 實驗室的設立與他們進行的研究,可說是為國內該領域注入了開發的活水。希望AESI實驗室能夠繼續秉持著他們對飛行機器人的熱情,突破現有的領域,開發出更多不同類型的嶄新飛行器;同時也把這股熱情傳遞出去,帶動飛行機器人的各種應用研究,進而開創新產業的契機,讓臺灣在國際上展翅高飛。

AESI 實驗室成員合照。
AESI 實驗室成員合照。

虎尾科技大學航空機電系統整合實驗室
https://sites.google.com/site/nfumulticopter/

文章原文刊載於《ROBOCON》國際中文版2015/1月號

相關標籤:
文章難易度
馥林文化_96
54 篇文章 ・ 6 位粉絲
馥林文化是由泰電電業股份有限公司於2002年成立的出版部門,有鑒於21世紀將是數位、科技、人文融合互動的世代,馥林亦出版科技機械類雜誌及相關書籍。馥林文化出版書籍http://www.fullon.com.tw/


0

6
0

文字

分享

0
6
0

【2021諾貝爾化學獎】化學史的革命性進展:簡單又環保的「不對稱有機催化」

諾貝爾化學獎譯文_96
・2021/10/27 ・5691字 ・閱讀時間約 11 分鐘

本文轉載自諾貝爾化學獎專題系列,原文為《【2021諾貝爾化學獎】他們的工具帶給了建構分子的革命性發展

  • 譯者/曹一允|美國德州農工大學 Karen Wooley 教授指導下取得博士,現於日本萊雅公司進行研究。
  • 譯者/蔡蘊明|台大化學系名譽教授

他們的工具帶給了建構分子的革命性發展

化學家可以透過連接許多小的化學塊材來創造新分子,但控制這些看不見的物質,以所需的方式結合是很困難的。班傑明 • 李斯特(Benjamin List)和大衛 • 麥克米蘭(David MacMillan)獲得了 2021 年諾貝爾化學獎的桂冠,以表彰他們開發了一種新而巧妙的工具來建構分子:有機催化。它的用途包括研發新的藥物,以及使得化學更為環保。

許多行業和研究領域都須依賴化學家建構新功能分子的能力,那些可以是任何在太陽能電池中捕獲光或將能量儲存在電池中的物質,也可以是製造輕便跑鞋或抑制疾病在身體內進展的分子。

然而,如果我們將大自然建造化學物質的能力,與我們自己的能力進行比較,那我們就好像是長期的被困在石器時代一般。大自然的進化產生了令人難以置信的特殊工具,酵素(或稱酶),用於建構賦予生命形態的各種形狀、顏色和功能的分子複合物。最初,當化學家分離出這些化學傑作後,他們只能以崇敬的眼光看著。在他們自己的分子建構工具箱中的錘子和鑿子,顯得愚鈍和不可靠,所以當他們企圖複製大自然的產品時,往往最終會產生許多不需要的副產物。

精細化學的新工具

化學家添加到工具箱中的每一個新工具,都漸漸地提高了他們建構分子的精確度。緩慢但確實地,化學已經由用在石頭上的鑿子發展出許多精細的技藝。這對人類實在大有助益,而其中一些工具已經獲得諾貝爾化學獎的肯定。

獲得 2021 年諾貝爾化學獎的發現,已經將分子的建構拉到一個全新的水平。它不僅使化學更為環保,而且更容易製造不對稱分子。在化學分子的構築過程中,經常會出現一種狀況,就是可以形成兩種分子 —— 就像我們的手一樣 —— 是彼此的鏡像。尤其是在製造藥品時,化學家經常希望只得到這兩個鏡像中的一個,但卻很難找到有效的方法來做到這一點。李斯特和麥克米蘭為此研發出的概念 —— 不對稱有機催化 —— 既簡單又出色。實際上很多人都很納悶,為什麼我們沒有早點想到它。

真的,為什麼呢?這不是一個容易回答的問題,但在我們嘗試之前,需要快速地回顧一下歷史,我們將會定義「催化」(catalysis)和「催化劑」(catalyst)這兩個術語,並為 2021 年的化學諾貝爾獎奠定理解的基礎。

