0

0
0

文字

分享

0
0
0

知識大圖解:圖解攝錄影機的運作原理

知識大圖解_96
・2014/10/23 ・951字 ・閱讀時間約 1 分鐘 ・SR值 504 ・六年級

(點擊看大圖)
(點擊看大圖)

數位攝影機如何捕捉、記錄高解析度影片呢?

現代數位攝影機的運作原理基本上與1980年代的大型VCR類比攝影機相同,兩者都包含了鏡頭、成像器和儲存媒體,但最大的不同是如今的攝影機將類比資料轉成了數位格式,而攝影技術整體也縮小成更實用、適合手持的大小。

攝錄影機透過鏡頭將現場光線的樣式聚焦在成像器上,成像器通常為CMOS感光元件或CCD(電荷耦合元件)。CCD是一種小半導體,可容納大約50萬感光單元(對光敏感的迷你二極體,可以測量光子數量,並且將光子轉換為電荷)。播放影片時,電荷強度會幫助攝錄影機判斷該點的光線強度。顏色則藉由測量綠色、紅色和藍色的程度決定,因為所有顏色都可由混合這三原色重現。

為了捕捉動態影像,CCD會將影片中的每格畫面傳送到主成像器後方,轉像系統中的外加感光器。這第二個感光器會將每個感光單位的電荷傳送到類比/數位轉換器,而第一層感光器則會自行清空,準備捕捉下一個影像。

最新的頂級攝錄影機雖然體型小,容納的技術卻多得驚人。舉例來說,日立的超高清攝錄影機(Super Hi-Vision)每秒可以拍下120張3300萬像素的影像,精細程度相當於IMAX電影。

什麼是感光元件

互補式金氧半導體(CMOS)感光元件是一種影像感應器,已取代多數行動電話、網路攝影機和數位單眼相機中的CCD。CMOS感光元件利用像素上的微小電晶體來個別捕捉每個點。電晶體會吸收並放大捕捉光點轉換而來的電荷,接著再透過電線傳送。

CMOS感光元件將影像處理和捕捉的功能整合在同樣的裝置上,耗電通常小於CCD,遲滯現象較少,也比較不涉及昂貴的製程。CMOS感光元件也因此常見於手機相機裡,因為手機正需要更便宜、省電的元件。CMOS感光元件因其線路很容易產生影像雜訊,畫質通常遜於CCD,因此後者常用於較高端的影像技術。

類比 VS 數位

數位與類比攝錄影機之間的最大差異在於資料的記錄方式。類比攝錄影機通常利用VHS磁帶記錄磁圖案,但有兩個最大的問題:需要大量的實體空間來存放卡帶,也需要硬碟上的虛擬空間;此外,類比資料每複製一次,就會「褪色」一些。相反地,資料數位化可以壓縮影像,在記憶卡或固態硬碟中所佔的虛擬空間少了許多。資料也可以原封不動地複製,不會像類比資料一樣隨時間褪逝。

本文選自《HOW IT WORKS知識大圖解 中文版》第01期(2014年10月號)

文章難易度
知識大圖解_96
76 篇文章 ・ 11 位粉絲
How It Works擅長將複雜的知識轉化為活潑有趣的圖解知識,編輯方式以圖像化百科呈現,精簡易懂、精采動人、深入淺出的圖文編排,讓各年齡層的讀者們都能輕鬆閱讀。

0

4
2

文字

分享

0
4
2
近在眼前的數位娛樂——智慧眼鏡的進化
鳥苷三磷酸 (PanSci Promo)_96
・2023/02/23 ・3277字 ・閱讀時間約 6 分鐘

本文由 Epson 委託,泛科學企劃執行。

元宇宙狂潮來襲,數位互動娛樂發展越來越多元!相信大家對 VR 眼鏡並不陌生,但是要人手一台卻還是有難度,反倒是 AR 科技越來越蓬勃發展!例如博物館將 AR 眼鏡結合手上的裝置做互動整合,讓展示的恐龍標本活生生活在你眼前;又或者是去兩廳院看劇,專屬的 AR 字幕體驗讓不同國家的觀眾朋友都能即時享受與深度導覽。

這種近在眼前的數位娛樂——智慧眼鏡到底是如何演進的?又有哪些技術關卡需要去突破呢?首先,需要先了解 VR、AR 甚至是更高深的 MR 跟 XR 是什麼?這些差異點又在哪呢?

數位娛樂——智慧眼鏡是如何演進的?圖/Envato Elements

AR、VR、MR、XR 傻傻分不清楚?

