0

0
0

文字

分享

0
0
0

【活動紀實】M.I.C. ╳ IBM雲端講座:雲動一下

Zobot
・2014/11/26 ・2179字 ・閱讀時間約 4 分鐘 ・SR值 512 ・六年級

-----廣告,請繼續往下閱讀-----

人類的運算史在IBM公司成立後寫下許多新頁,網路成為生活必需品,因應而生的「雲端」也迅速普及。進出雲端好像進出自家廚房一樣容易,而且人人都在使用,那麼廚房禮節就不能不重視。

雲端普及後資訊流通量大增,Big data改變了一些傳統產業,也帶動一些新興產業,究竟這些轉變會如何影響生活呢?

莊士逸:IBM 的步入雲端之路

莊士逸
講者:莊士逸Steve | 人稱「雲神」IBM雲端運算資訊系統規劃首席顧問

IBM的運算史

扳手指和數石頭是人類最早的計數方式,而後者讓計數範圍從十根手指頭解放出來,算是一個小小的進步,結繩記事也是運算史上一個里程碑。又過了很久,算盤出現,之後人類的計數工具並沒有太大突破。直到近代,好像要把落後進度趕回來似的,運算工具從人工變成機械,接著迅速進入數位時代,人類文明跟著起飛。

-----廣告,請繼續往下閱讀-----
  • 1911年 IBM誕生
  • 1920年 第一台機械式計算機出現
  • 1957年 第一台電子化計算機出現
  • 1963年 台灣擁有第一台IBM電腦 (小趣事:舊時道路坑洞很多,電腦硬體在運送過
  • 中被震壞,所以載回修理時,就改用當時最平穩的交通工 具-牛車。)
  • 1969年 人類第一次登上月球;IBM產品的運算能力,讓太空旅行不再是夢。
  • 1994年 BBS出現
  • 2008年 雲端科技出現

運算能力對人類的影響,不僅發生在實驗室中,日常生活的便利性,例如鐵路售票系統、交通疏運系統等,都有賴這些技術。

雲端應用

“no matter what business you’re in, you’re now in the business of knowing."

現在資訊科技的應用有四大趨勢-雲端運算(Cloud)、資料分析(Analysis)、行動應用(Mobile)、社交媒體(Social-media),簡稱CAMS。

資訊產品越來越普遍,每個人產生或需要的資料量大增。這些龐大的資料若各自儲存在自己的電腦或手機裡,並不實際,我們需要雲端來存放這些資料。

-----廣告,請繼續往下閱讀-----

雲端的出現增加資訊產品的實用性,我們順勢迎接一個萬物互聯的世界(Internet of Things)。各類Big data的應用應運而生,例如汽車上裝感測器所記錄到的駕駛習慣Big data,可作為保險公司調整保費的依據。

「男孩與他的原子:全世界最小的電影」

過去儲存一位元(1 bit)的資料,需要百萬顆原子,而IBM的技術將大小減少到只需要十二顆原子就夠了!打個比方,若將從古到今所有電影作品儲存起來,記憶體只會有一片指甲大。

1997年超級電腦深藍(Deep Blue)打敗西洋棋世界冠軍;2011年第一具擁有人工智慧(AI)的機器人誕生;五年內我們會進入人工智慧與原子的世界。

-----廣告,請繼續往下閱讀-----

對於雲端的迷思

雲端為了資訊流通便利而存在,但擁有便利的另一面,是資訊安全、隱私、版權等問題一一浮現。究竟我們應以什麼樣的態度使用雲端?雲端提供的服務和便利性應該到何種程度?又相關法規的訂定是否實用且合理呢?

