0

0
0

文字

分享

0
0
0

Rosetta號與67P彗星的太空探戈

廖英凱
・2014/09/03 ・1633字 ・閱讀時間約 3 分鐘 ・SR值 503 ・六年級

-----廣告,請繼續往下閱讀-----

未命名
Rosetta號的飛行軌跡

2014年8月6日,歐洲太空總署(ESA)的Rosetta彗星探測船,歷經十年60億公里的飛行,到達67/P Churyumov-Gerasimenko彗星的軌道位置。這是人們首次利用太空船進入彗星的軌道,近距離觀測到彗星的表面。

如探戈般的的飛行軌道

我們較常聽到的地球、月球、火星或其他行星的探測計畫。均是將太空船減速進入觀測星體的重力場而成為該星體的人造衛星。再以些許動力微調軌道以執行長期的科學觀測任務。然而,在67P彗星觀測計畫中,直徑僅有4公里的彗星,其重力遠不足以把Rosetta號捕捉入穩定的週期軌道。因此,必須仰賴探測船本身的燃料動力,不斷調整其繞著太陽的克普勒軌道,讓Rosetta號得以「相對地」在67P彗星周圍環繞。ESA的太空飛航動力學專家,設計了一個最節省燃料的飛行路徑,讓Rosetta號從距67P十萬公里遠的距離,逐步接近目標,在8月6日時到達僅有100公里的距離,預計在未來兩個月內將逐步靠近觀測彗星的不同角度,最終執行Philae號登陸器送至彗星表面進行鑽探等計畫。

除了節省燃料的考量,光線的充足也是一大考驗。在太空中觀測行星、衛星與彗星等不會自己發光的天體,可沒有攝影棚裡拍模型能打燈打光的充足設備。而必須仰賴太陽光的反射,因此Rosetta的飛行軌道,還需要考量到彗星的自轉,必須在待觀測面也朝向太陽時,才能取得足夠清晰的畫面。而由於67P彗星的自轉週期是12.7小時,自轉軸與黃道面約30度的傾角,也使得距離南極約30度內的區域至今仍無法觀察。但因陽光角度會因彗星接近太陽而改變,進而影響到可觀測的區域,因此ESA的科學家也根據此特性設計軌道,從ESA的軌道示意影片中,可以看到Rosetta如探戈般的飛行軌跡以及兼顧各個角度與距離的觀測計畫,以彗星和飛船起舞,實在是個飛向宇宙浩瀚無垠的科宅浪漫哪~~

不只是個髒雪球

當浪漫過後,激情褪去,面紗一一的被揭露,真實也逐漸浮上檯面(這不是言情小說起手式….),Rosetta號在距67P彗星100公里時,所拍攝到的照片更令科學家們為之驚奇。67P彗星並非像「髒雪球」這樣常用作彗星的描述,也並非常見的球形星體天體,而是如「半身人像」般兩端大中間細。Rosetta的觀測團隊也根據這樣的特徵將67P彗星分成頭部(較小的一端)、頸部與身體(較大的一端)來稱呼。在頭部與身體兩部分,滿布一層層的不規則結構,但沒有明顯的隕石坑。而較細的頸部更有著一大片較明亮的平滑表面。

-----廣告,請繼續往下閱讀-----
67P彗星@wikipedia
67P彗星@wikipedia

大部分彗星的成因,是由鬆散的冰、岩石與凍結的氣體所組成。故有「髒雪球(Dirty Snowball)」與「冰汙球(Icy Dirtball)」的稱呼。但在67P彗星上,卻可觀察到許多尚待研究的奇特地貌。例如在頸部與頭部交界處,可觀察到一道「懸崖」與類似沉積作用的疊層結構。而在地表光滑處又能找到一些在其他地方觀察不到的「巨石」。這些高度可達幾層樓高的巨石,在月球或其他行星表面,往往肇因於隕石碰撞所噴射出來的岩石。但在67P彗星表面並沒有見到大量隕石坑,也使得這些巨石的成因仍有待進一步探勘研究。