其實目前為止,大家所聽到的 AR、VR 和 MR,通通都屬於 XR(Extended Reality)「擴展實境」這個大概念下,只要這個設備或軟體能讓你體驗現實以外的資訊,甚至與之互動回饋,就都屬於 XR 唷!

近幾年,因 Meta 執行長祖克伯誓師進軍元宇宙而大紅的 VR(Virtual Reality)「虛擬實境」強調沉浸式體驗,只要戴上 VR 眼鏡,不論是在家或者前往 VR 虛擬實境遊樂園都可以讓你體驗到與哥吉拉對戰或是到虛擬鬼屋探險等有趣體驗。

然而,戴上 VR 眼鏡需要完全的感官遮蔽,以及高昂的售價與電腦運算,甚至是配戴上的重量不適、操作上的空間需求……等都是不容易克服的缺點,目前仍有待市場檢驗。

相較之下,AR(Augmented Reality)「擴增實境」就親近許多,早在 90 年代鳥山明的經典作品《七龍珠》作品中他就用了「戰鬥力探測器」這個裝置讓我們體會到甚麼叫做 AR,而現實世界中的戰鬥力探測器更是就在你眼前,例如:開車玻璃板上顯示速度的 HUD 就算是一種把虛擬資訊投影到現實物體,這就是標準的 AR 技術呀!

而談起 AR 就一定要提到,2016 年遊戲公司 Niantic 推出這款名為 Pokemon Go 遊戲,就在全球掀起了在各地抓寶可夢的熱潮,這股熱潮至今不減,也體現出了 AR 真正強勢之處:與現實環境結合。

Pokemon Go 體現了 AR 與現實環境結合。圖/Wikipedia

而這些年來,在許多自拍濾鏡或觀光集章活動也都是利用了 AR 科技,以現實環境的背景中呈現虛擬元素的特性,而這僅需要你我都有的智慧型手機就可以操作和看見虛擬的角色或頭飾,入門檻遠低於 VR,軟體開發的成本也比必須打造一個世界的元宇宙輕鬆不少。

既然 AR 都能把虛擬的資訊投影在現實的場域中,我們自然會更加貪心的想要和這些虛擬的角色互動,甚至是像阿湯哥《關鍵報告》中的技術一樣作為一個浮空的操控介面來使用,這時候我們需要的就不只是AR了,而是需要 MR(Mixed Reality)「混合實境」。

在 MR 技術中不僅有現實世界和虛擬世界的疊加,更強調虛擬元素可以和現實環境互相作用,例如:虛擬的車子可以偵測到你現實的桌子的邊緣而剎車,甚至你伸手碰觸虛擬元件會產生互動或是抓取效果,而這些技術恐怕就不是一支手機就能輕易辦到的了。要讓 AR 進入 MR,除了手機以外,還需要一個能擷取外部資訊的設備——AR 眼鏡。其實多年來 AR 眼鏡主要面對的難題是「畫面要清楚」、「顏色要飽和」、「不能對現實視線有太多干擾」同時還須具備「輕量化」與「舒適」等特點。

投影技術的演進突破,替智慧眼鏡帶來新的轉機

目前主流的 AR 眼鏡採用的是「全反射稜鏡」和「微投影迷你投影機」這兩個關鍵技術。AR 眼鏡上的「全反射稜鏡」針對眼球的折射率經過精密的計算和調整,可以完美在人的視網膜上呈現最清楚的影像,同時這種「全反射稜鏡」本身的光線通透度也高,因此仍能看到「全反射稜鏡」以外的現實世界景色,讓 AR 眼鏡提供的清晰影像與現實世界重疊在一起。

而要談到 AR 眼鏡另一個核心技術「微型化投影」,就不得不提到發展出最具實用與潛力的 AR 眼鏡——Epson 投影機廠商,在了解「微型化投影」技術前就必須先回顧 Epson 從 1989 年鑽研的投影技術發展至今的變化。

Epson 一開始製作的投影機採用的是 LCD,和螢幕最大的不同是它每一個投影畫素都使用了 3 片 LCD 之多,原來是因為光學原理上只要有藍紅綠三色,就可以組合出各種顏色,也就是 3LCD 投影技術。使用 3LCD 技術的投影機必須把背景燈泡的白光源先濾成三色光之後,再利用三片獨立的 LCD 調整各色彩的比例作調變,最後才把三色光合併成影像,再投影出來。

投影機為 Epson 主要產品之一。圖/維基百科

如此麻煩的反射流程,所需要的空間自然不小,而且經過這樣的折射和濾光以後,成色的飽和度和對比總會低一階,甚至會產生近看醜醜的紗門效應(SDE),這就是為什麼早期的投影機投出來的簡報往往不如電腦螢幕上預演的好看。當然投影機廠商也早就注意到這問題,因此也隨著手機螢幕一起從 LCD 演進到 OLED(有機發光二極體),帶來新的顯示革命!

