0

0
0

文字

分享

0
0
0

新多孔聚合物是一種威力強大的超級電容

only-perception
・2011/09/03 ・849字 ・閱讀時間約 1 分鐘 ・SR值 523 ・七年級

 對未來的電動車、強大的筆電以及其他可攜式裝置而言,我們需要新一代能源儲存材料,那比當前的可充電式電池更適合現代的需求。已知符合此需求的最佳材料是超級電容(supercapacitors)。一個由日本岡崎市,自然科學研究機構(National Institutes of Natural Sciences,NINS) 的 Dinglin Jiang 所領導的團隊,現在在 Angewandte Chemie 期刊中介紹一種新材料,具優異的超級電容特性。

零排放的電動車適合在市內到處開;然而,對於長途駕駛來說,事情並非如此。問題根源於只能儲存少量的能源,在需要重新充電之前所能涵蓋的(行駛)距離不遠,那限制車輛的速度與加速。超級電容能夠克服這些挑戰,因為它們結合早期電容器與電池的優點:如同一個電容器,它們能依需傳遞高電流密度,又像個電池可儲存大量電能。

超級電容的運作時是透過一種與可充電式電池不一樣的電荷儲存原理,以及電極上之電化學雙層的組成,電極則被電解質浸濕。當施加一電壓時,電荷相反的離子聚集在電極二端,形成非常薄的(wafer-thin)固定化電荷載體區(zones of immobilized charge carriers)。相較於電池,那只有電荷的移動,並沒有發生化學變化。適合超級電容的材料百百種,不過真正完美的材料目前仍未被發現。在日本的研究者,沿著這條路線,到達一個重要的里程碑。

這裡有種材料,具有趣的特性:特殊的多孔、如框架般的有機聚合物。它們的雙鍵以某種方式排列,使得它們的某些電子能自由地移動,如『電子雲』般延伸到超過框架之外的區域。這樣的材料因而能導電。在孔內,有大的內表面積(inner surface area)對於靜電電荷分離層(electrostatic charge-separation layers)的形成很重要。Jiang 以及他的團隊現在合成出一種包含氮的框架,其孔的的大小最適合讓離子快速流進流出 — 此為迅速充、放電所需。氮中心與電解質離子進行交互作用,因而有利於電荷的累積與離子的移動。

-----廣告,請繼續往下閱讀-----

這些互異有利特性之間的相互作用,使這種新材料具有不尋常的高電荷儲存能力以及高能量密度。Jiang 及其共同研究者能夠證明,他們的多孔框架能承受許多次充/放電循環。

資料來源:New rechargeable batteries needed: A microporous polymer is an unusually powerful supercapacitor [August 23, 2011]

原發表於 Only Perception

文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
1

文字

分享

0
0
1
針織式超級電容器,在智慧衣裡儲存電力
PanSci_96
・2016/03/12 ・1930字 ・閱讀時間約 4 分鐘 ・SR值 553 ・八年級

本文由科技部補助,泛科學獨立製作

文/李允誠

Zypad
穿戴式科技席捲了近幾年的科技市場,而其中正在起步的智慧衣,或許會是未來的必備商品。source:wiki

穿戴式裝置正火紅,除了智慧手錶、智慧手環等常見的穿戴裝置,你知道還有智慧衣嗎?相較於智慧手錶或手環,智慧衣能更貼近、更大範圍的覆蓋人體,在生理檢測上,能比手環類產品來的準確。但若要能夠檢測,智慧衣就得通電,目前市面上的智慧衣仍需要額外的供電裝置(像是固體電池等)來供給電力,不但累贅,也降低了穿戴舒適性。

超級電容器供電於無形之中

美國卓克所大學(Drexel University)近期和美國海軍學院合作了一項研究計畫,他們找出一種方式,能夠讓活性碳顆粒嵌入不同類型的毛線中,藉此可儲存能量,進而觸發感測器及電子整合裝置,並將這類針織品改良而成智慧衣。

