0

0
0

文字

分享

0
0
0

外骨骼輔助義肢,讓身障者享受走路帶來的健康和快樂

PanSci_96
・2016/03/13 ・1352字 ・閱讀時間約 2 分鐘 ・SR值 500 ・六年級

-----廣告,請繼續往下閱讀-----

本文由科技部補助,泛科學獨立製作

文/李允誠 | 台灣數位文化協會

在以往,身心障礙者只能倚靠輪椅或是助行器協助行走,但這些器材往往過於龐大,攜帶不便,而且對於顛頗地形適應不佳。ReWalk Personal 6.0 是一套外骨骼輔助義肢,能夠幫助身障者以接近原始走路的方式行走,讓身障者享受再次走路的感動。

ReWalk 將外骨骼輔具帶上街頭

外骨骼義肢
外骨骼輔助義肢的使用者 Robert Woo 示範運用 ReWalk Personal 6.0 走上街頭。(圖片來源: Eliza Strickland)

Rewalk 系統的創始者亞米特高佛(Amit Goffer)不希望這些外骨骼義肢只使用於物理治療或是家中,他總是不停的想:「該如何才能讓這些器具融入社區?甚至走上街頭?」。ReWalk 機器人義肢公司的 CEO 賴瑞亞辛斯基(Larry Jasinski)也表示:「我們的目標就是讓外骨骼等輔助工具融入日常生活。」

美國已經通過先前 ReWalk 系統在臨床及個人的使用資格,讓脊隨損傷的身障者能夠使用外骨骼義肢協助行走。這也是第一套獲准如此多種使用權的外骨骼義肢,代表它將是第一個「走出醫院」的機器人義肢。亞辛斯基表示,已經有 66 位使用者將 ReWalk 買回家中使用。

 更符合人體需求

在基本機械運作上,新一代的 ReWalk 6.0 相較前代的差異不大:同樣用位於臀部與膝蓋的伺服馬達供給電源,並透過加速度器偵測使用者的移動。但在硬體上則有幾項重要的升級:腿部支撐器變得更為精簡,支撐帶能將身體重量更均勻的分布於義肢上,而原先放置處理器的背包,也被換成更迷你的腰包

羅伯特是前幾代 ReWalk 的使用者,也給了許多改良建議給原廠。例如說先前的外骨骼支撐帶,其實很容易擦傷使用者的膝蓋。而新版的 ReWalk 設計,透過調整身體重量分配,已經成功改善這個問題。顯示了科技如果要進步,除了追求材料、製程或是微型化的進步,其實很多時候更需要的是聆聽使用者回饋的各種小問題,去調整、改善科技產品伴隨的副作用。

既然如此,外骨骼義肢的「好穿易脫」也就變得更重要了。ReWalk 把原先內外支柱的造型,改成只有外在支柱,並搭配環繞帶扣緊腿部,這種改良腿部支撐的方式,讓使用者能更容易穿上 ReWalk。使用者羅伯特表示透過增加腹部的支撐,他現在可以在盤腿坐時彎腰,不用再怕會往前倒,「我隨時都可以在 10 分鐘內站起來。」

除了硬體,ReWalk 6.0 也在軟體上做了改良。ReWalk 6.0 提供更平順的步行功能、更簡單的止步機制、以及更方便的上下樓梯動作。使用者也能透過穿戴式手錶,控制外骨骼的動作,像是坐下、站立、行走及爬階等。

除了輔助行走,還有更多益處

使用外骨骼義肢不是為了炫,相較於過去只能選擇坐輪椅,羅伯特發現他的身體機能在可重新走路之後獲得許多改善,他不再需要麻醉藥物,肌肉痙攣減少許多,消化、循環系統也都變得較健康。

和許多科技的誕生一樣,外骨骼最早應用於軍事用途,透過外骨骼裝置,能讓人跑得更快、跳得更高,甚而抬起重物、背負更多的裝備。現在,外骨骼義肢已經從醫院裡的物理治療室,逐漸走向街頭,也許未來會有越來越多的身障者,能在外骨骼義肢的幫助下,再度從輪椅、病床上站起,腳踏實地的感受每一步。