許多分子有兩種異構物存在,其中一種是另一種的鏡像,它們經常對身體產生完全不同的影響。例如,一種版本的檸檬烯分子具有檸檬香味,而其鏡像則聞起來像橘子。圖/諾貝爾獎官網

催化劑加速化學反應

在十九世紀,當化學家開始探索不同化學物質相互反應的方式時,他們有了一些奇怪的發現。例如,如果他們將銀放入含有過氧化氫(H2O2)的燒杯中,過氧化氫會突然開始分解成水(H2O) 和氧氣(O2)。但是促發這個過程的銀,似乎完全不會受到反應的影響。類似的,從發芽的穀物中獲得的一種物質,則可以將澱粉分解成葡萄糖。

1835 年,著名的瑞典化學家貝吉里斯(Jacob Berzelius)開始注意到其中的規律。在皇家瑞典科學院年度報告中,敘述物理和化學的最新進展時,他寫到了一種可以"產生化學活性"的新"力"。他列舉了幾個例子,其中只要有某一種物質的存在,就可讓化學反應發生,並指出這種現像似乎比以前認知的要普遍得多。他認為這種物質具有一種「催化力」,並稱這種現象為「催化作用」。

催化劑產生塑膠、香水和美味的食物

自貝吉里斯時代以來,大量的汗水流過了化學家的吸管,他們已經發現許多種催化劑,可以分解分子或將它們連接在一起。多虧了這些催化劑,他們現在可以開發出我們日常生活中使用的數千種不同的物質,例如藥品、塑膠、香水和食品調味劑。事實是,估計有世界 GDP 總量的 35%,在某種程度上涉及化學催化。

原則上,西元 2000 年之前發現的所有催化劑都屬於以下兩類之一:它們若不是金屬那就是酵素。金屬通常是極好的催化劑,因為它們具有特殊的能力,能在化學反應過程中暫時容納電子或將它們提供給其它分子。這有助於鬆開分子中原子間的鍵結,因此使得尋常時候很強的鍵結可以被打破,形成新的鍵結。

然而,一些金屬催化劑的問題是它們對氧氣和水非常敏感。因此,要使這些試劑正常運作,它們需要一個無氧和無濕氣的環境,而這在大規模的產業界很難實現。此外,許多金屬催化劑都是重金屬,可能對環境有害。

生命的催化劑以驚人的精確度運作

第二種形式的催化劑屬於一些稱為酵素(或酶)的蛋白質。所有的生物都具有數以千計的不同酵素,來驅動生命所必需的化學反應。其中有許多酵素是不對稱催化方面的專家,原則上,總是只生成兩個可能的鏡像中的一個。它們也並肩工作;當一個酵素完成反應時,另一個就會接管。通過這種方式,它們能以驚人的準確度建構複雜的分子,例如膽固醇、葉綠素或稱為番木虌鹼(strychnine)的毒素,它是我們知道的分子中最複雜的物質之一(我們將回到這一點)。

由於酶是如此有效的催化劑,1990 年代的研究人員試圖開發新的酵素變體,以驅動人類所需的化學反應。一個致力於此領域的,是總部設在美國加利福尼亞州南部的斯克里普斯(Scripps)研究所中,由已故的巴爾巴斯三世(Carlos F. Barbas III)所領導的研究小組。李斯特在巴爾巴斯的研究小組中獲得了博士後研究員的職位,此時一個絕妙的想法誕生了,從而導致今年諾貝爾化學獎其中的一項發現。

李斯特跨出了盒外來思考

李斯特在研究催化抗體(catalytic antibodies)。通常情況下,抗體會附著在外來病毒或我們體內的細菌之上,但斯克里普斯的研究人員重新設計了它們,使得它們反而可以驅動化學反應。

在研究催化抗體期間,李斯特開始思考酵素實際上是如何的運作。它們通常是由數百個胺基酸所構成的巨大分子,除了這些胺基酸,很大一部分的酵素也含有能幫助驅動化學反應的金屬。但是 —— 這就是重點 —— 許多酵素在沒有金屬幫助的情況下,也能催化化學反應。此外,反應只是由酶中的一個或幾個單獨的胺基酸所驅動的。李斯特跳脫出盒外所問的問題是:胺基酸是否必須是酶的一部分才能催化一個化學反應?或者一個單獨的胺基酸或其它類似的簡單分子,是否也可以達成同樣的工作?