我們或許可以將「雲端」視為一種如同水電瓦斯般的公共用品(Utility)。我們可以對雲端的品質有所要求,就如同要求自來水質、瓦斯氣壓穩定一般。同時對於雲端的安全性,我們也應該負些責任,就像檢查自家管線有無漏氣一般。

想像一個使用雲端服務的經驗,將它比擬成製作Pizza的過程;我們自己配料並將Pizza端進廚房(雲端)烘烤,烤完後端出廚房(雲端)享用。烘烤過程的安全性與Pizza的美味程度,當然與廚房設備有關,但使用者的習慣和態度也是很大的因素。


丁俊宏:雲端虛擬手機

丁俊宏
講者:丁俊宏Sam | VMFive共同創辦人兼CEO

-----廣告,請繼續往下閱讀-----

講者曾經發想,是否能夠讓一支手機,可同時使用 Android 和 iOS 系統?這個點子聽起來相當吸引人,可惜因為某些原因並未實現。不過失敗之後,故事才要展開,講者把他的創意和對市場的敏感度帶到更多地方,甚至播下開發人才的種子。

AppUniverz 台灣創新行動服務推廣協會

Sam 首先回到清華大學推動校園創業,成立一個鼓勵學生動手實作、幫助產官學合作的非營利組織。參與學生將分成許多小組各自研發不同的App,一期活動下來,會聽到許多學生的創業想法。

Podinx庖丁行動科技

Sam 覺得寫程式要像庖丁解牛一般游刃有餘,所以為公司取這個名字。這次他的服務對象不再是系統端,而是為行動端的客戶開發軟體,例如KTV 點歌軟體「金嗓」、心跳偵測器等。

Boii保益科技

相信大部分的人對自己的保單內容一無所知,買保險時通常也是跟著保險業務員的說詞來選擇保險內容。Sam 看出保險業有資訊不對稱的問題,於是開發一個軟體,將各家壽險公司的保險理賠項目以變數表示,讓電腦程式作排列組合,投保人可對保單內容一目瞭然。

-----廣告,請繼續往下閱讀-----

VMFive

之前幾次創業,市場都在國內,Sam希望這次能邁向國際,而他成功了。讓 VMFive 團隊在 TechCrunch Beijing 贏得冠軍的產品 AdPlay,是一個可讓使用者決定是否要點開App廣告並在瀏覽器上先試用的系統。

AdPlay之所以成功,除了因為不用下載就可體驗、在0.1秒內判斷行動端環境並提供適當服務、能在不同行動裝置和作業系統使用等特點,最重要在於它將使用者下載的行為,從「被動」變成「自願」。

這個系統還會記錄使用者試玩時的行為,例如在特定狀況下會按什麼鍵。Big data可以供遊戲開發商參考,設計使用者介面、預測熱門遊戲類型等。

【關於M.I.C.】
M.I.C.(Micro Idea Collider)微型點子對撞機是PanSci定期舉辦的小規模科學聚會,約一個月一場,為便於交流討論,人數設定於三十人上下,活動的主要形式是找兩位來自不同領域的講者,針對同一主題,各自在14分鐘內與大家分享相關科學知識或有趣的想法,並讓所有人都能參與討論,加速對撞激盪出好點子。請務必認知:參加者被(推入火坑)邀請成為之後場次講者的機率非常的高!

-----廣告,請繼續往下閱讀-----
文章難易度
Zobot
10 篇文章 ・ 0 位粉絲
PanSci 實習編輯 | 主修大氣科學。喜歡弄文字、玩音樂。傾向自然,不管是拿來讀的那種,渾身散發出來的那種,還是可以去野餐的那種。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

4

9
5

文字

分享

4
9
5
超乎想像的運算力:量子電腦時代來臨,幾件你需要知道的事
科技大觀園_96
・2021/08/14 ・4039字 ・閱讀時間約 8 分鐘

臺灣大學 IBM 量子電腦中心主任張慶瑞表示,IBM 希望 15 年內讓量子位元數突破千萬,屆時傳統電腦耗費「萬年」才能計算的線性代數難題,量子電腦在數分鐘就可迎刃而解,因此現在密碼學的系統必須調整,立即進入「抗量子」時代。

為什麼「量子電腦」像隻巨獸般無所不能呢?難道它是「超級電腦」的加強版,由更多的位元組成嗎?不是的,傳統電腦和量子電腦是兩種截然不同的資料處理形式。

IBM量子電腦的內部構造,上面的一根根的都是同軸電線。(圖/flickr IBM Q,https://www.flickr.com/photos/ibm_research_zurich/32390815144/in/album-72157663611181258/)
IBM量子電腦的內部構造,上面的一根根的都是同軸電線。(圖/flickr IBM Q,) 

