0

0
0

文字

分享

0
0
0

漸凍人的破冰挑戰──淺談 ALS 的最新治療研究

活躍星系核_96
・2014/08/26 ・3176字 ・閱讀時間約 6 分鐘 ・SR值 591 ・九年級

作者:蕭艾琳|台灣大學微生物學研究所

試想一桶摻冰的冷水當頭澆下,沁涼得讓人直打哆嗦,毛孔自然全縮了起來, 渾身僵直,處在原地無法動彈──這種短暫引起的不適,宛如被禁錮在己身的感覺,竟是長期伴隨著肌萎縮性脊髓側索硬化症(Amyotrophic Lateral Sclerosis, ALS)患者,俗稱漸凍人,或者眾人耳熟的是另個更加響亮的名稱「路‧蓋里格氏病」,得名於曾在大聯盟紐約洋基隊效力的棒球明星,卻因病被迫提前結束大好職業生涯的路‧蓋里格(Lou Gehrig)。

今年夏天藉由社交網路平台,主要是推特和臉書的群起響應,如病毒般傳播開來的冰桶挑戰(Ice Bucket Challenge)發起者彼得‧福瑞特(Peter Frate),前波士頓大學的外野手,和路‧蓋里格有著相似的命運,皆在巔峰的青壯年時期發病,終其一生得和目前醫界仍束手無策的神經退化性疾病搏鬥。之所以發起這個 看似八竿子打不著一氣的活動,無非是希望透過簡單的親身體驗,可以喚起世人對罕見疾病的重視,並慷慨解囊捐獻給肌萎縮性脊髓側索硬化症協會(ALS Association,ALSA),爭取病友的福利和資助新興療法的研究。

罹患ALS的Pete Frates
罹患ALS的Pete Frates 圖片來源:Pete Frates

ALS 是成人最常見的運動神經元疾病(Motor Neuron Diseases,MND),距 今約一百六十年前由法國現代神經學之父讓-馬汀‧沙可(Jean-Martin Charcot, 1825-1893)醫師發現首例病患的臨床病徵,其名 Amyotrophic 源自於希臘字根, 意義為「無肌肉滋養(no muscle nourishment)」。

-----廣告,請繼續往下閱讀-----

顧名思義,正常人身上負責傳遞收縮訊息給肌肉的運動神經元 (motor neuron)選擇性死亡,由於無法接收到上或下游運動神經元傳訊,其調控的肌肉會逐漸地萎縮,且因病程迅速,常侵犯腦部或脊髓,發病後兩到五年內患者將失去對隨意肌的控制能力,起先是出現無力、口齒不清、流口水等症狀,嚴重者則造成全身癱瘓、呼吸衰竭,甚至死亡。

如此可怖的疾病,並不影響接收外界刺激的感覺神經元(sensory neuron), 故患者儘管意識清醒,知曉周遭發生的事物,卻動彈不得的困在病榻上,飽受病魔煎熬,實是心靈層面的牢獄。

Credit: Stevevia Flickr
Credit: Stevevia Flickr

ALS 屬於全球普及率十萬分之五的罕見疾病,縱然科技日新月異,美國食品藥物管理局(Food and Drug Administration,FDA)唯一核可的藥物銳利得 (Riluzole)卻也只能做到趨緩病程,降低一半以上的死亡風險,但患者最終仍會因呼吸肌無力而死亡。

正因目前仍未出現有效治療 ALS 的方式,與其繼續坐等國際大藥廠評估孤兒藥成本與利潤的拿捏,ALS 病患與其家屬挺身成立的互助組織 ALSA,主動發起轉譯研究進階治療 ALS 計畫 (Translational Research Advancing Therapy for ALS,TREAT ALS),因有鑑於許多機構包含美國國家衛生研究院(The National Institutes of Health,NIH)在內,皆有 ALS 的致病機轉背景研究,故該計畫轉而將目標放在建立起頂尖科學團隊和商業投資之間的橋樑,並非只是短期的治療策略,其旨在於結合現有與新開發的藥物,支持實驗性療法加速進入美國食品藥物管理局(Food and Drug Administration,FDA)核准的臨床試驗,通過後再具體應用在病人的治療上。

-----廣告,請繼續往下閱讀-----

根據今年 ALSA 旗下發行的刊物《今日 ALS 研究》(Research ALS Today,簡稱 RAT)春季號報導,介紹了現今極具發展潛力的反義寡核苷酸(Antisense oligonucleotides,ASOs)療法。