(本文由科技部補助「新媒體科普傳播實作計畫-智慧生活與前沿科技科普知識教育推廣」執行團隊撰稿)

責任編輯:鄭國威
審校:陳妤寧

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2418 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
找回走路的「鈦」度!3D 列印技術重建貓咪四肢
言蓁
・2020/03/13 ・886字 ・閱讀時間約 1 分鐘 ・SR值 487 ・五年級

2018 年 12 月,有名司機在西伯利亞新庫茲涅茨克的雪地中,找到了一隻大約四歲的俄羅斯貓貓 Dymka(俄語為「霧」),並將牠帶至新西伯利亞的診所。雖然牠因凍傷而失去了所有的爪子,但獸醫們 3D 列印材質的義肢代替牠失去的四條腿,所以現在 Dymka 可以重新生龍活虎地追趕跑跳蹦,甚至爬樓梯了!(灑花)

Dymka 用牠的新腳站著。圖/© Kirill Kukhmar/TASS/Getty

義肢獨秀——3D 列印技術重建貓掌

根據《莫斯科時報》報導, Dymka 獲救時爪子、耳朵和尾巴都已經凍傷了,獸醫 Sergei Gorshkov 不得不幫牠截肢。Gorshkov 說,在西伯利亞嚴酷的冬季裡,每間診所的獸醫至少會治療五至七隻爪子、耳朵和鼻子等部位被凍傷的貓,倘若凍傷情形嚴重,皮膚組織會死亡並需要截肢。

Gorshkov 和診所同事與俄羅斯托木斯克理工大學 (TPU) 的研究人員合作,為 Dymka 製造了一套義肢。 TPU 的代表表示,科學家開發了磷酸鈣製成的塗層,使鈦製義肢可以更順利地安裝並嵌入、融合進動物的腿骨中,同時讓感染和排斥的風險降到最低。

-----廣告,請繼續往下閱讀-----

冬季的西伯利亞。圖/Pinterest

走出態度!恍若新生的鈦製義肢

研究人員對 Dymka 的腿進行電腦斷層掃描 (CT) 建模,並依此 3D 列印出鈦棒。根據《新西伯利亞新聞》報導 ,Dymka 於 2019 年 7 月植入了義肢,前腳為先,後腿次之。2019 年 12 月,獸醫診所在 YouTube 上傳了影片,內容記錄牠安裝義肢七個月後的生活,還有特寫鏡頭拍到了一些關於義肢的細節,可以從畫面中看出來,牠的「 腳掌」以柔軟的黑色材料製成,底部帶有紋理。

不過,Dymka 可不是世界上唯一一隻四腳都是金屬義肢的「鋼鐵貓貓」,第一隻接受類似手術的貓出現在 2016 年,當時,新西伯利亞有診所替一隻名為 Ryzhik(俄語為「紅」)的貓進行了凍傷截肢的手術,並在牠身上植入了鈦製物體。未來,是不是會有更多貓咪受益於鈦製義肢呢?讓我們繼續看下去。

資料來源:

-----廣告,請繼續往下閱讀-----
言蓁
7 篇文章 ・ 212 位粉絲
喜歡貓但不敢紮實去摸,像對所有喜愛的事物,嚮往也懼怕。依賴文字,生存於不被看好的文組,走著忽焉變成資訊的雜食動物。

0

0
0

文字

分享

0
0
0
讓身障者重掌生活,念動機械手臂新突破
PanSci_96
・2016/03/14 ・1519字 ・閱讀時間約 3 分鐘 ・SR值 544 ・八年級

本文由科技部補助,泛科學獨立製作

文/喻守謙 | 台灣數位文化協會

eric
正在練習使用機械手臂的艾瑞克(圖片來源:撰稿團隊取自 Cortesía Excélsior)

艾瑞克索圖(Erik Sorto)是一名癱瘓十年的身障者,但他同時也是類似患者們的新希望。2013 年艾瑞克不顧家人反對,毅然報名接受了一場腦部手術。現在的艾瑞克有如科幻小說中的角色,只要他想像抓取東西的樣子,安裝的機械手臂就會執行他的命令。

過去雖然也有少數身障者透過腦機介面(brain-computer interface,簡稱 BCI) 操控機械,但這些受試者的植入體,所接受的信號多來自連結脊椎與肌肉的前運動皮質區,只能被動記錄訊號。而艾瑞克是第一位在後頂葉皮質層內(產生肢體運動意念的區域)植入晶片,讓機械主動理解使用者意圖的人。

加州理工學院的神經科學教授、也是這次實驗的首席研究員理查安德森(Richard Andersen)解釋,從使用者的意圖出發,不僅較符合人性,也能讓機械手臂作用的速度更快,艾瑞克所做的是讓機械手臂理解他的最終目標,而不是操控所有運動細節。舉例來說,當我們伸出手臂拿起一杯水時,你不會去思考每一個關節或肌肉該如何伸展、或拆解每個動作,你只想著要拿到那杯水而已。

透過數據累積,讓手臂知道你想做甚麼

在研究初期,研究人員先透過核磁共振技術,觀察當艾瑞克產生抓取等動作等意念時,頂葉皮層內兩個最活躍的區域。在此之後便植入 2 個微電極陣列,裡面各自包含 96 個電極,能夠記錄單一神經元的活動。此外,在艾瑞克的頭骨上有兩個金屬基座,能夠接收電極收到的信號,並連接機械手臂。

術後一個月,艾瑞克就開始了與團隊的合作。在第一個實驗中,工作人員先做出某些手勢,讓艾瑞克在腦中想像、模仿做出這些動作的感覺,並藉由不同的動作,觀察哪些神經元會對特定動作有反應。長期研究下來,團隊能夠不斷校準神經元與動作間的關係,針對位置、移動軌跡及特定運動等類別歸納出一套演算法。此外,安德森表示,即使系統沒有接收到完整的信號,也能透過演算法與過去的數據,自動補足需要的信號,這也會讓使用者操作起來更便利,減少失誤的次數。

頂葉皮質會是最佳解答嗎?

2000px-Brain_diagram_ja.svg
大腦構造圖。source:wiki

過去腦機介面(BCI)的開發,多根基於美國布朗大學腦科學研究所主任約翰多諾霍(John Donoghue)對運動皮質的前瞻研究。­多諾霍認為這次的實驗確實證明了頂葉皮質可以提供較有用的信號,但現階段他無法肯定頂葉皮質就是念動控制最好的選擇,因為目前的實驗成果雖好、但還不夠好,團隊尚未得知如何得到更精準的控制手段。

實驗的首席研究員安德森也曾提議結合來自運動皮質與頂葉皮質的兩種訊號,透過交叉判斷讓機械手臂的判讀更清晰,然而多諾霍則表示,結合不一定會帶來增值效果。他提到,當我們試圖用手拿起杯子時,會用到多達 80% 的大腦,上述兩種皮質只占了一部分,且傳遞出的訊號其實相當類似,因此不排除其他部分的大腦有可能蘊藏了更關鍵的數據。

依然努力著的艾瑞克

在學界熱烈討論的同時,艾瑞克仍舊繼續著他與機械手臂間的實驗。在這兩年中,他的熱情絲毫未減,並致力提升操控的精準度,他練習玩了 6700 多次的剪刀石頭布,因為這些對常人而言簡單的動作,都是重要的突破。雖然過程辛苦,但艾瑞克終於在今年實踐了他長久以來的目標:透過機械手臂拿起啤酒,並暢快的痛飲一番。未來,他還想嘗試刷牙、刮鬍子等更精細的動作。

(本文由科技部補助「新媒體科普傳播實作計畫-智慧生活與前沿科技科普知識教育推廣」執行團隊撰稿)

責任編輯:鄭國威
審校:陳妤寧

-----廣告,請繼續往下閱讀-----
PanSci_96
1262 篇文章 ・ 2418 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。