神秘的量子行為,連愛因斯坦都無法接受 

傳統電腦以位元(bit)的形式處理資料,每一個位元會在兩種狀態中切換, 這兩種狀態被標為 0 和 1;量子電腦則用量子位元(qubit)來做, 它可以 0、1 的線性組合的疊加態。 

量子位元在疊加態(superposition)時,張慶瑞主任表示,假如把位元的位置以球體標示,南、北極位置分別代表 0 和 1,傳統電腦的位元只能在兩極之間切換,但若是量子位元疊加時,它能在二維球面上任何位置,不限於南北極。 

-----廣告,請繼續往下閱讀-----
傳統電腦與量子電腦的位元差別。(圖/沈佩泠繪)
傳統電腦與量子電腦的位元差別。(圖/沈佩泠繪) 

量子電腦的具體表現,可以用「翻硬幣」的量子博弈遊戲來想像,一個黑盒子中有一枚硬幣,你跟電腦輪流去黑盒子裡翻硬幣,你可以選擇翻或不翻,你和電腦都不會知道彼此對硬幣做了什麼,數輪下來,打開盒子如果是人頭朝上就是你勝,反之就是電腦勝。

張慶瑞表示,如果是古典博弈,你跟古典電腦的勝率各是一半一半,因為古典行為只有翻或是不翻,位元只能以 0、1 兩種方式呈現;但量子電腦不一樣,它在黑盒子裡可能不直接翻成正或反面,而可能是將硬幣「轉動」起來,而這個量子轉動,不懂量子策略的人無法察覺。最後,只要你一開蓋觀測,硬幣就會變成反面朝上,量子電腦勝率達百分之百。

這聽起來非常不可思議,對吧!連愛因斯坦也難以接受量子力學,他曾說:「是不是只有當你在看它的時候,月亮才在那裡呢?」這個奇怪問題點出「量子行為過程無法被觀測」的神秘性質。沒有人知道在黑盒子裡,量子電腦到底對硬幣做了什麼事情,量子具體處在什麼位置,只要我們一觀測,量子疊加和糾纏等行為便會消失,量子就恢復古典粒子行為。

「要了解這個現象,恐怕要讀個十幾年物理學了。但現在量子電腦都被製造出來,你不如就接受它、用它吧!」張慶瑞笑著說。 

-----廣告,請繼續往下閱讀-----
臺大IBM量子電腦中心主任張慶瑞曾至IBM參訪與量子電腦合照。(圖/張慶瑞提供)
臺大 IBM 量子電腦中心主任張慶瑞曾至 IBM 參訪與量子電腦合照。(圖/張慶瑞提供) 

量子糾纏 帶來雙指數成長的計算能力

量子的神秘力量不只如此,當粒子處於量子狀態時會有糾纏的特性,又稱為「量子糾纏」(quantum entanglement)。如同字面上的意思,「糾纏」指的是數個量子綁在一起成為命運共同體,張慶瑞提到,這就是「你泥中有我,我泥中有你」,彼此的狀態會連動,力量還能夠加乘,同時處理不同於古典電腦的計算。

大家都聽過「摩爾定律」(Moore’s law),指的是積體電路上容納的電晶體數量,每隔兩年便會增長一倍,大致說明電腦運算能力會呈指數型的成長,即 2¹ 、2²、2³ 。不過,張慶瑞表示,纏繞特性會讓量子電腦的計算能力以「雙指數成長」,即 2、2、2,這是今年Google量子人工智慧實驗室主任 Hartmut Neven 所提出的,又稱為 “Neven Law” [註1]