所謂的反義寡核苷酸為短單股去氧核醣核酸分子,可想像是條成串的圓珠,一旦被神經細胞內吞進去,可以選擇性鎖定分子機制作用,像是超氧化物歧化酶 (superoxide dismutase, SOD1)的蛋白質製造,其作用方式並非修正突變的基因,而大多設計成減少獲得功能(gain-of-function)突變帶來的傷害。然而,在特定情況下,它亦可增加基因產物來克服剪接(splicing)所致的缺陷。目前此治療策略的發展是針對脊髓肌萎患者,尤其是運動神經元存活(survival of motor neuron,SMN)蛋白質的功能缺失所致的小兒運動神經元疾病,同時也有潛力運用在治療亨丁頓氏症、阿茲海默氏症和強直性肌肉失養症。

舉例來說,目前已知 SOD1 的主要功能為分解人體內的自由基,避免細胞遭受損害,而 SOD1 基因突變會造成百分之二十的家族性 ALS,以及約百分之二 的其他型 ALS。

以 ASOs 治療 SOD1-ALS 的先驅研究團隊,來自 ALSA 贊助的科學家克里夫蘭醫師(Dr. Cleveland)和神經研究中心的理查‧史密斯博士(Richard Smith, M.D),與加州卡爾斯巴德(Carlsbad, CA)的 ASOs 發展者伊希斯製藥(Isis Pharmaceuticals)合作,先是實驗SOD1-ALS 老鼠模型,結果發現此治療可以延緩百分之三十七的疾病進程速度,相較預期症狀出現的時間點延後。

-----廣告,請繼續往下閱讀-----

再進一步按比例應用至第一期人體試驗階段,其設計如下:隨機分配病患至四組,每組八位,以脊髓注射藥物的方式施用百憂解或抗 SOD1 ASO 超過十一個半小時(六位採主動治療,另兩位則服用百憂解),並於安全的情況下提高藥物劑量,經過二十八天的周期後再進行新的調整。

經過實驗組和控制組的結果比較,科學家發現,兩種藥物的不良副作用發生頻率相近,且主要和試驗步驟有關,故可初步排除劑量限制性毒性(dose-limiting toxic effects)、安全性或耐受性上的疑慮。另外,由於最初臨床階段尚未評估 ASO 藥效,目前該團隊正在著手使用新的寡核苷酸骨架和核醣核酸目標物,來修正治療策略。

在 SOD1 ASO 治療層面得到突破性的進展,科學團隊將目標放眼到對 ALS 影響甚鉅的標靶基因 C9ORF72,其造成百分之四十的家族性 ALS,以及百分之六的零星疾病。

目前 C9ORF72 致病機轉的主流假說為六個核苷酸 GGGGCC 為一單位的重複性擴增,使得核醣核酸轉錄出數百或數千個產物,如此一來,當核醣核酸摺疊成立體結構時,會困住轉錄因子,進而改變細胞的代謝機制,甚至會轉譯出錯誤摺疊型態的蛋白 repeat-associated non ATG(RAN),此類突變同時也會造成正常 C9ORF72 蛋白數量的衰減。

-----廣告,請繼續往下閱讀-----
圖片來源:維基百科
圖片來源:維基百科

然而,透過源自於病患的誘導性多功能幹細胞(induced pluripotent stem cells, iPSC)轉化成運動神經元後進行實驗,幾個不同的團隊研究顯示 ASOs 的確可減少 C9ORF72 病理現象,包含核醣核酸的聚集、轉錄因子的異常結合、無法調節其他基因的表達、對於穀氨酸(glutamate)興奮毒性(excitoxicity)的感受性, 和神經元性放電異常──但非所有異常皆對治療有反應,像是 RAN 轉譯產物、由去氧核醣核酸對應股的 CCCCGG 重複引起的核醣核酸聚集等,ASOs 是為無效治療,仍需更多研究上的突破。

著名的英國物理學家史蒂芬‧霍金(Stephen Hawking,1942-),自二十一歲確診為 ALS 開始,已超出當時醫生認定只能再多存活兩年的預測,目前與疾病共存已超過五十載,他以自身努力證實生理方面的殘疾無法腐壞堅強的心靈,曾幽默的如是說道:「我察覺到即使很多人主張一切都是命中註定的,而且我們無 法改變任何事情,他們在過馬路前還是一樣會停下來左右張望。」