產生具有革命性的結果

他知道 1970 年代初就有人研究過,用一種名為脯胺酸的胺基酸作為催化劑 —— 但那是 25 多年前的事了。當然,如果脯胺酸真的是一種有效的催化劑,當然有人會繼續研究它吧。

這或多或少是李斯特的想法;他認為沒有人繼續研究這一現像的原因,是發現效果不是特別好。 在沒有任何真正的期待下,他測試了脯胺酸是否可以催化一種「醛醇反應」(aldol reaction),將其中來自兩個不同分子的碳原子結合在一起。這只是一個簡單的嘗試,但令人驚訝的是,它立即奏效。

李斯特確定了自己的未來

通過他的實驗,李斯特不僅證明了脯胺酸是一種有效的催化劑,而且還認為這種胺基酸可以驅動不對稱催化反應。在兩個可能的鏡像產物中,其中的一個比另一個更易生成。

與之前測試脯胺酸作為催化劑的研究人員不同,李斯特了解它可能具有的巨大潛力。與金屬和酵素相比,脯胺酸是一個化學家夢幻的工具。它是一種非常簡單、廉價且環保的分子。當他在 2000 年 2 月發表他的發現時,李斯特將使用有機分子進行的不對稱催化,描述為一個具有很多機會的新穎概念:"這些催化劑的設計和篩選是我們未來的目標之一"。

不過他並不孤單,在加利福尼亞北部的一個實驗室裡,麥克米蘭也在朝著同樣的目標努力。

麥克米蘭將敏感的金屬拋諸腦後

兩年前,麥克米蘭剛從哈佛搬到加州大學伯克萊分校。他在哈佛曾致力於改善使用金屬的不對稱催化反應,那是一個受到許多研究人員關注的領域,但麥克米蘭注意到,為何研究人員開發的催化劑在工業界卻很少使用?他開始思考原因,並認為那是因為敏感的金屬使用起來很困難,而且太貴了。一些金屬催化劑所要求的無氧無濕氣的條件,在實驗室中運作相對簡單,但要在這種條件下進行大規模工業製造是很複雜的。

他的結論是,如果要讓他正在開發的化學工具有用,他需要一個新的思維。所以,當他搬到伯克萊時,他把金屬拋在腦後。

開發了一種型式更簡單的催化劑

取而代之,麥克米蘭開始設計簡單的有機分子 —— 就像金屬一樣 —— 可以暫時提供或容納電子。在這裡,我們需要定義什麼是「有機分子」 —— 簡而言之,那是建構所有生物的分子。他們擁有一個穩定的碳原子骨架,各種活性化學基團可附著在這個碳骨架上,它們通常含有氧、氮、硫或磷。

因此,有機分子是由簡單而常見的元素組成,但是,取決於它們是如何組合在一起的,它們可以具有複雜的性質。麥克米蘭的化學知識使得他認為,若要用有機分子來催化他感興趣的反應,它需要能夠形成一個「亞胺離子」(iminium ion),這個離子包含了一個氮原子,而且對電子具有天生的親和力。

他選擇了幾種具有正確特性的有機分子,然後測試了它們驅動狄耳士-阿德爾(Diels-Alder)反應的能力,化學家用這個反應來建構碳原子環。正如他所期盼並相信的那樣,它們運作得非常出色。其中的一些有機分子,在不對稱催化方面的表現也很突出。在兩個可能的鏡像產物中,其中一個佔了 90% 以上。

