Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

舔舔手中雲朵——棉花糖

邱文凱
・2014/09/05 ・1951字 ・閱讀時間約 4 分鐘 ・SR值 472 ・五年級

-----廣告,請繼續往下閱讀-----

Credit: trang nguyen via Flickr
Credit: trang nguyen via Flickr

源起

我絕對不會說是因為我很愛吃棉花糖所以開始製作的XD

所需材料

  1. 濾茶器或鋁罐(擇一即可,若選用鋁罐,可參考阿簡老師的作法)
  2. 隨手小風扇
  3. M3螺絲、M3螺帽、M3銅柱
  4. 鐵釘跟鐵鎚
  5. 鋁箔膠帶
  6. 尖嘴鉗或鑷子
  7. 酒精燈(曾嘗試使用瓦斯爐或卡式爐取代,但因火力很強,易讓糖燒焦)
  8. 鍋子或透明投影片(擇一即可)
  9. 膠狀瞬間膠
  10. 白砂糖(想要做彩色的棉花糖的話,可以準備一些食用色素)
  11. 鋁箔紙

P.S. M3螺絲、螺帽、銅柱建議可以到西寧電子市場或光華商場購買(住台北的話),其他縣市的朋友可能得問問鄰近的五金用品或電子材料行。

IMG_20140830_095852-tile22

製作步驟

  1. 先用釘子跟鎚子在濾茶器頂的”正中央”打一個小洞(直徑小於3mm),小洞盡量在正中央,如果偏離太多,濾茶器旋轉時會很不順暢,請多注意喔。(使用濾茶器製作的優點有:不需自行打洞、清洗後可重複使用。)step1
  2. 用M3螺絲由上而下鑽鑽看,若能順利鑽過去,代表洞的大小是合適的,再使用尖嘴鉗或鑷子夾著M3螺絲由下而上鑽過去,最後用螺帽鎖上去固定螺絲。step2
  3. 將隨手小風扇的扇葉拆下來,接著用鋁箔膠帶把馬達轉軸黏粗一點,最後於其轉軸上套上一個M3銅柱(鋁箔膠帶的原始構想來自林宣安老師)。step3
  4. 將濾茶器頂的M3螺絲與M3銅柱連接起來(銅柱內有螺紋可鎖螺絲),然後開啟隨手小風扇的電源(記得裝電池XD),看看濾茶器旋轉的情況如何,如果用螺帽鎖住的M3螺絲有鬆脫情況,可考慮使用膠狀瞬間膠黏著固定(擔心食用安全的人,就把螺帽鎖緊點吧)。step4-1大致準備完了,接下來可以來做棉花糖啦!!!
  5. 將適量白砂糖倒於鋁箔紙上並集中於鋁箔紙中間(如果有準備人工色素,請在此時均勻摻入白砂糖中),然後將盛糖的鋁箔紙包住濾茶器(請務必包緊,加熱後的鋁箔紙若鬆開飛出可能造成危險)。step5完成圖
  6. 拿出鍋子或用透明投影片捲成一個柱狀(作為罩子,避免灼熱的糖液四處噴濺,若使用透明投影片則可清楚看見產生棉花糖的過程),中間放上酒精燈並點火,再將組好的裝置放到酒精燈上加熱,然後等到白砂糖液化(會冒白煙,並可聞到些許焦糖味時),開啟小風扇的開關,就可以等待棉花糖的到來囉~step6-1

PS:因為製作棉花糖的過程有使用到明火,所以請在旁邊準備一條濕抹布以備不時之需,且必須等到馬達完全停止旋轉時,才可以將裝置從鍋子或投影片空心柱中拿出,不然隨意射出來的灼熱糖漿可能會使你受傷。

棉花糖機利用酒精燈(熱源)將砂糖加熱成為液態後,藉著小風扇馬達的旋轉而將液態的糖從濾茶器的小洞被甩出。當液態的糖漿接觸到外面的冷空氣時,會凝固成一條條的糖絲而附著在周邊的塑膠墊片上,然後可以利用糖本身的黏性,用竹籤將它們捲起來。