現階段雖有許多未知的謎團靜待解開,前方的研究之路依然漫漫,如何克服接踵而來的挑戰,尋獲緩解 ALS 病友們不適和家屬煎熬的良方,這是一桶桶冰水也無法澆熄的熱情,更是科學家們堅持不懈、獻身研究的最大動力。

資料來源

-----廣告,請繼續往下閱讀-----
  1. Research ALS Today (The ALS Association, Volume 14, Spring 2014)
  2. Pete Frates: A profile in ALS courage. ESPN MLB [July 04, 2014]
  3. Pete Frates
  4. 冰桶挑戰:痛苦的失真。苦勞網[2014/08/19]
  5. 衛教資料-運動神經元病變篇。台大醫院
  6. Facts About Amyotrophic Lateral Sclerosis (ALS or Lou Gehrig’s Disease)
  7. 中華民國運動神經元疾病病友協會
  8. Northeast ALS Consortium
  9. ALS Association 

參考文獻

  1. Smith RA, Miller TM, Yamanaka K, Monia BP, Condon TP, Hung G, et al. Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest. Aug 2006;116(8):2290-6. Epub 2006 Jul 27.
  2. Miller TM, Pestronk A, David W, Rothstein J, Simpson E, Appel SH, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomized, first-in-man study. Lancet Neurol. May 2013;12(5):435-42.
  3. Sareen D, O’Rourke JG, Meera P, Muhammad AK, Grant S, Simpkinson M, et al. Targeting RNA Foci in iPSC-Derived Motor Neurons from ALS Patients with a C9ORF72 Repeat Expansion. Sci Transl Med. Oct 23, 2013;5(208):208ra149.
  4. Donnelly CJ, Zhang PW, Pham JT, Heusler AR, Mistry NA, Vidensky S, et al. RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention. Neuron. Oct 16, 2013;80(2):415-28.
  5. Lagier-Tourenne C, Baughn M, Rigo F, Sun S, Liu P, Li HR, et al. Targeted degradation of sense and antisense C9ORF72 RNA foci as therapy for amyotrophic lateral sclerosis and frontotemporal dementia. Proc Nat Acad Sci USA. Nov 19, 2013;110(47):E4530-9.
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 127 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
為什麼運動神經元會退化?又為何是從四肢開始?
研之有物│中央研究院_96
・2017/09/28 ・4053字 ・閱讀時間約 8 分鐘 ・SR值 552 ・八年級

運動神經元研究

還記得「漸凍人冰桶考驗」嗎?金城武淋下冰水的瀟灑令人難以忘懷,但本文想將你的注意力轉移到漸凍症本身。中研院分子生物研究所的陳俊安助研究員,與團隊從發育生物學的角度,尋找「會退化」和「不會退化」的運動神經元在基因表現上哪裡不同,希望未來有助於漸凍症的精準醫療。

先來進行眼力考驗,下圖野生型小鼠胚胎、 類 ALS (漸凍症)模式小鼠胚胎,看得出「運動神經元」哪裡不同嗎?

兩種小鼠胚胎的運動神經元比較(中間長長、尾端伸出許多樹突的那一條)。 圖片來源/Crucial Cluster: MicroRNAs Keep Motor Neurons Alive

左圖的野生型小鼠,運動神經元軸突健康粗壯,可以牢牢抓住肌肉細胞,並控制四肢作出大腦命令的、或反射性的動作。但右圖的類 ALS 模式小鼠,運動神經下端的樹突變少了,無法牢牢抓住肌肉細胞,四肢也跟著萎縮、不聽使喚。

這個「運動神經元退化」的情況會發生在小鼠身上,也會發生在人類身上。「漸凍症」就是運動神經元退化導致的疾病,會從四肢開始無力,漸漸演進至全身肌肉萎縮、呼吸衰竭。

-----廣告,請繼續往下閱讀-----

運動神經元疾病(motorneuron diseases)俗稱「漸凍症」,其特性與症狀發展。 資料來源/中華民國運動神經元疾病病友協會(漸凍人協會)。圖說重製/林婷嫻、張語辰

在運動神經元疾病的分類中,脊髓性肌肉萎縮症(SMA) 是遺傳性疾病,好發於嬰孩時期,致病機轉是因為爸爸媽媽同時帶了一套有缺陷的 SMN1 基因。當 SMN1 基因有缺陷時會讓運動神經元死亡,通常小朋友六個月大應該可以坐起來,但有些嬰兒的父母卻發現小寶貝沒辦法坐起時,檢查後才知道原來是脊髓性肌肉萎縮症(SMA)。

而其他的運動神經元疾病,包含肌萎縮性脊髓側索硬化症(ALS) 等,雖然也是由於運動神經元退化死亡,但尚有九成病人發病的原因是不清楚的。

為什麼運動神經元會退化?為何從四肢開始?為何有些肌肉不受影響?科學家尚在理解中。

什麼使運動神經元退化?