在67P彗星表面比較平滑的區域,常常可以發現一堆堆的大石塊,它們的成份和來源尙待觀察硏究。
在67P彗星表面比較平滑的區域,常常可以發現一堆堆的大石塊,它們的成份和來源尙待觀察硏究。

遠觀,是為褻玩做的最好準備(誤)

在8月6日至9月3日的觀測任務後,Rosetta預計於9月10日,在離彗核30公里處,開始遙測製作解析度約70公分的彗核的表面地圖。在這樣的解析度下,可以觀測到詳細的地質結構與噴氣現象。ESA也將根據此份遙測結果規劃適宜登陸地點,並在10月10日到達Rosetta號與67P彗星的最近點,距離僅10公里,在此階段針對登陸地點最更進一步的觀察,遙測解析度可達20公分。最終在11月11日,會將Rosetta上所搭載的一個重約100公斤的登陸器Philae號投放到彗核上。

隨著Rosetta號的太空探戈與Philae登陸器的一親芳澤,人類史上與彗星的第一次接觸將為我們揭開彗星的秘密與開啟更多太陽系外天體的研究方向。

文章難易度
廖英凱
30 篇文章 ・ 249 位粉絲
非典型的不務正業者,對資訊與真相有詭異的渴望與執著,夢想能做出鋼鐵人或心靈史學。 https://www.ykliao.tw/

2

5
3

文字

分享

2
5
3
披著喜劇外皮的警世寓言:《千萬別抬頭》背後的科學真相
PanSci_96
・2022/01/06 ・3626字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

2021 年底在 Netflix 上架的《千萬別抬頭》(Don’t Look Up)講的是一個彗星撞地球的故事,但這並不是一部普通的科幻災難片,而是帶有黑色幽默的諷刺電影,用來嘲諷拒絕科學、對科學冷漠的社會大眾。雖然製作團隊原先是想諷刺那些否認全球暖化的言論,但在 COVID-19 疫情肆虐的現在,恰巧也能影射抵制口罩和疫苗的行為、煽動對立的政治操作,以及人們對於社交媒體的過度依賴。即使整部電影看似穿插了不少笑點,仍能從中感受到一股壓抑和無力感。

《千萬別抬頭》還請來了星光熠熠的卡司陣容,包括李奧納多.狄卡皮歐、珍妮佛.勞倫斯、喬納.希爾和凱特.布蘭琪等多位奧斯卡得主。飾演美國總統的梅莉.史翠普更表示這是她拍過最重要的電影!

Don't Look Up Poster.jpg
《千萬別抬頭》的演員陣容十分豪華,主演群包括李奧納多.狄卡皮歐、珍妮佛.勞倫斯等人。圖/WIKIPEDIA

製作人亞當.麥凱(Adam McKay)希望這部電影能夠如實描繪科學事實以及科學家面臨的挑戰,於是,他邀請知名天文學家艾米.邁因策爾博士(Dr. Amy Mainzer)擔任電影的科學顧問。

邁因策爾博士現為亞利桑那大學月球與行星實驗室的教授、全球頂尖的小行星探測和行星防禦專家,以及 NASA NEOWISE(Near-Earth Object Wide-field Infrared Survey Explorer)計畫的首席研究員,負責監督這項史上規模最大的小行星探測計畫。在 2020 年 3 月,計劃內的一名天文學家成功發現了一顆新的彗星,並且將它命名為 NEOWISE,就跟計畫名稱一樣。

-----廣告,請繼續往下閱讀-----
Photo of Dr. Amy Mainzer
邁因策爾博士。 圖/NASA

科學家眼中的災難片

本片的科學顧問邁因策爾博士與北美天文學新聞網站《今日宇宙》(Universe Today)的編輯南西.阿特金森(Nancy Atkinson)聊了《千萬別抬頭》這部片,以及電影中的科學。

邁因策爾博士醉心於彗星和小行星的研究,所以她表示,自己非常喜歡隕石浩劫這類電影題材!非常開心能看到以彗星為主題的電影,也十分慶幸能夠成為災難電影的科學顧問。

雖然目前實際上沒有任何小行星或彗星運行在可能撞擊地球的軌道上,也沒有任何一顆即將撞上地球。但本片畢竟是科幻電影,需要設定一顆真的即將撞上地球的彗星,更像是「拋磚引玉」的功能。邁因策爾博士以「科學實在論」打造故事框架,希望觀眾重視科學家的警告,不再相信虛假的謠言。