-----廣告,請繼續往下閱讀-----

未命名

後記

因為從小就愛吃棉花糖,也很喜歡看著老闆一把糖投入機器中,然後就變出各色的雲朵來(而且還是甜甜的雲朵XD)。所以想嘗試製作棉花糖機,來更了解棉花糖的產生過程,解答童年時的疑惑與回憶當年愛吃糖的日子。

去年到山區部落出梯隊時(詳情可見此),記憶最深刻的,正是我拿出自製的棉花糖機時,雖然那裏的不少孩子是第一次見到棉花糖,但卻跟我童年時一樣,讚嘆著其如雲朵般的造型,喜歡它蓬鬆且甜甜的口感,當糖液隨旋轉飛出、凝固成如絲綢般的糖絲。我想,除了織出如白雲般輕飄飄的棉花糖,也織給這群孩子一個美好的回憶。

也記得當地的孩子會偷摸一把糖藏在口袋裡,然後用手指沾糖慢慢地舔著(當地有貧富不均的情況,有些家庭豐衣足食,有些卻有三餐不繼的狀況,因此部分孩子少有機會吃糖),看著這一幕幕的畫面,我想:原來這個棉花糖機,用糖做為媒介,將我童年的美好回憶分享給這群孩子。雖有時空差異,但在當下,我們共享了這一份對棉花糖的感動。

多一份人性的思考(生活中的材料、簡化的做法、分享喜悅),科學除了可以造就神奇的效果,更能傳遞一份溫度、帶給他人美好的回憶~

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
邱文凱
9 篇文章 ・ 0 位粉絲
相信著 "以人化物" 器物再美,缺乏人的溫度,終將不完美 而若多一分人性的溫暖,便能包容原先器物的小缺陷 這是設計科學小物的初衷 希望這些東西能充滿著溫暖,無論是手心的亦或是內心的

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
邁向科學研究的前線: 手機變身螢光顯微鏡!
Scimage
・2014/07/16 ・2179字 ・閱讀時間約 4 分鐘 ・SR值 523 ・七年級

顯微鏡可以讓人看清楚小世界裡發生的事情,但是進入研究分子的時代,因為光的波長只有到數百個奈米(nm),所以以光學顯微鏡無法直接觀察分子的種類與型態,雖然可以利用電子顯微鏡,不過操作使用上難度高,研究人員也難輕易使用,偏光顯微鏡能提供分子排列的訊息,但是如果能用光學的方式直接看到分子或確定不同種類的分子存在與否,就能讓很多重要的物理或生物資訊被研究發現。而螢光顯微鏡就是目前在研究上用的最多與最重要的技巧之一。

一般顯微鏡利用光的吸收跟反射測來觀測物體,偏光顯微鏡利用光波的偏振特性,而螢光顯微鏡就是利用光在波長方面的特性的來觀測分子。原理是特定種類的分子(稱為螢光源,fluorophore)在吸收短波長的光之後可以放出長波長的光,觀測時如果能把原本的波長的光濾掉,只剩下激發後較長波長的的光被看到, 這樣一來就可以斷定特定的螢光分子是否存在。這樣的概念看似簡單,卻能帶來分子種類的解析性,舉例而言,像是把抗體加上螢光基團,就可以利用螢光辨識特定分子是否在樣品上,利用螢光蛋白序列加上改造的基因,就可以知道基因轉殖有沒有成功,把特定蛋白加上螢光蛋白,就可以在空間中甚至在細胞內追蹤分子或觀測神經纖維網路。在研究前沿上有數不完的研究,從生化檢測、基因定序、神經細胞結構等等,都是靠著螢光顯微鏡才能實現。

在技術上因為螢光訊號很弱,螢光顯微鏡通常用水銀燈或其他氣體放電燈作為光源,確保很強的光照,為了要濾除非螢光的訊號,需要很好的光學濾片組,這也讓螢光顯微鏡一直都只能在研究中或是在很貴的儀器內才能進行螢光偵測。

手機是現在人人都有的智慧裝置,結合了照像與傳輸分享的強大功能,如果在手機上如果能夠實現螢光的顯微觀測,將對科學發展有很大的幫助,有研究能力的手機顯微鏡與手機偏光顯微鏡之前已經由科學影像實現了,那手機有可能完成螢光觀測這項任務嗎?

-----廣告,請繼續往下閱讀-----

讓手機顯微鏡變成有螢光的能力設計是這樣,首先在光源方面,因為半導體技術的發展,很多窄波段的固態光源變成可能,不再需要從全光譜中濾出特定的光出來, 而是可以直接有效率的使用半導體光源,所已選用合適的短波段高亮度的LED就能大部分解決激發光源的問題,且同時能降低對激發濾片(Excitation filter)的要求,可以以吸收式的濾片達成。

在光路上,目前一般的螢光設計是epifluorescence,由同個物鏡照出激發光,偵測背反射的螢光訊號,可以減少對發射濾片 emission filter的要求,但是同軸照明需要較複雜的設計與雙色濾片dichroic filter,基於同樣的考量,可以改用暗視野照明來達成,加上發射濾片emission filter,始發射光與螢光的光譜沒有交錯, 就可以觀測螢光了!

以深藍紫色激發為例,目前可取得最好的固體光源的光譜如下,波長到450nm即全部消失。

p1

在選用的emission filter上,濾除連續光譜的日光後的光譜圖觀測如下,可以看到470nm以下的光全部被濾掉。

-----廣告,請繼續往下閱讀-----

p2

所以選用這組光源與發射濾片,即可以以藍紫光觀察從綠光到紅光的螢光。設計相關的激切結構跟濾片在手機顯微鏡上,實際完成的手機螢光顯微鏡成品如下:

p3

整體發出的紫藍紫光是由載物台下方進行暗室野照明所發的,就可以有效的激發出螢光訊號,注意在播片的邊緣有不同顏色的色光,那就是塗在坡片上的螢光物質所發出的螢光經由全反射而照出。

以下以兩個例子來說明這螢光模組的能力,首先可以同時關測到不同顏色的螢光(螢光染料壓的指紋),紅色與綠色各試不同的染料,黃色是混合之後的顏色。

p5

在生物的觀察上,也可以觀察到斑馬魚身上卵黃的自體螢光訊號。

-----廣告,請繼續往下閱讀-----

p6

除了深藍紫光之外,為了讓離激發光源比較遠的紅色螢光能更被有效率的激發,在實現手機螢光顯微鏡上,也設計了另一組以470 nm為中心的光源,目前兩組的光源與長通螢光濾光片的光譜如下,這樣一來所有常用的綠色到紅色螢光都可以被激發觀測。

p7

(其中下方淺藍色跟激發光跟長通濾波有交錯,需額外使用一片 excitation filter 來濾除)

螢光模組是手機顯微鏡,除了實現手機偏光顯微鏡後 ,另一個把專業顯微技術在手機實現的計畫,希望將會讓很多原本屬於實驗室的觀測可以再被更簡單的觀察記錄,有讓更多人與實驗室有方便的工具作更方便的觀察與檢測!


首次製作將提供台灣的實驗室進行申請使用螢光模組,歡迎有想一起測試的研究朋友加入科學社群 科學maker 索取,期間為 7/10-7/20。

-----廣告,請繼續往下閱讀-----

科學影像的顯微鏡製作計畫目前專屬的科學社群 科學maker 已經有超過 4000 位朋友加入,分享觀測的顯微照片超過4000多幅,來協助製作科學儀器的朋友超過 百人,花整天的時間替更多人製作科學儀器,目前贈送超過 70所偏遠學校手機顯微鏡做為教育之用,除了個人使用外,也開始要協助如泛科學的科學活動或是台大的NTU博物館行動展示盒計畫等大眾的科學活動,也進入了國小,國中,高中,大學等校園數百所正式的學習環境,做為充實顯微設備與改善課程用,希望手機螢光顯微鏡的實現,能讓手機顯微鏡變的更有能力,走入實驗的現場,讓台灣有更好的科學實驗環境!

手機顯微鏡網站手機顯微鏡 & 科學maker,對手機顯微鏡有興趣的朋友,歡迎加入科學maker,一起使用與分享顯微鏡的觀測~

轉載自科學影像 Scimage

-----廣告,請繼續往下閱讀-----