在《愛的萬物論》電影中,主角霍金博士從四肢開始退化,初期是手部肌肉拿不穩茶杯,漸漸雙腿肌肉無力、跌倒。但泌尿生殖系統較不受影響,生下了可愛的孩子們,他對朋友笑說是「另一個全自動的系統」。直到最後,霍金博士控制眼球的肌肉仍能正常運作,讓他可以用眼球操控鍵盤說話、書寫。

-----廣告,請繼續往下閱讀-----

《愛的萬物論》電影中,主角霍金博士從四肢運動神經開始退化,初期無法控制手部肌肉寫字。source:IMDb

中研院分子生物所的陳俊安團隊專精於發育生物學,閱讀運動神經元疾病的文獻、和醫生討論,發現脊髓運動神經元在發育時都是從同樣的前驅細胞分化而來,但「四肢」的運動神經元會先發病,而控制眼球和泌尿生殖系統的運動神經元仍能正常運作。

「是否不同的運動神經元亞型(subtype) ,會有不同基因表現的差異,導致這種發病程度的不等?」陳俊安團隊從這裡開始思考,並將小鼠胚胎幹細胞(ES cell)分化成各式的運動神經元亞型,再將各種亞型進行次世代定序,檢查基因表現哪裡不同。

小鼠胚胎幹細胞(ES cell)在培養皿中,會根據外在訊號的濃度高低、生長因子的引導,演繹出不同的運動神經元前驅細胞,並進一步分化成不同的亞型(subtype)。 資料來源/陳俊安提供。圖說重製/林婷嫻、張語辰

-----廣告,請繼續往下閱讀-----

若以前讀的生物課已忘得差不多,沒關係,本文從你我體內的 DNA、RNA 、蛋白質追本溯源,其中藏著可能影響運動神經元退化的開關:mir-17~92 和 PTEN 。

mir-17~92:阻止控制四肢的運動神經細胞凋零

生物體內的細胞核中,DNA 就像影印機中的正本,會複印出帶有相同基因訊息的 RNA 。 RNA 有兩種: 一種是負責製造蛋白質的 mRNA(messenger RNA),就像要把基因訊息傳給蛋白質的傳訊官;另一種是 ncRNA(non-coding RNA),不負責製造蛋白質,而是直接以 RNA 的身分來執行任務。

有一些 ncRNA 會待在細胞核裡,像是後勤單位補給前線作戰資源。另外有一些 ncRNA 像是 microRNA 會直接出核,就像親身到前線出任務的軍官。

細胞內 DNA、RNA、蛋白質的機制。圖說設計/林婷嫻、張語辰

-----廣告,請繼續往下閱讀-----

直接到前線出任務的 ncRNA 要做些什麼? 可忙著呢!其中一種是幫忙「踩剎車」,控制 mRNA 製造蛋白質的速度和數量。負責這個任務的是一種小分子的 ncRNA,亦即 microRNA ,會藉由辨認基因序列相對應的標靶 mRNA ,並與之結合,進而抑制標靶 mRNA 製造蛋白質。

mRNA 產生太多或太少蛋白質都不好,但又不能把產生的開關關掉。microRNA 就像煞車,讓 mRNA 適時停下來,是自然界找到的調控方式。圖說設計/林婷嫻、張語辰

在各種運動神經元亞型中,陳俊安團隊透過次世代定序和生化分析,發現「四肢運動神經元」中,有一群叫做 mir-17~92 的 microRNA 表現量特別高 ,且會抑制一種叫做 PTEN 的蛋白質、影響調控其進入細胞核的相關酵素表現,阻止 PTEN 進入運動神經元的細胞核中、造成運動神經元的細胞凋零。

野生型小鼠(左)由於有 mir-17~92 抑制 PTEN 蛋白質,維持運動神經細胞正常運作。但剔除 mir-17~92 的小鼠,PTEN 蛋白質變多,甚至進入運動神經細胞裡、造成細胞凋零。資料來源/Mir-17~92 Governs Motor Neuron Subtype Survival by Mediating Nuclear PTEN.。圖說重製/林婷嫻、張語辰