OLED 又有甚麼厲害的呢?如果說 LCD 的液晶主要的功能是調色,那 OLED 厲害的就是「它自己會發光」!和傳統 LCD 面板需要一個光源與背板來反射光線進入濾光階段不同,LED 燈泡經過多位科學家的努力,甚至包含榮獲 2014 諾貝爾獎的三位日本科學家赤崎勇(Isamu Akasaki)、天野浩(Hiroshi Amano)、中村修二(Shuji Nakamura)研發出最後一個「藍光 LED」後,終於達成發出三原色的成就,自此螢幕和投影技術不再需要多餘的濾光和反射步驟,於是面板可以變得更薄,同時又有更好的對比度。而隨之而來的 OLED 技術讓面板脫離了對玻璃的依賴,並改用塑料底板,讓有如科幻道具的摺疊式手機和曲面螢幕能夠成真。

OLED 技術簡化了整個流程,成色還比原本的各種投影方式鮮豔飽和,很快地就大幅縮減了投影機的內部空間,成為露營狂熱者人手一機的便攜型投影機風潮。

但是問題來了!當投影機要放到眼鏡上時,其難度更是超越便攜投影機許多,再追求微型化的道路上「只有更小沒有最小」。而 Epson 早在 2011 就推出第一支 AR 眼鏡 BT-100,不斷朝輕量化與功能性研發,在 2016 年則推出了採用矽基有機發光二極體 Si-OLED 微投影技術的 BT-300,各家廠商也紛紛投入 micro OLED 投影的研發上,相信不久的將來又會有更厲害的 AR 眼鏡推出。

次視代智慧眼鏡 Moverio BT-40,豐富 5G 娛樂視野,獨享高畫質影音體驗。

現在可以看到照片中最新款的「次視代智慧眼鏡 Moverio BT-40」,這款 AR 眼鏡主打的最大特色就是提供可隨身攜帶的「專屬於你的 120 吋大畫面」,這麼大的畫面顯示卻只投影在你眼前,不僅擁有「高隱私」的特性,在長程旅行中,不管是搭飛機或是搭高鐵,只要戴上這個眼鏡就能直接把影片從手機投影到你眼前,解放雙手不用在手疼拿著平板啦,可以舒服自在的追劇或看電子書、讀期刊論文也行。

次視代智慧眼鏡 Moverio BT-40,加上「磁吸式遮光片」後能讓影像更加清楚,有助於專注在投影畫面中。

除了大尺吋觀影體驗之外,這款眼鏡更在博物館教育上大放異彩,如博物館把這款眼鏡結合接駁車,讓搭車的你也不無聊,虛擬博物館館長擔任導覽員為你解說各館區的歷史,進館後更能看到展示的恐龍標本在你面前復活,豐富了各種逛展體驗!

而 AR 眼鏡還有另一個好處就是個人化體驗,例如看電影或演唱會時,戴上 AR 眼鏡就可以看到自己專屬的字幕相關資訊,這樣的虛實整合字幕體驗,在劇院已經導入 Epson BT-40 眼鏡和 AR 眼鏡字幕系統,表演字幕可以即時傳送到正在戲劇院觀看表演的觀眾 AR 眼鏡中,觀眾可以選取語言還能調整位置和大小,甚至幫助聽障朋友們理解演出,下次有機會去看表演時,若有提供這樣的服務不妨租借嘗試看看喔!

鳥苷三磷酸 (PanSci Promo)_96
163 篇文章 ・ 273 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
2

文字

分享

0
0
2
終端機雛形、遠端操控、數據傳輸的首創者——史提畢茲│《電腦簡史》數位時代(七)
張瑞棋_96
・2020/10/05 ・3505字 ・閱讀時間約 7 分鐘 ・SR值 517 ・六年級

貝爾實驗室的史提畢茲打造出第一個繼電器加法器後,等了好幾個月才獲得主管批准,打造複數計算機。他為這台機器設計了許多首開先例的操作方式,包括多台輸入/輸出裝置、遠端操控、以電話線傳輸資料。就連「數位」 (digital) 這個詞都經他建議才普遍使用的。

本文為系列文章,上一篇請見:電腦先驅中的先驅——不為人知的楚澤│《電腦簡史》數位時代(六)

複數計算機——因長途電話而生,成為貝爾實驗室得力助手

1938 年春,楚澤在柏林打造 V1 已近尾聲之際,貝爾實驗室的史提畢茲終於等到主管的答覆。幾個月前,史提畢茲向主管展示只有兩個繼電器的陽春加法器 Model K,希望能夠進一步開發二進位的計算機。然而貝爾實驗室是 AT&T 成立的研究單位,研究的領域當然是以電話通訊為主。在主管眼中,繼電器是電話交換機的零件,史提畢茲卻想拿來搞數位計算機,與本業似乎毫不相干,因此遲遲未批准他的提案。

ModelKStibitz.jpg
只有兩個繼電器的 Model K。圖:Wiki

不過目前他們實驗室的確在計算上遇到瓶頸。主要是因為長途電話得靠訊號放大器增強訊號,但增強的結果,雜訊也跟著放大了,所以又得加上濾波器過濾雜訊。其中處理訊號的方程式牽涉到複數的計算(複數的基本形式是 a + bi,其中 a 與 b 是實數,i 是 -1 的平方根,稱為虛數),相當麻煩,兩數相乘就要六個步驟,相除更多達十二個步驟。

為了不要浪費數學家的時間,貝爾實驗室特地雇用一群女性計算員專門負責計算複數。雖然有機械式的四則計算器可以用,仍要耗費不少時間與人力,而且每一步驟都要先寫下計算的結果,再將它們按實部與虛部分別加總,這過程不免發生人為錯誤。於是史提畢茲的主管把他找來,確認他能開發出計算複數的計算機後,才同意進行,並指派設計交換機的資深工程師威廉斯 (Samuel Williams) 和他合作開發。

既然是專門計算複數,他們乾脆將這台機器取名為「複數計算機」(Complex Number Calculator)。史提畢茲針對複數計算的特性,設計成兩個運算單元同時運作,各自進行實部與虛部的計算。運算單元當然是使用繼電器,一共用了四百多個,但記憶單元則是改裝自現成的縱橫式交換機。

輸入/輸出裝置也是用傳遞電報的電傳打字機 (Teletype) 改裝而成,從打字機鍵盤輸入算式後,計算的結果會由同一台打字機列印在紙上。經過一年多的時間,複數計算機終於在 1939 年 10 月完工,可以在 45 秒內完成兩個複數的乘除。這計算速度似乎不是很快,但至少可以避免人為錯誤。

複數計算機的輸入/輸出裝置。圖:WIKI

為了有效利用複數計算機,當機器於隔年一月正式上線時,共外接了三台電傳打字機,讓不同部門的人員可以在原地操作,直接得到答案,不須走到機器所在的位置。當有人正在使用時,互鎖裝置 (interlock) 會自動啟動,防止第二個人再連進機器,以免干擾機器運作造成錯誤。複數計算機順利運作,從此成為貝爾實驗室的得力助手,直到進入 50 年代前才退役。

史上第一遭,透過電話線操作三百多公里外的計算機

1940 年 9 月 11 日,「美國數學學會」(American Mathematical Society) 在達特茅斯學院 (Dartmouth College) 舉辦年會,史提畢茲上台展示已經運作好幾個月的複數計算器(約莫此時在歐洲那邊,楚澤也在德國航空研究所展示他的 V2)。其實這台複數計算機並不在年會現場,它仍然安置在紐約的貝爾實驗室,年會舞台上只放了一台電傳打字機,兩者透過三百多公里的電話線相連。

史提畢茲在鍵盤輸入算式後,過沒多久電傳打字機就將答案列印在紙上,令現場聽眾嘖嘖稱奇。接著他邀請台下的數學家親自測試,複數計算器也都吐出正確答案,獲得普遍讚揚。

值得一提的是,有幾位即將在電腦發展中扮演重要角色的人物也在現場,包括馮紐曼、第一台通用型電子計算機的發明人莫奇利 (John Mauchly),以及「模控學 (cybernetics) 之父」維納 (Norbert Wiener)。