麥克米蘭創造了有機催化一詞

當麥克米蘭準備發表他的結果時,他意識到自己發現的催化概念需要一個名字。事實上,研究人員雖早已成功地使用有機小分子催化化學反應,但這些都是個別單獨的例子,沒有人意識到這種方法可以被推廣。

 麥克米蘭希望找到一個術語來描述這個新方法,如此一來其他研究人員就能夠理解,尚有更多有機催化劑仍未被發現。他的選擇是「有機催化」(organocatalysis)。

於 2000 年 1 月,就在李斯特發表他的發現之前,麥克米蘭送出了他在科學期刊上發表的原稿。文章中的引言寫著:

"在此,我們介紹了一種新的有機催化策略,而我們預計這個新策略將適用於一系列的不對稱轉化。"

有機催化應用的蓬勃發展

李斯特和麥克米蘭各自獨立地發現了一個全新的催化概念。從 2000 年至今此領域的發展幾乎可以比擬為淘金熱,其中李斯特和麥克米蘭保持著領先地位。他們設計了大量廉價且穩定的有機催化劑,可用於驅動各式各樣的化學反應。

有機催化劑不僅一般由簡單分子組成,在某些情況下 —— 就像自然界的酵素一樣 —— 它們可以在輸送帶上工作。以前,在化學生產過程中,需要對每個中間產物進行分離和純化,否則副產物的量會太多,這導致了在化學合成的每個步驟中都會有一些物質損失。

有機催化劑的寬容度則比較高,因為相對而言,合成過程中的幾個步驟可以連續進行,這稱為串級反應(cascade reaction),可以減少許多化學合成中的浪費。

番木虌鹼的合成效率提高了 7,000 倍

一個有機催化使分子建構更有效率的例子,是合成天然且極其複雜的番木虌鹼分子。許多人會從謀殺案件小說女王阿加莎・克莉絲蒂(Agatha Christie)的書中認出番木虌鹼。然而,對於化學家來說,番木虌鹼的合成就像一個魔術方塊:一個步驟越少越好的挑戰。

在 1952 年首次合成出番木虌鹼時,需要經過 29 種不同的化學反應步驟,只有 0.0009% 的起始物被轉換成產物,剩下的都浪費掉了。

到了 2011 年,研究人員能夠使用有機催化和串級反應,在僅僅 12 個步驟中建構番木虌鹼分子,生產過程的效率提高了 7,000 倍。

有機催化在藥物生產中最為重要

有機催化對經常需要不對稱催化的藥物研究產生了重大影響。在化學家可以進行不對稱催化之前,許多藥物分子都含有兩個鏡像的異構物。其中一個是有活性的,而另一個可能有時會產生不良的影響。一個災難性的例子是 1960 年代的沙利多邁(thalidomide)醜聞,沙利多邁藥物分子的一個鏡像,導致數千個發育中的人類胚胎產生嚴重畸形。

使用有機催化,研究人員現在可以相對簡單地製造大量不同的不對稱分子。例如,他們能以人工方式來合成具有治療潛力的物質,否則就只能從稀有植物或深海生物中,分離出微量的相同分子進行研究。

在製藥公司,這種方法還用於簡化已知藥物的生產。這方面的例子包括用於治療焦慮和抑鬱的帕羅西汀(paroxetine),以及用於治療呼吸道感染的抗病毒藥物克流感(oseltamivir)。

簡單的構想往往是最難設想的

我們可以很簡單地舉出數千個如何使用有機催化的例子 —— 但為什麼沒有人更早提出這種簡單、綠色且廉價的非對稱催化概念?這個問題有很多答案,其中一個是簡單的構想往往是最難設想的。我們的觀點被這個世界應該運作的模式,先入為主且強烈地遮蔽了,例如只有金屬或酵素才能驅動化學反應的想法。李斯特和麥克米蘭成功地打破了這些先入為主的想法,找到了困擾化學家數十年問題的巧妙解方。因此,有機催化劑才能夠 —— 在此時此刻 —— 為人類帶來莫大的裨益。

參考資料

諾貝爾化學獎譯文_96
952 篇文章 ・ 247 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策