而《千萬別抬頭》之所以涵蓋這麼多科學知識,是因為製作團隊對科學深感興趣,非常重視電影中的科學。因此電影畫面中,團隊設計的彗星既要符合電影的視覺需求,又要符合科學上真實彗星的樣貌。劇情不僅描述了發現彗星的過程,包括如何識別、確定彗星軌跡,還刻畫了科學家在探索未知事物時的反應。這不只描繪了科學家的形象,也告訴觀眾科學家是什麼樣的人,還有他們是如何傳播科學知識——有時很順利,但有時真的困難重重。

-----廣告,請繼續往下閱讀-----

這部電影讓《今日宇宙》編輯印象最深刻的是,科學家試圖警告災難,卻沒有被當一回事。若是套用在氣候變遷和傳染病肆虐等全球議題上,這種冷漠的態度似乎有點太寫實了。

邁因策爾博士也認為,這齣電影想強調人們對於科學新聞的態度。就像《今日宇宙》編輯平時所從事的科普工作,將複雜的概念轉化為淺顯易懂的文字是很困難的,因為科學家慣用的詞語與日常生活中的用詞完全不同。

例如,「不確定性」(Uncertainty)代表測量結果是一個可能的數值範圍,而不是指我們不確定自己測量的是什麼。在不同的情境下,詞語意思也會不一樣,確實有可能造成溝通障礙——這只是其中一個例子而已。

對邁因策爾博士來說,這部電影講述的是科學家如何傳播知識,如何讓眾人瞭解這些知識,還有如何根據科學做出明智的決定。這樣的題材很有挑戰性,因為這是一部喜劇,希望觀眾可以在笑著看完的同時,能夠更加理解科學家們多麼努力想做到這些事,「可是也請容許我們偶爾做不到。」

-----廣告,請繼續往下閱讀-----
陨石, 天空, 云, 火焰, 日落, 山, 人, 幻想, 数字艺术
《千萬別抬頭》希望透過反諷與幽默,能讓更多人抬起頭、睜開眼,開始關心環境議題。圖/Pixabay

幕後花絮:真正的 NEOWISE 計畫在做什麼?

其實,現實中新發現的 NEOWISE 彗星就是電影裡那顆彗星的原型。那是一顆長週期彗星,以驚人的速度從遠方朝太陽系飛來。邁因策爾博士在 2020 年 3 月發現 NEOWISE,7 月時它就接近地球了,就真的像電影中的彗星一樣,我們來得及反應的時間非常短。 

好消息是,我們已經開始監視那些能釀成全球性災難的近地小行星。以超過 1 公里的近地小行星來說,科學家已經找到了其中 90%,而且沒有一個會對地球造成威脅。

但長週期彗星就是另一回事了。比起小行星,長週期彗星相當稀有,但這不代表它們不存在。雖然科學家持續監測,還是無法推估總數到底有多少。在邁因策爾博士看來,任何物體接近地球的機率都不是零,我們需要獲得更多知識,才能做好準備,方法就是不斷尋找彗星和小行星,並且全面性地監測、追蹤。

邁因策爾博士也花了很多時間和導演討論小行星監測系統。當科學家們發現未知的小行星或彗星時,會透過這個系統比對所有已知的星體,如果確定是未知星體,系統就會公開觀測資訊,讓其他天文學家看見。從科學家的角度來看,他們努力地傳播科學資訊,但問題在於每個人對於科學的接受程度不同,這樣的矛盾在劇情中也有不少著墨。

-----廣告,請繼續往下閱讀-----

電影中的科學家發現彗星只是湊巧,他本身並不是研究彗星的專家,但製片團隊仍花了不少時間呈現他們識別彗星、確定軌道,以及將結果轉告其他科學家的過程。雖然這畢竟是電影,多少美化了實際情況,但還是希望能藉此讓觀眾看見科學論證的嚴謹之處。

Comet 2020 F3 (NEOWISE) on Jul 14 2020 aligned to stars.jpg
NEOWISE 彗星 或音譯尼歐懷茲彗星 ,又稱為 C/2020 F3,是一顆具有接近拋物線軌道的逆行長週期彗星。圖/WIKIPEDIA

科學講述事實,但藝術掌管對事實的感受

本片中有許多大咖演員,他們才華洋溢,而且都有自信能展現出科學家感性的一面。他們都熱衷科學、關心科學在日常生活中扮演的角色,也相信如果人們根據科學做決定,就能找到更好的問題解決方法。邁因策爾博士還花了很多時間陪演員練習台詞,因為劇本裡有很多艱澀的科學術語。這麼做還有另一個好處,就是當他們沒有在聽博士講話時,博士可以表達身為科學家的感受,供他們揣摩。

邁因策爾博士一直覺得科學和藝術之間的關係很有趣。科學告訴我們事情的本質,但藝術掌管我們對這些事情的感受。這部電影呈現出科學家和大眾對於科學的看法:科學家想改變社會,以做出基於科學的決定,但也必須設法讓大眾傾聽科學的聲音——這種矛盾和拉扯,就是這部電影的核心所在。

科學家有所隱瞞?他們更想說個沒完

那些拒絕科學的大眾普遍認為 NASA 或政府隱瞞了一些事情,可是所有科學家卻都說,如果他們發現太空有危險物體,絕對會爬上屋頂告訴全世界。

-----廣告,請繼續往下閱讀-----

如果換成是邁因策爾博士,她也會這樣做!當科學家學到新的酷東西時,就像一班人去了一趟很棒的旅行,回家後,他可能會讓其他人感到厭煩,因為他不斷提起旅行中的所見所聞。大多數科學家不會停止談論自身所學,因為他們熱愛這些知識,也希望其他人知道這些酷東西,或許他們就會因此愛上科學!

邁因策爾博士希望觀眾看完這部電影後,能夠理解科學家也是人,而且和一般人沒什麼兩樣。「作為科學家,我們經常遇到溝通方面的挑戰,但我們正在努力,而且我們不會放棄!」

圖/twitter @dobrienloml
所有討論 2
PanSci_96
1219 篇文章 ・ 2181 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

7
3

文字

分享

1
7
3
Just Look Up!小行星監測系統「哨兵」全面升級
EASY天文地科小站_96
・2022/01/03 ・2549字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/陳子翔|師大地球科學系、EASY 天文地科團隊創辦者

看到下圖密布於太陽系的小行星軌道,你是否會對小行星撞地球這樣的災難感到擔心呢?

對地球有潛在撞擊威脅的 2200 個小行星軌道。圖/NASA/JPL-Caltech

事實上面對小行星的撞擊風險,科學家也是嚴陣以待。畢竟即便是一顆直徑只有數十公尺的小行星撞上地球,其威力也足以摧毀一座城市。更何況還有許多直徑數百公尺,甚至數公里的近地小行星(near-Earth asteroids)存在。因此,對於這些小行星的觀測、研究與監控就顯得格外重要。

揪出藏身夜空中的小行星

對近地小行星監測的第一步,就是要先找出「它們在哪裡」。如同在戰場上比起收到敵方要發動攻勢的情報,更可怕的就是連敵人是誰、敵人在哪裡都還不清楚就被暗中襲擊了。

然而棘手的是,由於直徑小,反照率低的特性,小行星的亮度往往非常低,需要仰賴觀測性能強大的天文台才有辦法看見它們。但大型天文台的觀測視野卻通常很小,難以有效率的「掃描」廣大的夜空,而且這些天文台本來就有很多天文研究工作要進行,能撥給小行星觀測的時間也相當有限。

有鑑於這些因素,專門設立搜尋近地小天體的計畫與望遠鏡,就成了更合適的選項。像是林肯近地小行星研究小組(Lincoln Near-Earth Asteroid Research, LINEAR)、卡特林那巡天系統計畫(Catalina Sky Survey, CSS)以及泛星計畫(Pan-STARRS)等。它們扮演「小行星獵人」的角色定期掃視夜空,尋找移動中的可疑光點。目前透過這些計劃發現的近地小行星已經多達數萬個。

-----廣告,請繼續往下閱讀-----
https://upload.wikimedia.org/wikipedia/commons/7/7d/Neo-chart.png
每年由近地小天體搜尋計畫找到的近地小行星數量,藍色為林肯近地小行星研究小組,綠色為卡特林那巡天系統計畫,紫色為泛星計畫。圖/Wikipedia

用自動化的監測系統,找出小行星中的「危險份子」

發現這些小行星的下一步,就是由觀測資料計算出它們的軌道,並找出哪些小行星對於我們的威脅比較大。而面對數量龐大的近地小行星資料,NASA 噴射推進實驗室(Jet Propulsion Laboratory, JPL)早在 2002 年就開發出一套名為「哨兵(Sentry)」的監測系統,運用設計好的演算法,自動化的評估每個近地小行星撞擊地球的機率,並列出對地球威脅比較大的小行星名單。

以目前的速率來看,每年大約有 3000 個新的近地小行星被發現。而未來隨著更多更先進的天文台投入小行星搜尋的計畫,可以預期小行星的發現數量還會出現顯著的成長。因此就在不久前,NASA 的天文學家已發展出下一代更先進的小行星監測系統:哨兵 II(Sentry II),以因應未來更龐大的資料,同時也對已經使用了近 20 年的哨兵系進行補強。

監測系統升級上線,更完善的為地球把關

就如同各種應用程式都會進行版本更新,並在更新中修正上一個版本的缺點,這次哨兵 II 系統的升級,也從哨兵一代系統多年累積的經驗進行修正。

首先,第一代哨兵系統只有計算萬有引力對小行星軌道的影響,並沒有考量其他外力,例如來自太陽的輻射壓等等。這些力量雖然相對微小,但積少成多、聚沙成塔,長期下來也能影響小行星運行的軌道。另一方面,由於小行星本身會自轉,因此小行星的受光面和背光面會不停改變方向,如此一來熱輻射對小行星造成的力,也會隨著轉動而變化,這個效應被稱作「亞爾科夫斯基效應」(Yarkovsky Effect)。而哨兵 II 的演算法都有將這些因素納入考量,讓小行星的軌道估計算更為精準。

-----廣告,請繼續往下閱讀-----
亞爾科夫斯基效應的動畫。影片/NASA

再來,當小行星的非常靠近地球時,受到地球引力的影響,軌道以及速度都會大幅改變。其原理與太空探測器借助行星的引力來改變自身的軌道和加減速的「重力彈弓」效應相同。

然而太空探測器上面有很多精密的儀器提供科學家精準的定位,小行星卻只能透過地面觀測來估算出它的軌道,科學家其軌道掌握的精確度當然就比較差。而當小行星接近地球時,軌道的計算誤差就會被大幅放大。一個小行星飛掠地球時幾百公尺的誤差,到了下一次來訪時可能就成了幾千公里的差別了。而這幾千公里,就有可能是「撞上地球」和「安全通過」的差距。好消息是,由於在軌道計算上考量的因素更全面,演算法也更加精密,讓哨兵 II 即使在面對這樣的狀況,也能計算出更為精準的結果。

最後,哨兵 II 系統在計算小行星的撞擊風險時,判斷的方式也相較上一代系統更縝密。如同任何觀測與測量,小行星的軌道也會存在誤差,而哨兵 II 會從小行星軌道的誤差範圍內隨機取樣進行計算,以檢查小行星有沒有撞上地球的可能性。相比於第一代哨兵系統預先將有撞擊風險的軌道推算出來後才評估撞擊機率的做法,這樣的更新能降低漏網之魚出現的可能性。

流星, 小行星, 空间, 灾难, 彗星, 天文学, 陨石, 宇宙, 星星, 星系, 坠落, 天空, 科学
隨著科技不斷在更新換代,人類對小行星的認識越來越深入,但我們也仍未擺脫小行星撞擊的威脅。圖/Pixabay

持續探索可能的威脅

小行星、彗星等天體的撞擊一直以來都是很多科幻作品的題材。從科學的角度來看,太陽系中也的確存在非常多小天體,可能對地球上的生命構成威脅。雖然對於近地小天體的災害預防,當今的科學與科技還遠達不到萬無一失的程度,但過去三十年,人類對近地小行星的認識已有了顯著的進展。從搜尋小行星的各個計畫,到針對小行星的太空探測任務,以及本篇文章介紹的兩代哨兵監測系統,都帶給我們許多重要資訊,立下人類面對小行星撞擊風險時不可或缺的基石。

-----廣告,請繼續往下閱讀-----

延伸閱讀

參考資料

所有討論 1
EASY天文地科小站_96
23 篇文章 ・ 1429 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

1

7
1

文字

分享

1
7
1
整個宇宙都是我的動物園?——歡迎進入「天文化學」的思考領域
ntucase_96
・2021/09/24 ・3150字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 撰文|許世穎

本文轉載自 CASE 科學報整個宇宙,都是我的動物園——天文化學

整個宇宙就像是一座「分子動物園」,藉由研究的分子光譜,我們可以得知這分子的分佈、溫度等性質;而由於不同的分子有著不同的「習性」,我們還可以得知孕育這些分子的星際環境。

要了解星際環境,可以從透過分子開始!圖/ESA/Hubble, CC4.0

天文化學是什麼?

天文學是研究宇宙間天體的自然科學,除了一般大眾較為知道的「天文物理學」以外,宇宙擁有很多的面向,其中一個就是本文的主題:「天文化學」。

同樣都是研究「物質」的科學,物理學與化學卻是以不太一樣的方式來觀察這個世界。天文化學著重那些宇宙間「不同天體環境中的原子、分子、離子」等,研究它們的形成、分布、彼此之間的交互作用,或是與環境的交互作用。(接下來為了方便起見,我們將分子、離子等統稱為分子。)

天文學雖然是最古早的科學之一,但是天文化學這個學門,則要到 20 世紀中期才開始慢慢出現。理由很簡單:因為分子看不到呀!星星那麼大一顆,用望遠鏡都不一定能看清楚了,更何況是擺在眼前都看不到的分子呢?

-----廣告,請繼續往下閱讀-----

因此要研究宇宙中的分子,必須要靠特別的技術才行;其中,最重要的技術之一,就是「光譜學」。

研究宇宙中的分子,必須依賴「光譜學」才行。圖/envato elements

光譜(spectrum)是將光依照波長或頻率排列出來的圖案,像「彩虹」就是一種光譜,是太陽光依照不同頻率分開來的圖案。而光的範疇除了可見光以外,還有很多肉眼看不到的波段,例如無線電波、紅外線、紫外線、X光……等。

每一種分子都有著屬於自己的光譜,在地球上的我們,如果想要知道分子的光譜長什麼樣子的話,除了可以做實驗量測以外,更多的是用電腦做精密的模擬計算來預測。分子的光譜就像它們的「指紋」,就像警察會將採集到的指紋與資料庫比對,來得知這枚指紋是哪個人留下來的,天文學家則是將觀測到的光譜與資料庫比對,來得知遙遠星際的另一端有哪些分子,甚至是它們的含量、溫度等(圖 1)。

想要了解更多天文學家如何使用光譜學,可以參考:<把光拆開來看:天文學中的光譜>。

-----廣告,請繼續往下閱讀-----
銀河系中央的光譜,從中可以分析出很多不同的分子,甚至包括他們的含量、溫度、分佈等等。圖/ESO/J. Emerson/VISTA, ALMA (ESO/NAOJ/NRAO), Ando et al. Acknowledgment: Cambridge Astronomical Survey Unit [2]

為什麼宇宙是「分子動物園」

動物們往往能反應出當地的環境,舉例來說,看到河馬就知道那邊是有水有草的環境;看到櫻花鉤吻鮭就知道有水溫偏低的溪流 [3]。將宇宙視為分子動物園也是一樣的,觀察分子的分佈、含量,也可以讓我們回推物理環境。目前,我們已從星際間,觀測到了約 200 多種分子,這裡就介紹幾種常見的星際分子吧!

宇宙中有很多不同的分子,分佈在不同的地方(示意圖)。圖/EAS2020[4]

氫分子(molecular hydrogen, H2

宇宙中含量最高的分子,也是「分子雲」的主要成分。分子雲中每一立方公分大約有一萬個氫分子(104 cm-3)。

分子雲是恆星、行星誕生的地方,所以了解氫分子的分佈,能幫助我們研究恆星形成。同時,氫分子能與較重的元素反應,是許多化學反應的催化劑,產生其他的分子如一氧化碳(CO)、二氧化碳(CO2)、 氰基自由基(CN)等。

氫分子對天文化學來說相當重要,可惜在分子雲這種均溫只有零下 200 多度的環境,幾乎是不太可能觀測到(因為它是個對稱的分子,有興趣的讀者可以再進一步了解。)[5][6]

-----廣告,請繼續往下閱讀-----

一氧化碳(carbon monoxide, CO)

一氧化碳分佈在星際間低溫、高密度的區域。它是星際間含量第二高的分子。

比起氫分子,一氧化碳容易觀測太多了,所以天文學家更容易從一氧化碳的圖像,來得知分子雲的分佈。由於分子雲幾乎沒辦法用可見光直接觀測,早期的科學家根本不知道我們周邊有這麼多分子雲的存在,直到觀測了一氧化碳的圖像之後才大開眼界。 [5][6][7]

被戲稱為「中指星雲」的分子雲。圖/維基百科, CC0

氨(ammonia, NH3

氨也是很容易被觀測到分子。歷史上第一個觀測到的分子是就是氨。氨有許多譜線,而這些譜線的強度對於環境變化非常敏感,能對應到很多種不同的星際環境。對氨的觀測能讓我們更精確地回推出該處的環境狀況 [8][9]

宇宙中的環境變化太大了,不同的環境下化學反應可能會有很大的差異。宇宙間的發散星際雲(diffuse cloud)、密集分子雲(dense cloud)、恆星形成的熱原恆星核(hot core)等這些已經偵測到大量分子的區域,溫度分佈從 10 K~1000 K(約攝氏 -200 度到 +800 度)、密度從每立方公分一百顆粒子到十兆顆粒子(102 cm-3~1013 cm-3)都有!

-----廣告,請繼續往下閱讀-----

這裡接著再介紹幾種分子含量高的星際環境。

恆星形成區域(star-forming region)

分子雲內部高密度、正在形成恆星的地方。獵戶座 KL 星雲(Orion KL)是獵戶座大分子雲中,恆星形成最活躍的區域。在這裡有許多的「複雜飽和有機分子」出現,如:甲醇(CH3OH)、甲酸甲脂(HCOOCH3)等,也有一些長鏈的碳分子,如:氰基乙炔(HCCCN)[10]

獵戶座 KL 星雲。圖/NASA, ESA/Hubble [10]

彗星 67P/Churyumov-Gerasimenko (comet 67P/C-G)

在近幾年的觀測資料中,科學家在這裡看到了含量極高的氧分子(molecular oxygen, O2),這讓他們感到非常意外。因為氧分子在宇宙中很容易起反應、變成其它的分子,而在彗星這麼樣一個容易揮發的環境中,卻能有高含量的氧分子存在,代表這些氧分子很有可能是在彗星形成的時候,就已經存在周遭的環境中,並且冰封在彗星上 [11][12]

彗星 67P/C-G(右)以及它的光譜(左)。圖/ESA/Rosetta/NAVCAM [12], CC 3.0(右)A. Bieler et al. (2015) (左)[11]

天文化學所牽涉到的範圍很廣,橫跨了許多不同的領域。 整個宇宙就是一座「分子動物園」。天文學家觀察這些宇宙中的分子,來得知遙遠天體中具有什麼樣的環境。星際間也發現了許多有機分子,研究這些分子甚至能幫助我們理解生命的起源,這是現在天文化學研究的一個重點方向。

-----廣告,請繼續往下閱讀-----

參考資料

所有討論 1
ntucase_96
30 篇文章 ・ 1345 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。