史上首度遠端遙控電腦的會場:達特茅斯學院的麥克那廳。圖:WIKI

二次大戰需大量防空火炮,射控系統急需自動測試

複數計算機獲得各界正面評價,史提畢茲本想乘勝追擊,爭取預算繼續改良計算機。不過對高層而言,花了兩萬美元的複數計算機已經夠用了,看不出改良的迫切性。而且此時貝爾實驗室正忙著軍方的委託案,為防空火炮的射控系統開發類比計算機,用來預判敵機的飛行路徑,實在沒有多餘人力,於是否決了史提畢茲的提案。不料一年之後,竟是軍方同樣的委託案,重啟了數位計算機的開發。

原來納粹軍隊在歐洲勢如破竹,美國眼見同盟國情勢危急,於是在 1941 年 6 月重新改組剛滿周年的「國防研究委員會」,另外成立「科學研究發展局」,同樣由凡納爾.布希領導,直接對總統負責。史提畢茲隨即被借調到科學研究發展局就職,加入射控 (Fire Control) 部門。

幾個月後美國宣布參戰,軍方的武器需求大增,貝爾實驗室隨即湧入大量訂單。原本貝爾實驗室都是靠人工計算並輸入敵機的模擬數據,以測試、修正類比計算機,如今遽增的測試工作已非人工作業所能負荷。

於是史提畢茲跳下來開發一套自動測試系統,他以複數計算機為基礎,同樣用繼電器設計出「內插值計算機」(Relay Interpolator),只要輸入描述飛行路徑的函數,計算機便利用內插法產出大量的數值,供射控系統模擬測試。

圖片下方中間即是射控系統的類比計算機。圖:WIKI

史提畢茲打造內差值計算機,進而設計通用型計算機

內插值計算機於 1943 年 7 月完工,用了 440 個繼電器,和複數計算機差不多,最大的不同在於運算程序由打孔紙帶控制,只要更換不同紙帶就能執行不同的內插法。這是美國第一部可程式化的數位計算機,比起楚澤的 Z3 已經晚了兩年,而且只做內插法的運算,不如 Z3 的用途廣。

史提畢茲隨後又設計了兩台計算機,同樣用於射控系統,但功能更強大,可以直接算出防空火炮的彈道,並即時與敵機的飛行路徑做比較。因為它們都是用繼電器打造的數位計算機,貝爾實驗室便按開發順序,將它們取名為 Mode lII 和 Model IV。這兩台計算機分別於 1944 年中與 1945 年初交給軍方使用,直到 50 年代末才退役。

由於這幾部計算機都相當成功,科學研究發展局打算投入五十萬美元,開發更大型的計算機,除了計算射表、彈道,還能讓軍方用來做各種計算。貝爾實驗室於 1944 年獲得這項通用計算機的開發案,規劃設計當然仍由史提畢茲操刀,型號依例按開發順序就叫 Model V(型號五)。

Model V 於 1946 年 7 月啟用,所用的繼電器超過九千個,重達 10 噸。它有兩套獨立的系統,各自有完整的控制單元、運算單元、記憶單元與輸入/輸出裝置,可以同時運算兩種不同問題,也可以合成一體處理較複雜的大型問題。兩套系統如何運作是由機器的主控單元指揮,主控單元有專屬的控制程式,相當於現代電腦的作業系統 (Operation System)。

安裝於美國陸軍「彈道研究實驗室」的Model V。圖:WIKI

史提畢茲創舉留後世,貝爾實驗室再端新技術

不過史提畢茲並未全程參與 Model V 的開發。1945 年二次大戰結束後,科學研究發展局也解除對他的借調,讓他歸建原單位。但史提畢茲決定不回貝爾實驗室,而是以私人顧問的身分為企業與政府機構提供諮詢服務。前幾年他主要還是在電腦領域,但後來就轉向生物醫學的研究了。

史提畢茲對電腦做出許多先驅性的試驗。複數計算機同時接了三台輸入/輸出裝置,雖然不能同時多人使用,仍算是後來電腦主機搭配多台終端機的最早雛型。而他在達特茅斯學院的數學年會上,完成史上首度遠端操控電腦的演示,開啟了操作電腦的另一種方式,同時證明了電話線傳輸數據的可能性。而且使用數位 (digital) 這個詞來指稱計算機也是史提畢茲率先倡議。

1942 年,他在科學研究發展局的會議中,建議計算機的類別應該用數位與類比來區分,而不是「脈衝」(pulse) 與類比。如果不是他,今天我們用的詞可能就是「脈衝電腦」、「脈衝化」、「脈衝時代」了。

至於貝爾實驗室,緊接著 Model V 推出精簡版的 Model VI 之後,就再也沒有投入計算機的開發。雖然如此,他們仍持續對電腦與網路做出許多重大貢獻,包括數據機、電晶體、行動網路、衛星通訊,乃至 UNIX 作業系統與 C 語言,都改變了數位時代的面貌。

張瑞棋_96
423 篇文章 ・ 704 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
知識大圖解:圖解攝錄影機的運作原理
知識大圖解_96
・2014/10/23 ・951字 ・閱讀時間約 1 分鐘 ・SR值 504 ・六年級

(點擊看大圖)
(點擊看大圖)

數位攝影機如何捕捉、記錄高解析度影片呢?

現代數位攝影機的運作原理基本上與1980年代的大型VCR類比攝影機相同,兩者都包含了鏡頭、成像器和儲存媒體,但最大的不同是如今的攝影機將類比資料轉成了數位格式,而攝影技術整體也縮小成更實用、適合手持的大小。

攝錄影機透過鏡頭將現場光線的樣式聚焦在成像器上,成像器通常為CMOS感光元件或CCD(電荷耦合元件)。CCD是一種小半導體,可容納大約50萬感光單元(對光敏感的迷你二極體,可以測量光子數量,並且將光子轉換為電荷)。播放影片時,電荷強度會幫助攝錄影機判斷該點的光線強度。顏色則藉由測量綠色、紅色和藍色的程度決定,因為所有顏色都可由混合這三原色重現。

為了捕捉動態影像,CCD會將影片中的每格畫面傳送到主成像器後方,轉像系統中的外加感光器。這第二個感光器會將每個感光單位的電荷傳送到類比/數位轉換器,而第一層感光器則會自行清空,準備捕捉下一個影像。

最新的頂級攝錄影機雖然體型小,容納的技術卻多得驚人。舉例來說,日立的超高清攝錄影機(Super Hi-Vision)每秒可以拍下120張3300萬像素的影像,精細程度相當於IMAX電影。

什麼是感光元件

互補式金氧半導體(CMOS)感光元件是一種影像感應器,已取代多數行動電話、網路攝影機和數位單眼相機中的CCD。CMOS感光元件利用像素上的微小電晶體來個別捕捉每個點。電晶體會吸收並放大捕捉光點轉換而來的電荷,接著再透過電線傳送。

CMOS感光元件將影像處理和捕捉的功能整合在同樣的裝置上,耗電通常小於CCD,遲滯現象較少,也比較不涉及昂貴的製程。CMOS感光元件也因此常見於手機相機裡,因為手機正需要更便宜、省電的元件。CMOS感光元件因其線路很容易產生影像雜訊,畫質通常遜於CCD,因此後者常用於較高端的影像技術。

類比 VS 數位

數位與類比攝錄影機之間的最大差異在於資料的記錄方式。類比攝錄影機通常利用VHS磁帶記錄磁圖案,但有兩個最大的問題:需要大量的實體空間來存放卡帶,也需要硬碟上的虛擬空間;此外,類比資料每複製一次,就會「褪色」一些。相反地,資料數位化可以壓縮影像,在記憶卡或固態硬碟中所佔的虛擬空間少了許多。資料也可以原封不動地複製,不會像類比資料一樣隨時間褪逝。

本文選自《HOW IT WORKS知識大圖解 中文版》第01期(2014年10月號)

文章難易度
知識大圖解_96
76 篇文章 ・ 11 位粉絲
How It Works擅長將複雜的知識轉化為活潑有趣的圖解知識,編輯方式以圖像化百科呈現,精簡易懂、精采動人、深入淺出的圖文編排,讓各年齡層的讀者們都能輕鬆閱讀。

0

0
2

文字

分享

0
0
2
電腦先驅中的先驅——不為人知的楚澤│《電腦簡史》數位時代(六)
張瑞棋_96
・2020/09/28 ・3492字 ・閱讀時間約 7 分鐘 ・SR值 522 ・七年級

他開發出史上第一台二進位的數位計算機,而且所用的就是馮紐曼後來才提出的現代電腦架構。當電腦先驅們只知道用機器語言輸入指令時,他已經發明世上第一個高階語言。他還設計出類似電腦螢幕的機制,即時顯示計算機實際接收到的輸入指令。但世人卻幾乎不認識這位先驅中的先驅——楚澤。

只因楚澤生在德國,又逢二次世界大戰,以至於研究中斷延宕。等到戰後他重啟計算機的開發時,已經遠遠落後,最後不得不黯然退出了……。

本文為系列文章,上一篇請見:手算來不及啦!先驅者並起,數位計算機的萌芽時期│《電腦簡史》數位時代(五)

V1——第一台二進位數位計算機完工,只不過……

1938 年 6 月,楚澤花了將近兩年時間打造的 V1 計算機終於完工。這個龐然大物用了兩萬個零件,重達一千公斤,幾乎佔據了家中整個客廳。

測試的結果一如楚澤的構想,不需繼電器,僅憑金屬條就能完成 22 位元的浮點運算。但成也金屬條、敗也金屬條,因為這一片片完全都是用手工鋸出來的,精密度不是很高,有時會卡住而難以移到正確位置,或者應該分隔卻互相接觸而構成錯誤迴路。

V1的複製品。圖:WIKI

事實上在剛開始建造時,楚澤的朋友舒瑞亞 (Helmut Schreyer) 就對金屬條不以為然,勸他使用真空管。舒瑞亞當時正在攻讀電機博士,楚澤只覺得這是高居象牙塔的痴人說夢,他從來不敢肖想這麼昂貴的零件。但如今 V1 的實際運作情況讓他不得不認真考慮了。

楚澤已經獲得那位企業家的一筆資金,但金額仍不足以讓他任意揮霍。已經拿到博士學位的舒瑞亞再次提出建議,這次至少是個可行的折衷方案:買不起真空管沒關係,那就用電話交換機汰換下來的二手繼電器。(楚澤用廢棄的電影膠卷取代紙條,也是出自他的建議)

打造下一代計算機的實驗機型——V2,不料二次大戰爆發……

楚澤評估如果 V1 全部都改用繼電器,至少需要兩千個以上。保險起見,他決定先將控制單元與運算單元換成繼電器,記憶單元則繼續沿用金屬條,並且將規格降低為 16 位元,放棄浮點運算、限定小數點位數,這樣應該只需要兩百個繼電器,就可以打造一台過渡性質的計算機 V2。一旦證明繼電器電路穩定可靠,再用 V2 去爭取更多資金,打造下一代的計算機。

不料 1939 年 9 月德國閃電入侵波蘭,開啟了第二次世界大戰,也打斷了楚澤的計畫。

1939 年 9 月,德軍閃電入侵波蘭。圖:WIKI

楚澤被徵召入伍,分發到步兵單位。入伍沒多久,他就寫信給上級,表示自己開發中的 V2 可用來加密情報文件,盼能讓他發揮計算機的才能,報效國家。不過眼前德軍更迫切需要的是武器,況且他們已經有威力強大的恩尼格瑪密碼機 (Enigma),開發計算機顯然不是首要之務。

德軍更看重的,反而是楚澤之前擔任結構工程師的經驗,於是把他轉派到亨舍爾飛機公司,協助開發戰鬥機。楚澤怎麼也沒想到,繞了一圈,自己竟又回到幾年前辭職的公司上班。不過這至少比上前線打仗好多了。

楚澤利用下班時間繼續打造 V2,最後終於在 1940 年中建造完成。他在當年九月向德國航空研究所展示 V2,這次他以協助空氣動力學的計算為訴求,成功獲得資金挹注。他趁此成立公司,開發完全採用繼電器的數位計算機 V3。

全繼電器的數位計算機 V3 完工,下一步,操作簡便又便宜的V4

V3 僅花了半年時間就完成,總共使用 2,400 個繼電器,和 V1 一樣可以做 22 位元的浮點運算,但速度提升到 5 赫茲,加減法不到 1 秒,乘除法也僅需 4 秒。楚澤於 1941 年 5 月對外公開展示,結果最先收到的訂單就是來自他上班的公司——亨舍爾飛機。

V3 複製品。圖:WIKI

不過楚澤真正想做的不是為客戶客製化計算機,而是大量生產可以直接使用的通用機型。要做到大量生產,首先就得壓低成本。所以楚澤將這個預計量產的機型 V4 設計成像 V2 那樣,只有控制單元與計算單元使用繼電器,記憶單元則使用金屬條。一方面這也是基於現實面的考量,因為戰事造成物資吃緊,繼電器不易取得。

雖然成本壓低,但 V4 的性能反而超越 V3,速度提高到 30 赫茲,容量也更大,可以處理 32 位元的運算。而且記憶單元預存了開根號、三角函數sin、最小、最大等指令集,可以直接呼叫使用。為了讓使用者很快上手,楚澤還為 V4 發明了世上第一個電腦高階語言 Plankalkül(意指「規劃計算」)。