-----廣告,請繼續往下閱讀-----

陳俊安團隊透過基因剃除小鼠進一步了解,發現若運動神經元中 mir-17~92 被剃除,這隻小鼠會變得很小隻、四肢萎縮不太能動,切片檢查看到控制手和腳的運動神經元幾乎都死掉,但控制肋骨、頭部、臉部的運動神經元都沒問題。仔細一看,這隻 mir-17~92 基因剃除小鼠四肢無法活動的狀況,和漸凍人有點類似——漸凍人也是四肢協調發生問題。

我們發現被剃除 mir-17~92 的小鼠和漸凍人相似,因此推論 mir-17~92 對於控制四肢運動神經元可能很重要,並思考其作為治療漸凍症的契機。

為了驗證推論,陳俊安團隊另外將 SOD1 基因缺陷漸凍鼠(漸凍症之一種模式小鼠)體內的 mir-17~92 表現量提高、做為治療的方式,發現其原本無力的四肢恢復得較為正常,且小鼠壽命也延長了 20 多天 。「 20 多天的壽命對 ALS 模式小鼠而言可能不算太長,大約是 1/6 ,但對漸凍人而言,延長 1/6 的壽命就是多了 將近 10 年」陳俊安說明。

正常小鼠、ALS(漸凍症之一種)模式小鼠、提高體內 mir-17~92 表現量的 ALS 模式小鼠,透過 X 光看見四肢正常/萎縮/復原的情況。資料來源/陳俊安 提供。圖說重製/林婷嫻、張語辰

mir-17~92:四肢運動神經的「電池」

陳俊安將人體比喻為台灣地圖,運動神經元像是從台北(脊髓中樞)出發、貫穿台灣(人體)的高速公路,各部位肌肉是各種運動神經元的終點站。臉部和舌頭比較近,像是台北到桃園的距離;腿部肌肉最遠,像是台北到墾丁的距離。

-----廣告,請繼續往下閱讀-----

將人體比喻為台灣地圖,到達不同目的地的「運動神經」樹突長度相差很多, mir-17~92 在各種運動神經元內的表現量也不同。 資料來源:陳俊安提供 圖說重製/林婷嫻、張語辰

一開始從脊髓出發,各種運動神經元所帶的能量都相同,就像每台車都加了容量相同的油箱,到了終點站肌肉會釋放另一種蛋白質給運動神經元,補充神經元的能量讓神經元不會力竭而亡。但運動神經元軸突在前往肌肉的途中就是靠這桶油,若到不了肌肉終點站,運動神經元就會死掉。

以這桶油量從台北跑到台中沒問題,但跑到墾丁太過勉強,可行的方式是換成「油電混合車」。而 mir-17~92 就像四肢運動神經元的「電池」,幫助抑制 PTEN 蛋白質的表現量,阻止 PTEN 讓運動神經元凋零,幫助四肢運動神經元順利延伸到遠遠的手臂和腿部,控制四肢肌肉正常運作。

油電混合車很經濟實惠,但最怕「電池」壞掉!漸凍症發生的機制,可能是 mir-17~92這群四肢運動神經元的「電池」不夠力,最終導致無法順利控制四肢肌肉。

運動神經元疾病(漸凍症)的致病原因,至今仍然不明朗,也缺乏治療藥物。陳俊安團隊將繼續透過漸凍症病人的 iPSC(誘導性多功能幹細胞)培養運動神經元,驗證目前的推論是否可行,並深入了解運動神經元發育與退化的分子機制。

-----廣告,請繼續往下閱讀-----

若要使 mir-17~92 的類似物進入運動神經元,提升其保護作用,已知的瓶頸是 microRNA 並非可以服用的小分子,需要從中樞神經系統進行基因治療。另外,現階段雖能透過漸凍症病人的 iPSC (誘導性多功能幹細胞)培養運動神經元,但陳俊安團隊仍在尋找該用什麼樣的機制來模擬漸凍症的發病過程,再看看用什麼方式減緩運動神經細胞退化。

為了持續前進下一步,陳俊安團隊期待能和台灣的醫院合作,以及借力基礎化學、生物化學、生物醫學等領域的專業團隊,一起討論努力的方向。

希望未來能為精準醫療提供更好的依據,了解不同運動神經元的亞型哪裡出了問題,並特別調整該運動神經元的基因表現。

在理性的生物學討論中,陳俊安流露著對漸凍症的關懷。 攝影/張語辰

延伸閱讀

CC 4.0

 

本著作由研之有物製作,以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3620 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook