Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

「頭殼壞去」真的沒救了?讓微型電子網格進入體內修復大腦

PanSci_96
・2016/03/12 ・1520字 ・閱讀時間約 3 分鐘 ・SR值 553 ・八年級

本文由科技部補助,泛科學獨立製作

文/李瑋倫

微型電子網格能夠如何助神經科學一臂之力?「不同於以往嵌入到體內的一般晶片,機械生物(Cyborg-type)型態的裝置, 將在不久的將來實現。」哈佛大學的化學教授查理斯李柏(Charles Lieber)表示。根據目前植入到實驗鼠大腦中的結果顯示,微型電子網格未來可能可以替人操控義肢、義眼、甚至是協助修復大腦損傷、幫助受損組織的細胞再生。

先縮小,再還原

腦細胞
腦細胞會游近並附著在微型電子網格之上。(圖片來源:Lieber Research Group/Harvard University)

聽來驚悚,微型電子網格究竟要怎麼進到一顆腦子裡呢?其實只要打針就可以了。實驗團隊從矽奈米線(silicon nanowires)中製造出場效電晶體(field-effect transistors),發現當這些微型電晶體被放置在液體中的時候,會「蜷縮」起來變得更微小。

於是他們將場效電晶體放進食鹽水、並用針筒將食鹽水注射到實驗鼠的大腦中。在注射完成的一個小時後,場效電晶體就會延展、恢復為原本的形狀。「這個手法其實在生物和藥學的領域很常被用到。」哈佛大學的化學教授查理斯李柏(Charles Lieber)表示。

-----廣告,請繼續往下閱讀-----

其實 2012 年時,李柏的團隊就打造了可被神經、心臟以及肌肉組織依附生長的矽奈米線支架(silicon nanowire scaffolds),藉此測試這些細胞會如何對外來刺激做出反應。這次新研發出來的微型電子網格同樣是由矽所製成,但外觀更加扁平、形狀更近似於平行四邊形,這些特性都讓它更容易在浸泡至食鹽水時可以蜷縮至小於針頭的直徑。

覺得「遇水則縮」聽起來沒什麼了不起的嗎?那麼來看看這些微型電子網格原本有多大吧-大約為 3 到 4 公分寬,是針頭直徑的 33 倍大

微型電子網格如何和體內組織好好相處?

想當然耳,「能伸能屈」對於微型電子網格是種非常重要的能力,微型電子網格必須具有彈性,才能和腦部組織互相接合。唯有電子網格能夠保持足夠的柔軟,才能確保它不會傷及體內組織、減少副作用、避免免疫反應發生。
奈米電子學的目標是要能夠擔任細胞外基質的角色去「抱住」細胞們。在李柏的團隊和實驗鼠的努力之下,發現微型電子網格可以和腦細胞良好的結合,甚至可以幫助修補中風或脊髓受損造成的損傷。「這幾乎是達成一種『人工突觸』的程度了。」李柏表示。

看看過往瓶頸,想想未來展望

微型電子網格可扮演感測器的角色,測量藥物如何幫助心臟更加順利跳動。在這種情況下,這類型裝置的最大挑戰都在於促成電子和細胞之間的通訊。以目前的醫療科技發展,醫生其實已可運用電極裝置,去測量大腦或肌肉發出的訊號來嘗試控制義肢,但使用電極裝置的副作用也不少。以為了深度刺激帕金森氏症患者腦部的微型電極裝置為例,疤痕會引起絕緣問題,一旦如此醫生就必須不斷調整電極的位置並重新發出電波訊號,而導致患者的不適。

-----廣告,請繼續往下閱讀-----

目前實驗團隊仍在測試微型電子網格能否維持到 3~6 個月的穩定度。而這項技術若要真正被實踐在人體上,恐怕還需要數年的時間。李柏對於未來的技術發展充滿期待,例如幹細胞是否能隨同網格一同注射、或是直接改變網格表面的化學物質讓他們和特定細胞互相結合、或是建造更複雜、但也更高能力的網格。

糖尿病
或許某一天,糖尿病患者將不再經由血液來判斷他們的胰島素狀況。source:pixabay

「如果微型電子網格的能力越高,我們就能對它的應用有越多想像,例如在不用針頭插入的狀況下,就可以藉由植入奈米裝置來監測糖尿病患的胰島素狀況,或是,使用感測器來持續追蹤心臟病風險群病人的血小板生成。」李柏說。

(本文由科技部補助「新媒體科普傳播實作計畫-智慧生活與前沿科技科普知識教育推廣」執行團隊撰稿)

責任編輯:鄭國威
審校:陳妤寧

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2413 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
讓身障者重掌生活,念動機械手臂新突破
PanSci_96
・2016/03/14 ・1519字 ・閱讀時間約 3 分鐘 ・SR值 544 ・八年級