去年世界最快超級電腦 Summit 每秒能夠執行 20 億億次(2*1018)的浮點運算,它的非揮發性記憶體(NVRAM)達 800GB(gigabyte,10億位元組) [註2]。但張慶瑞提到,如果能控制量子彼此糾纏,並經過運算的除錯程序,量子電腦就能以 40 個左右邏輯量子位元,達成「兆」位元(1012)才有的運算能力,目前一般認為一個有除錯功能的邏輯量子位元,可能需要一千到一萬左右的物理量子位元組成。

「這很難做到!」張慶端表示,目前 IBM 開放 5 個量子位元供大眾使用,只有兩位元糾纏而已,臺大與 IBM 合作可使用 20 個量子位元,也沒有全部位元糾纏。今年十月 IBM 53 個量子位元的新機器即將上線,預計有 16 個量子位元可以直接糾纏 [註3] 。 

-----廣告,請繼續往下閱讀-----
圖左上是IBM 20qbits系統,圖下是50qbits系統示意圖,可以發現量子位元沒有全部彼此互聯,圖右上則是量子處理器的封裝照。(圖/flickr IBM Q,https://www.flickr.com/photos/ibm_research_zurich/38270974841/in/album-72157663611181258/)
圖左上是 IBM 20qbits系統,圖下是 50qbits 系統示意圖,可以發現量子位元沒有全部彼此互聯,圖右上則是量子處理器的封裝照。(圖/flickr IBM Q

 張慶端進一步解釋,量子難以糾纏是因為粒子是很難達到量子狀態,即便達到量子狀態,要長時間控制它也不容易,像 IBM 就採超導體材料製造量子位元,並以微波控制位元,但超導體必須在接近絕對零度(-273.15℃)的嚴苛環境下運作,亦有相干狀態壽命短等許多問題待克服,目前各國科學家還在尋求不同方式突破,主要當然政府也砸錢支持才會有突破。

為了維持超導體的低溫,量子電腦下方會裝設稀釋冷凍器。(圖/flickr IBM Q Credit: Graham Carlow,https://www.flickr.com/photos/ibm_research_zurich/26774588908/in/album-72157663611181258/)
為了維持超導體的低溫,量子電腦下方會裝設稀釋冷凍器。(圖/flickr IBM Q Credit: Graham Carlow) 

量子電腦的應用:量子通訊、量子金融  

目前世界上量子電腦商業運轉的進程是 IBM 量子電腦 53 位元,去年(2018)Google 發表 72 位元的量子處理器,但並未提供大眾使用。張慶瑞表示,量子電腦至少要 500 位元以上才能逐漸顯現威力,並進入量子優勢的階段。儘管量子電腦離商用還有段距離,不過現階段量子科技已在量子通訊及軟體應用上百花齊放呢! 

IBM量子電腦實驗室,電腦裝在白色的罩子中受保護。(圖/flickr IBM Q,https://www.flickr.com/photos/ibm_research_zurich/38296273694/in/album-72157663611181258/)
IBM 量子電腦實驗室,電腦裝在白色的罩子中受保護。(圖/flickr IBM Q

張慶瑞提到,糾纏的量子之間,當一方狀態改變,另一方也會跟著變,所以開發量子網路系統就能增加訊息傳遞效率,因為知道一方的內容,就能得知另外一方的訊息。再者因為量子不可測量的性質,如果以量子作為秘密鑰匙,任何嘗試取得密碼的行為,都會造成量子狀態改變,因此可確保通訊無法被竊聽。

軟體開發以及應用部分正是「臺大 IBM 量子電腦中心」主攻的部分,張慶瑞提到今年在科技部支持下與 IBM 合作成立量子電腦中心,提供臺灣學界連接進入 IBM Q 系統的服務平臺。

-----廣告,請繼續往下閱讀-----

目前 IBM 提供 20 個量子位元供臺灣的學術界成員使用,主要著墨的部分有兩類,一是處理基礎物理和化學的計算問題;二則是解決特定問題,尋找最佳解,例如:貨車要跑 100 個地點配送貨品,如何配送最有效率;工廠進出貨如何管理最有效率,金融最佳投資與風險控管等。