這些由不同類型感測元件製成的「智慧布料」,其實已經發展十年之久。但以往這些產品往往都只是實驗室裡的展示品,近幾年才開始進入消費者市場,像是能夠監控運動員生理狀況的智慧穿戴裝置,以及追蹤健康與身心狀況的產品。根據 Gartner 在 2014 年底的報告指出,智慧服裝的市場將會從 2014 年的十萬件,成長到 2016 年的兩千六百萬之譜。

直至目前為止,市面上多數產品皆會利用額外的處理裝置來做資料擷取,並和智慧手機、平板等行動裝置連結。這些處理裝置的模組雖然不大,但仍必須使用傳統電池供給電力,從美學或是功能的角度來看,這樣的設計其實都不盡理想。

因此,創造一個高彈性,且能整合到針織品的能量儲存器一直是相關研究人員的目標。終於在去年,來自中國與美國的研究團隊有了一些成果,他們分別展示了由石墨與碳奈米管製成,且能編織進服飾的纖維狀超級電容器。當時的報導指出,這些以碳為基礎的微型超級電容器,每個纖維擁有最高的體積能量密度(每小時 6.3 微瓦/每立方毫米,相當於一個 4 伏特,每小時 500 微安培的電池)。但是這些產品雖然看似強大,其造價卻相當昂貴,而且碳奈米管可能含有毒性的疑慮尚未被排除,再再都降低了此產品的商業價值。

關鍵因子:活性碳、天然纖維焊接與離子液體

為了能夠創造出不需外在裝置、成本低廉的能量儲存裝置,卓克斯大學的團隊開始採用價格便宜的活性碳。除了便宜外,活性碳安全無毒,甚至常常被用於減少有毒物質的吸收。根據卓克斯大學材料科學家 Yury Gogotsi 表示,只要使用約 3000 平方公分的面積(相當於襯衫背部中央區塊的大小),便能儲存相當於一個 4 平方公分大小的錢幣型電池的電力。

為了達到這樣的能量密度,該團隊採用一種叫做天然纖維焊接的技術(Natural Fiber Welding,NFW),這種技術是由美國海軍學院的化學教授 Paul C. Trulove 與空軍辦公室的科學研究部的 Hugh C. Delong 發明。NFW 可讓像是活性碳等材料,嵌入由棉、麻、竹子或人造絲製成的紗布、織品。

NFW 技術雖然複雜,但在卓克斯大學與海軍學院團隊的努力下,它們製造出一台專門用於NFW 的機器,能夠持續的生產出數十米的紗布。「真正需要成本的只有 NFW 過程中所需的離子液體」海軍學院總司令 David P. Durkin 說:「它們雖然昂貴,卻是非常優異的替代有機溶劑,因為它們不會揮發,甚至可以在水中重建,進而回收」,Durkin 認為,如果NFW技術被規模化,那麼離子液體的成本將會是一項關鍵因素

電力供給效能尚待解決

針織毛毛
在現有技術下,能量儲存紡織品的所能供給的電力其實並不多,像智慧手機等行動產品可能都不敷使用,但還是有許多其他應用可以受惠於這類紡織品。(圖片來源:撰稿團隊)

在現有技術下,能量儲存紡織品的所能供給的電力其實並不多,像智慧手機等行動產品可能都不敷使用,但還是有許多其他應用可以受惠於這類紡織品。卓克斯大學博士生 Kristy Jost 解釋道,現在市面上有越來越多的電子紡織品,但多數產品仍需藉由固體電池來提供電力,針對此點,她致力於儲能紡織品的研發,最終目標是希望生產出一種能量儲存裝置,能夠驅動相關電子產品,像是針織感測器、低功率的通信設備等。
相較智慧手錶、手環等較為 High-Tech 的產品,智慧衣則 High-Touch 多了,不但能夠真正「穿」在身上,也能提供更準確的生理數值。在娛樂價值上,模特兒與藝人也能穿著智慧衣,在表演時展現更多炫麗的特效,增加娛樂效果。只要能夠解決電力供應的缺點,相信在 2016 年達成兩千六百萬件的市場規模絕對不是問題。

(本文由科技部補助「新媒體科普傳播實作計畫-智慧生活與前沿科技科普知識教育推廣」執行團隊撰稿)

責任編輯:鄭國威
審校:陳妤寧

0

0
0

文字

分享

0
0
0
超乎想像的織物!當紡織與電子科技融合:智慧儲能與發光系統
創新科技專案 X 解密科技寶藏_96
・2015/03/23 ・1718字 ・閱讀時間約 3 分鐘 ・SR值 524 ・七年級

文\王昱夫

能源和環境無疑是近年來大家最關注的話題之一,電動車更是其中常常被拿出來討論的選項,然而,這類電力產品長久以來無法普及的ㄧ大困難點,就在於充電時間太長,想像一部車開進充電站,卻要花上半小時時間充飽電才能再上路(而且還沒辦法像用油一樣開那麼遠,很快又得找站充電),簡直讓人受不了。針對這樣的問題,紡織產業綜合研究所開發的「超級電容」,不但能夠滿足快速充放電的需求,更可以和紡織技術結合,開創出全新的市場!

紡織所開發的「織物超級電容」,曾在2011年榮獲R&D100大獎(此獎項素有「產業創新奧斯卡獎的美譽」)。其特色在於具備高度柔軟性(可180度折疊)、高穩定度、長壽命、快充快放及大容量,可以有效與自行車發電系統、太陽能電池做結合,成為高度生活化且應用性高的產品。

織物超級電容為什麼可以擁有這麼多優異的性質呢?其最創新之處便在於它使用了紡織材料作為電容的基材!是的,你沒看錯,是紡織材料!捨棄了以往電子材料總是硬梆梆的刻板印象,研究團隊採用了柔軟可撓的紡織物支撐整個電容結構,於其中灌注特定比例的電解質溶液後加以真空封裝,做成這片厲害的超級電容。也由於是使用紡織品材料,整片電容就像衣服一樣,可以隨意的扭曲、搓揉,當筆者親手拿著它把玩!簡直難以想像傳統的電子元件竟然能以如此特別的型態被製造出來!

-----廣告,請繼續往下閱讀-----

紡織所沈乾龍組長向我們介紹LED紗線的構想。
紡織所沈乾龍組長向我們介紹LED紗線的構想。

「我們採用紡織材料來做,就是因為它具有好的可撓性和多孔性結構」受訪的蔡副組長向我們解釋道。有了好的可撓性這項產品的應用便不受限於傳統的空間限制,可以把它彎曲、塞在很小的空間內,或是放在背包、衣物這種需要高柔軟性的物品上,與穿戴式裝置做結合。除了可撓這項大特色之外,織物超級電容比起傳統的電容在性能上更絲毫不遜色!它的充放電速度接近傳統電池的100倍,同時,它比起一般電容,不但漏電速度慢,其壽命甚至可以經歷將近10萬次重複充放電(普通電池充放電壽命約300~500次)!這些特點結合起來,未來或許就能與前面提到的電動車輛做結合,達成快速充放電電力車的願景。

紡織所蔡杰燊副組長。
紡織所蔡杰燊副組長。

在應用面上,紡織產業綜合研究所也研發了特殊的LED紗線作為目前市場化供應的第一步。LED紗線和傳統的LED不一樣,也是強調「以紡織材料為主體」的產品,透過高度技術織造,具備比起傳統電線更高的承重力,也可以像一般衣物一樣耐水洗;值得一提的是,紡織所開發的這款LED紗線不像一般的LED燈有方向性(只有一個方向發光),360度全方位可發光,不論從哪端看都可以看到亮光!而且,紗線本身材質的導光效能也很好,可以讓整條線均勻發光,提高其應用性。

-----廣告,請繼續往下閱讀-----

織物超級電容是由織品為基材,加入電解質之後封裝而成。
織物超級電容是由織品為基材,加入電解質之後封裝而成。

從產品端來看,目前織物超級電容已應用於自行車與太陽能供電裝置:由於這類發電來源其供電量往往不穩定(人踩的速度不可能一直固定嘛@@太陽也不會一直在頭頂~),如果直接把發的電接到要使用電的裝置上(像是車燈或手機充電裝置),效果可能不好(燈一下暗一下亮)或甚至會損傷器材(手機壞掉),所以這時候,就輪到超級電容出馬了!發揮它快速充電的特點,在發電時快速將電力儲存於電容內,再以固定的輸出量供電給要使用的裝置,達到好的電力運用(智慧儲能的概念啊!)。LED紗線則是可以運用在安全警示,與智慧型穿戴裝置做結合,結合這兩項技術,說不定未來,能夠像「布」一樣隨身攜帶的螢幕,也不再是天馬行空了呢!

LED紗線。
LED紗線。

33_01代表照

紡織業以往被大家視為傳統產業,很難和最新科技這類的詞彙聯想在一起,然而,紡織所開發的智慧型儲能及發光織品,卻讓我們都著實大吃了一驚!紡織如此柔軟的材料,在與電子科技結合後,開創出了新的ㄧ片藍海!

-----廣告,請繼續往下閱讀-----

團隊照
紡織產業綜合研究所研究團隊。

更多資訊請參考解密科技寶藏

創新科技專案 X 解密科技寶藏_96
81 篇文章 ・ 3 位粉絲
由 19 個國家級產業科技研發機構,聯手發表「創新科技專案」超過 80 項研發成果。手法結合狂想與探索,包括高度感官互動的主題式「奇想樂園」區,以及分享科技新知與願景的「解密寶藏」區。驚奇、專業與創新,激發您對未來的想像與憧憬!

0

0
0

文字

分享

0
0
0
新多孔聚合物是一種威力強大的超級電容
only-perception
・2011/09/03 ・849字 ・閱讀時間約 1 分鐘 ・SR值 523 ・七年級

-----廣告,請繼續往下閱讀-----

 對未來的電動車、強大的筆電以及其他可攜式裝置而言,我們需要新一代能源儲存材料,那比當前的可充電式電池更適合現代的需求。已知符合此需求的最佳材料是超級電容(supercapacitors)。一個由日本岡崎市,自然科學研究機構(National Institutes of Natural Sciences,NINS) 的 Dinglin Jiang 所領導的團隊,現在在 Angewandte Chemie 期刊中介紹一種新材料,具優異的超級電容特性。

零排放的電動車適合在市內到處開;然而,對於長途駕駛來說,事情並非如此。問題根源於只能儲存少量的能源,在需要重新充電之前所能涵蓋的(行駛)距離不遠,那限制車輛的速度與加速。超級電容能夠克服這些挑戰,因為它們結合早期電容器與電池的優點:如同一個電容器,它們能依需傳遞高電流密度,又像個電池可儲存大量電能。

超級電容的運作時是透過一種與可充電式電池不一樣的電荷儲存原理,以及電極上之電化學雙層的組成,電極則被電解質浸濕。當施加一電壓時,電荷相反的離子聚集在電極二端,形成非常薄的(wafer-thin)固定化電荷載體區(zones of immobilized charge carriers)。相較於電池,那只有電荷的移動,並沒有發生化學變化。適合超級電容的材料百百種,不過真正完美的材料目前仍未被發現。在日本的研究者,沿著這條路線,到達一個重要的里程碑。

這裡有種材料,具有趣的特性:特殊的多孔、如框架般的有機聚合物。它們的雙鍵以某種方式排列,使得它們的某些電子能自由地移動,如『電子雲』般延伸到超過框架之外的區域。這樣的材料因而能導電。在孔內,有大的內表面積(inner surface area)對於靜電電荷分離層(electrostatic charge-separation layers)的形成很重要。Jiang 以及他的團隊現在合成出一種包含氮的框架,其孔的的大小最適合讓離子快速流進流出 — 此為迅速充、放電所需。氮中心與電解質離子進行交互作用,因而有利於電荷的累積與離子的移動。

-----廣告,請繼續往下閱讀-----

這些互異有利特性之間的相互作用,使這種新材料具有不尋常的高電荷儲存能力以及高能量密度。Jiang 及其共同研究者能夠證明,他們的多孔框架能承受許多次充/放電循環。

資料來源:New rechargeable batteries needed: A microporous polymer is an unusually powerful supercapacitor [August 23, 2011]

原發表於 Only Perception

文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D