-----廣告,請繼續往下閱讀-----

本文由科技部補助,泛科學獨立製作

文/喻守謙 | 台灣數位文化協會

eric
正在練習使用機械手臂的艾瑞克(圖片來源:撰稿團隊取自 Cortesía Excélsior)

艾瑞克索圖(Erik Sorto)是一名癱瘓十年的身障者,但他同時也是類似患者們的新希望。2013 年艾瑞克不顧家人反對,毅然報名接受了一場腦部手術。現在的艾瑞克有如科幻小說中的角色,只要他想像抓取東西的樣子,安裝的機械手臂就會執行他的命令。

過去雖然也有少數身障者透過腦機介面(brain-computer interface,簡稱 BCI) 操控機械,但這些受試者的植入體,所接受的信號多來自連結脊椎與肌肉的前運動皮質區,只能被動記錄訊號。而艾瑞克是第一位在後頂葉皮質層內(產生肢體運動意念的區域)植入晶片,讓機械主動理解使用者意圖的人。

加州理工學院的神經科學教授、也是這次實驗的首席研究員理查安德森(Richard Andersen)解釋,從使用者的意圖出發,不僅較符合人性,也能讓機械手臂作用的速度更快,艾瑞克所做的是讓機械手臂理解他的最終目標,而不是操控所有運動細節。舉例來說,當我們伸出手臂拿起一杯水時,你不會去思考每一個關節或肌肉該如何伸展、或拆解每個動作,你只想著要拿到那杯水而已。

透過數據累積,讓手臂知道你想做甚麼

在研究初期,研究人員先透過核磁共振技術,觀察當艾瑞克產生抓取等動作等意念時,頂葉皮層內兩個最活躍的區域。在此之後便植入 2 個微電極陣列,裡面各自包含 96 個電極,能夠記錄單一神經元的活動。此外,在艾瑞克的頭骨上有兩個金屬基座,能夠接收電極收到的信號,並連接機械手臂。

術後一個月,艾瑞克就開始了與團隊的合作。在第一個實驗中,工作人員先做出某些手勢,讓艾瑞克在腦中想像、模仿做出這些動作的感覺,並藉由不同的動作,觀察哪些神經元會對特定動作有反應。長期研究下來,團隊能夠不斷校準神經元與動作間的關係,針對位置、移動軌跡及特定運動等類別歸納出一套演算法。此外,安德森表示,即使系統沒有接收到完整的信號,也能透過演算法與過去的數據,自動補足需要的信號,這也會讓使用者操作起來更便利,減少失誤的次數。

頂葉皮質會是最佳解答嗎?

2000px-Brain_diagram_ja.svg
大腦構造圖。source:wiki

過去腦機介面(BCI)的開發,多根基於美國布朗大學腦科學研究所主任約翰多諾霍(John Donoghue)對運動皮質的前瞻研究。­多諾霍認為這次的實驗確實證明了頂葉皮質可以提供較有用的信號,但現階段他無法肯定頂葉皮質就是念動控制最好的選擇,因為目前的實驗成果雖好、但還不夠好,團隊尚未得知如何得到更精準的控制手段。

實驗的首席研究員安德森也曾提議結合來自運動皮質與頂葉皮質的兩種訊號,透過交叉判斷讓機械手臂的判讀更清晰,然而多諾霍則表示,結合不一定會帶來增值效果。他提到,當我們試圖用手拿起杯子時,會用到多達 80% 的大腦,上述兩種皮質只占了一部分,且傳遞出的訊號其實相當類似,因此不排除其他部分的大腦有可能蘊藏了更關鍵的數據。

依然努力著的艾瑞克

在學界熱烈討論的同時,艾瑞克仍舊繼續著他與機械手臂間的實驗。在這兩年中,他的熱情絲毫未減,並致力提升操控的精準度,他練習玩了 6700 多次的剪刀石頭布,因為這些對常人而言簡單的動作,都是重要的突破。雖然過程辛苦,但艾瑞克終於在今年實踐了他長久以來的目標:透過機械手臂拿起啤酒,並暢快的痛飲一番。未來,他還想嘗試刷牙、刮鬍子等更精細的動作。

(本文由科技部補助「新媒體科普傳播實作計畫-智慧生活與前沿科技科普知識教育推廣」執行團隊撰稿)

責任編輯:鄭國威
審校:陳妤寧

-----廣告,請繼續往下閱讀-----

0

0
0

文字

分享

0
0
0
進入身體的迷你醫用機器人
PanSci_96
・2016/03/13 ・1780字 ・閱讀時間約 3 分鐘 ・SR值 553 ・八年級

-----廣告,請繼續往下閱讀-----

本文由科技部補助,泛科學獨立製作

文/喻守謙 | 台灣數位文化協會

在1966上映的電影《聯合縮小軍》中,劇情講述一群科學家透過高科技將自己縮小,乘著飛船進入人體中進行治療的冒險故事。雖然電影年代久遠,許多鏡頭與畫面在今日看來有些荒唐,但仍能看出人們對迷你世界的想像與野心。時至今日,雖然我們還無法將人縮小,但在醫療領域,小到足以進入人體執行治療任務的技術已經不是科幻小說中的空想,而是正在實踐的理想。

機器人
讓微型機械進入體內治療。(圖片來源:Photo-Illustration: Dan Saelinger; Prop: Swell)

終極目標:實用醫療

過去十年,已經陸續出現各種研究成果,例如由公牛精子與細菌推進的微型機器人、如海星般遇熱能緊密關閉的顯微夾具、由藥丸包裹的可控制磁球、由胃酸驅動的馬達以及能夠在眼球玻璃體中前進的扇貝型微機械。

這些案例有些還躺在實驗室,有些則已經進入動物實驗,科學家們的終極目標則是投入實用醫療領域。期望這些技術能夠應用在放射性藥物針、清除血塊、組織篩檢、在支架上培養新細胞等等任務,醫界期望能夠在「及早預防」與「精準治療」兩個領域有所突破。

當然,夢想的路上還有許多障礙要克服。在微觀尺度下,科學家們必須重新思考機器人運作的方式。其中又以續航力與動力最為棘手。此外還必須確保這些微小裝置沒有毒性,以免傷及組織,並設計一套在任務完成後,安全分解或離開身體的方式。

如何維持續航力?

關於續航力的問題,微型化不利於傳統的化學電池技術,因為一旦物體小於一毫米,電池的容量就會急遽下降。其中一種替代方案是「無線電力傳輸」,透過無線電波獲取電力,從體外進行發電。但這種做法仍須面對微型化挑戰,因為機器人需要有能夠接收電波的天線,且天線不能太小,同時也要確保電源與裝置的距離不能太遠,避免收不到信號。

此外,也有團隊研製出不帶有電源與天線的「變形細菌芯片」。在芯片兩端有兩個電極,當芯片遇到胃酸變形時,電極便會結合並透過化學作用獲取5~10分鐘的短暫電力。在這期間,裝置本身可以有足夠的電力來發送一組識別碼到肌膚表層的接收器上。

找到持續推進的動力

面對續航力的限制,工程師勢必要尋找新的途徑來讓裝置得到推進的動力,才能到達身體內的目的地。其中一個選擇是透過微型的化學火箭,經由特定反應對象獲取能量,例如胃酸。研究人員也正積極探索生物技術,例如藉由在組織間游動的細菌、或是隨著特定分子的濃度變化信號而前進。

在某些情況下,也可能不需要任何能量載體。約翰霍普金斯大學的大衛格拉西亞斯(David Gracias)與其同事,已經開發出一種星型的微型鉗,能對環境因素產生反應,例如溫度、pH值、或是特定酶的濃度。偵測範圍在直線距離500微米以內,當偵測溫度靠近人的體溫時,微型鉗就會關閉。只要擺放的位置得當,微型鉗便能採集周遭的組織,進行篩檢。微型鉗的應用,可提供慢性腸道疾病患者一種新的篩檢選擇。

格拉西亞斯表示,患者可以透過「服用」大量的微型鉗,讓裝置直接抵達腸道,增加篩檢取樣的面積。與之相對,醫生也能從直腸直接注入微型鉗,稍後再經由患者的糞便回收採樣結果。

精準投放的困難

胃腸道系統相較於其他器官,到達的門檻較低,且能搭配排遺回收裝置。但其他如眼、腦、血液等組織,前往正確位置的難度就高上許多,需要更為複雜的機械設計。

來自蘇黎世聯邦理工學院的布萊德利納爾遜(Bradley Nelson)正致力於視網膜的微型治療裝置。他表示,即使是能夠感應溫度和PH值的最先進微型機器人,都難以抗衡血液中強大的電流,因此這些裝置需要更好的「嚮導」。雖然納爾遜的團隊目前已經能讓攜帶藥物的裝置在視網膜中慢慢擴散,但最終僅有少數能到達患部。團隊希望能夠未來提高投放的精準度,進一步減低藥物的劑量,以減少副作用。

目前採用的解決方案,是在裝置外圍添加磁性材料,並透過核磁共振機器,引導裝置到達目的地,此舉已在動物實驗獲得成功,但納爾遜仍想尋找其他不需動用到巨型電磁鐵的方案。目前團隊除了摸索如何透過磁力線圈控制裝置運動所需的物理、數學機制,也開始研究大腸桿菌的鞭毛推進模式,希望將人工鞭毛技術結合到現有的裝置上。

(本文由科技部補助「新媒體科普傳播實作計畫-智慧生活與前沿科技科普知識教育推廣」執行團隊撰稿)

責任編輯:鄭國威
審校:陳妤寧

-----廣告,請繼續往下閱讀-----