「現今 70% 量子電腦相關的新創公司,都只針對一個特定問題來研究與發展量子電腦解決方案。」張慶瑞表示,量子電腦最適合解複雜和大數據的難題,量子人工智慧、量子金融與區塊鏈都是很熱門的題目,

根據 IBM 報告估計,他們期待在 15 年後能進入千萬量子位元時代,也就是有超過 1000 個除錯的邏輯量子位元。屆時不用量子電腦就會喪失競爭力,因此即便現在硬體還不到位,新創公司也要搶奪先機、申請專利。

「我現在常跟大學生開玩笑說,你們及你們的下一代,應該無法脫離量子電腦了!五十歲以上可以不學,但是 20 歲以下必須要立刻開始。」張慶瑞坦言,這兩年大家才驚覺量子電腦的時代即將來臨,但大多並不重視,就如同 1968 年個人電腦剛出現一樣,當時並不知道現在會有人手多機的世界。

-----廣告,請繼續往下閱讀-----
IBM 5位元的量子晶片(圖/flickr IBMQ,https://www.flickr.com/photos/ibm_research_zurich/26093923343/in/album-72157663611181258/  )。
IBM 5 位元的量子晶片(圖/flickr IBMQ )。 

在家就能用量子電腦了!跟上前沿科技的第一步 ,從學寫量子電腦程式開始

IBM 在 2016 年就推出 IBM Q5 五位元量子電腦,供大眾在線上體驗量子電腦,在家就可以在 IBM Q Experience上註冊帳號,雲端連線使用它了!

至今全球約有 18 萬名用戶在 IBM 量子電腦上做超過1千萬量子電腦模擬計算,並發表超過 150 篇量子電腦相關文章,台灣目前則有約 50 名用戶 [註4] 。不過目前它沒有辦法像現在電腦一樣友善,有各種軟體直接幫你解答,你必須要自己寫程式告訴它:問題是什麼及如何解決問題。

不過,學習量子電腦的程式語言並不會太難,所以全球目前有許多聰明的高中生也在使用。張慶瑞表示,只是你要懂一點物理與數學,又有 Python 的程式語言基礎,把一些量子概念像是 Hadamard gate(H gate)等概念加入程式中,努力就可以學會。

臺大 IBM 量子電腦中心不定期開設量子電腦的入門課程,臺大校內也有選修課,每個月巡迴到臺灣各大學舉辦量子電腦課程。目前正預備辦理高中老師的培訓,希望也能在高中推廣量子計算的應用,培育未來的人才。九月底科技部也與量子電腦中心合辦「 量子電腦導航」,內容包括:量子電腦與其計算原理、量子程式教學、量子邏輯閘初用,大家可以至臺大 IBM 量子電腦中心查詢相關活動。

-----廣告,請繼續往下閱讀-----

如果覺得學寫程式太可怕,不妨就下載 IBM 推出的 “Hello Quantum” 的手機遊戲吧!用破關解題的方式,逐步認識量子電腦的運算規則。破關征服它後,說不定你會愛上它。 

臺大IBM量子電腦中心(圖/臺大IBM量子電腦中心提供)
臺大 IBM 量子電腦中心(圖/臺大 IBM 量子電腦中心提供) 
所有討論 4
科技大觀園_96
82 篇文章 ・ 1125 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

0
3

文字

分享

0
0
3
史上第一部全自動的計算機——艾肯與 IBM 的恩怨情仇│《電腦簡史》數位時代(八)
張瑞棋_96
・2020/10/12 ・2932字 ・閱讀時間約 6 分鐘 ・SR值 527 ・七年級

-----廣告,請繼續往下閱讀-----

當貝爾實驗室的史提畢茲已經在打造複數計算機,比他更早提案開發數位計算機的艾肯還在苦等。好不容易 IBM 願意開發,美國又捲入二次大戰戰局,究竟艾肯能否如願完成夢想……?

本文為系列文章,上一篇請見:終端機雛形、遠端操控、數據傳輸的首創者——史提畢茲│《電腦簡史》數位時代(七)

艾肯鍥而不捨,IBM 終於同意開發第一部通用型計算機

1937 年 11 月,還是博士生的艾肯帶著企劃案到 IBM 簡報,希望能說服他們也為科學家開發計算機。是的,很多科學家與艾肯一樣深受計算之苦,IBM 聽完之後深表同意。不過他們希望艾肯先去哥倫比亞大學看看,也許他會在那裡發現他想要的東西。

原來早在 1933 年,IBM 就曾接受天文學教授艾可特 (Wallace Eckert) 的提案,為他改造 IBM 601 商用計算機,用來計算天文物理的方程式。艾可特隨後還自己設計一套控制系統,將改造的 IBM 601、印表機,與打孔機連接起來,成為近乎全自動的機器。如果艾肯可以接受這套系統,IBM 就不用另外開發設計了。

IBM 601 商用計算機。圖:WIKI

艾肯拜訪之後,發現這套系統運作過程還是需要人工介入,不是全自動化。而且這台改造的 IBM 601 主要在於求取內插值,與他設想的通用型計算機相去甚遠,因此仍堅持得重新開發設計。

-----廣告,請繼續往下閱讀-----

IBM 要求他與工程師先擬出詳細規格與研發成本,才能評估是否要投入開發。好不容易報告完成,IBM 高層又爭辯許久,無法取得共識。在此同時,哈佛大學自己內部也有不少的反對聲浪,質疑購置新型計算機的必要性。

直到 1939 年 2 月,IBM 董事長華森 (Thomas Watson) 才終於親自拍板定案,承諾無償為哈佛大學開發艾肯所規劃的「自動循序控制計算機」(Automatic Sequence Controlled Calculator,簡稱 ASCC )。恰好此時艾肯也已拿到博士學位,並在哈佛大學取得教職,便順理成章代表哈佛,繼續與 IBM 的團隊合作,自五月開始展開研發工作。

哈佛架構 vs. 馮紐曼架構

ASCC 沿用 IBM 原有的打孔卡片機制來輸入程式,但因為它是通用型計算機,所要執行的程式可能會很長,因此將打孔卡片改為打孔紙帶。打孔紙帶上的程式並不會先載入記憶單元,而是一次讀入一個指令,控制單元馬上根據指令動作。這麼做的好處是不佔用記憶單元,可以節省成本。但缺點是運算速度受限於讀取打孔紙帶的機械動作,結果 ASCC 做一次乘法要費時 6 秒,比楚澤 1941 年就造好的 Z3 還慢。

現代電腦採用的是「馮紐曼架構」,程式與數據都先全部載入記憶單元,然後再開始運作。像 ASCC 這樣,程式與數據分開,不共用記憶單元的架構,後來就稱為「哈佛架構」。

-----廣告,請繼續往下閱讀-----
ASCC的程式用打孔紙帶輸入。圖:WIKI

ASCC 的運算方式仍是十進位制,因此對 IBM 的工程師而言,只要稍加修改原有運算單元就可以處理加減法。困難點在於 ASCC 要涵蓋三角函數、微分方程、遞迴函數、……等所有數學運算,但這些工程師對高深數學並不在行,無從想像如何設計。艾肯因此扮演關鍵的角色,必須一一拆解運算的步驟,講述給他們了解。

問題是,艾肯給予的只是描述性的說明,而不是數位邏輯,工程師還是得自己想出對應的邏輯電路。沒想到這竟為日後 IBM 與哈佛的決裂埋下了禍因。

艾肯入伍服役,三年後代表海軍徵用 ASCC

1939、1940 這兩年暑期,艾肯全程都待在 IBM 提供諮詢。但到了 1941 年,他被徵召到海軍服役,無法繼續參與研發,只能委託物理系一位研究生接手他的工作。在此同時,IBM 的工程師也改以國防任務為先,無法全心投入 ASCC 的開發,結果原本預計兩年的工程拖到 1943 年底才完成。

1944 年初,ASCC 在哈佛大學的物理研究室完成安裝,長達十五公尺,高兩米四,有 4.3 噸重,零件多達 765,000 個,是當時最大的計算機,直到一年半後才被貝爾實驗室的 Model V 超越。

-----廣告,請繼續往下閱讀-----
ASCC 的左半部。圖:WIKI

安裝好才兩個月,艾肯便在當年四月重返哈佛,不過這次他是以海軍少校的身分回來接管 ASCC。戰爭時期國事為先,海軍決定徵用 ASCC,交由最熟悉的艾肯全權負責,帶領隨行人員計算雷達、磁場等軍艦遭遇的問題。

事實上,在海軍徵用前一個月,ASCC 就曾經為國效力。馮紐曼帶著兩位數學家前來,用 ASCC 計算原子彈的內爆模型,只是當時曼哈頓計畫仍屬絕對機密,哈佛與 IBM 的人員都不知道與原子彈有關。

艾肯獨攬發明之功,IBM 憤而與哈佛決裂

儘管 ASCC 已被海軍徵用,但這畢竟是 IBM 投入大量金錢與人力為哈佛開發的,預訂的捐贈典禮還是要照常舉辦,而艾肯自然是負責籌辦的最佳人選。捐贈典禮於 1944 年8 月舉行,不料艾肯準備的新聞稿中,竟然只將自己一人列為 ASCC 的發明者,完全沒有提及與他一起研究的那幾位 IBM 工程師。

IBM 董事長華森勃然大怒,刪除原本要給哈佛大學日後維持機器運作的經費,雙方的合作就此畫上句點,哈佛大學也乾脆將 ASCC 重新命名為「哈佛馬克一號」(Harvard Mark I)。

-----廣告,請繼續往下閱讀-----

二次大戰結束後,艾肯退役回歸教職。即使沒有 IBM,他仍分別於 1947 年與 1949 年,為海軍開發出功能更強的哈佛馬克二號與馬克三號。

第一宗有蟲的真實案例,程式 debug 的由來

值得一提的是,1947 年 9 月 9 日這一天,海軍的程式設計師發現馬克二號總是出錯,他們檢查了半天,最後發現原來是一隻蛾在繼電器上造成短路。他們把這隻蛾取下,用膠帶貼在工作日誌上,除了註明是在 F 板塊的第 70 號繼電器發現,還戲謔地寫上「發現第一宗蟲的真實案例」(“First actual case of bug being found”)。

原來打從 1870 年代開始,蟲 (bug) 這個字就用來形容機器中的瑕疵。如今竟然是一隻真正的昆蟲造成程式執行發生錯誤,而將牠移除後就恢復正常,從此電腦程式的偵錯工作就叫 ”debug” 了。

「發現第一宗蟲的真實案例」。圖:WIKI

艾肯心血雖成昨日黃花,百年樹人影響更久遠

其實艾肯代表海軍徵用哈佛馬克一號時,美國陸軍委託另一批人馬打造的計算機已在祕密進行中,所用的真空管開關速度遠勝繼電器,艾肯這些機電式計算機很快就要被電子計算機淘汰。儘管如此,哈佛馬克一號仍是電腦史上一個重要的里程碑。它是第一部真正全自動化的計算機,只要用打孔紙帶輸入程式與數據,就能自動完成計算,並將計算結果印製成表格,過程中完全不需人力介入。

-----廣告,請繼續往下閱讀-----

對艾肯而言,他也成功擔起傳承的使命,實現百年之前巴貝奇未竟的分析機夢想。

其實艾肯更大的貢獻在於作育英才。除了直接教導出霍普 (Grace Hopper) 、王安、……等舉足輕重的人物(霍普當年是海軍少尉,跟著艾肯去接管哈佛馬克一號,她後來寫出第一個編譯器,還領頭開發出第一個高階商用電腦語言「COBOL」;王安則是創辦「王安電腦」,首創電腦文書處理。),艾肯還首開先例,在哈佛大學開設可攻取碩士與博士學位的計算機學程,引領美國大學設立電腦科系的風潮。

這些艾肯直接與間接培育出來的電腦人才,比起他開發設計的計算機,對於電腦發展產生更久遠的影響。

張瑞棋_96
423 篇文章 ・ 998 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。