高階語言接近自然語法,使用者很容易就能學會,然後只要在改造的打字機輸入Plankalkül 中的相關指令,打字機便會在膠卷上打孔,轉換成二進位的程式碼。在此同時,有個裝置會將膠卷上的程式碼轉換成 Plankalkül 語言,立即顯示在燈號面板上,讓使用者確認是否與所輸入的一致,好即時更正錯誤。不用等到機器執行完程式後。才費心尋找指令哪裡打錯。

德軍敗退、V4改名,楚澤的命運從此大不同

楚澤於 1942 年開始打造 V4 的原型機,計畫一年到一年半之間完成。不料,美國於 1941 年底因日本偷襲珍珠港而決定參戰。在美軍的支援下,同盟國對柏林展開猛烈的轟炸,楚澤的工作屢屢因空襲而被迫中斷,物資取得也更加困難。V4 就這麼做做停停,進度大受影響,直到 1945 年初才終於打造完成。

只是此時蘇聯的軍隊已逼近柏林,德軍決定把重要的戰略性武器與人員從柏林轉移到其它城市,於是楚澤帶著拆解成二十箱的 V4,跟著一起撤到哥廷根 (Göttingen)。1945 年 4 月,楚澤重新將 V4 組裝完成,但五月德國就宣布投降,他的計算機大業也隨之停擺。

楚澤打造的V4,現保存於慕尼黑的德國博物館。圖:WIKI

戰後楚澤只能靠畫油畫與刻些木雕賣給美軍與觀光客維生,如此過了兩年多,直到 1948 年,他才租了個地方開封蒙塵已久的 V4,重啟計算機工坊。不過為了避免外界將 V4 與納粹的 V1 、V2火箭聯想在一起,他乾脆將 V4 改名為 Z4 (Z 代表他的姓氏 Zuse),之前的計算機 V1、V2、V3 也就跟著改為 Z1、Z2、Z3。

隔年一位蘇黎世聯邦理工學院 (ETH Zurich) 的教授前來拜訪,當場出一題微分方程式測試 Z4 的能耐。只見楚澤三兩下設定好後, Z4 馬上就解出答案,這位教授立刻以五萬瑞士法郎向楚澤訂購一台。楚澤用這筆錢再度成立公司,繼續開發下一代計算機。1958 年,楚澤終於用真空管打造出全電子式的計算機 Z22,殊不知早在 13 年前,大西洋的另一邊就有人率先開發出來了。 

楚澤後來又繼續開發新的機種,但他經營企業的能力遠遠不如設計天分,到了 1964 年,公司終因周轉不靈賣給一家鋼鐵公司,五年後又被轉賣給西門子 (Siemens)。

時不我予——縱有超越時代的創見,最後只能黯然退出

在這場開發數位電腦的競賽中,楚澤從原本獨占鰲頭,到後來黯然退出,絕對不是因為他技不如人。相反地,他的創見始終遠遠領先其他人。

他在馮紐曼提出現代電腦架構之前,就已經如此設計開發計算機;他用鍵盤直接輸入指令時,別的機器都還是靠更換打孔紙帶或電路接線;當其他人腦子裡只有機器語言時,他已經在使用高階語言;而他用燈號面板即時顯示輸入結果,更是相當於現代電腦螢幕的機制。

馮紐曼提出的電腦架構。圖:WIKI

只能說是時不我予。楚澤縱有超越時代的創見,也不敵造化弄人。

二次大戰促使美國政府全力開發計算機,相反地,納粹政府卻以武器為先,並未支持楚澤的計畫。楚澤在這關鍵的幾年落隊,就再也沒機會迎頭趕上了。而這不僅是他個人的損失,楚澤的成果與創見也因為戰爭而不為外界所知,英美的電腦先驅們因此錯失了從中獲得啟發的機會。

這也令人不禁設想:倘若當初楚澤沒有將 V4 改名為 Z4 呢?戰後美蘇雙方都急忙派遣特殊部隊前往德國搶奪傑出人才,美國的「迴紋針行動」(Project Paperclip) 更是瞄準火箭科學家。如果楚澤將錯就錯,繼續讓人以為 V4 是新的火箭,他會不會被當成火箭科學家帶去美國,然後運用那裏的龐大資源,繼續扮演創新者的角色,加速電腦的演進? 

無論如何,歷史無法重演。經過二次大戰,計算機的發展從此就由美國主導了。

張瑞棋_96
423 篇文章 ・ 704 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。