網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

0
0

文字

分享

0
0
0

珊瑚礁凸頭國王有難 快來救救曲紋脣魚

childsci_96
・2014/08/05 ・1190字 ・閱讀時間約 2 分鐘 ・SR值 509 ・六年級

成魚

文/陳勇輝(海生館科教組助理研究員)
攝影/鄭明修(中研院生物多樣性研究中心研究員)

全世界的龍王鯛因為被大量捕撈,數量大幅減少到需要保育。而在七月一日正式公告列入禁止捕撈名單前,又有一隻龍王鯛不幸成為盤中飧,引起保育人士一片撻伐聲。龍王鯛到底有多重要呢?

其實早在二00四年,國際保育組織就將牠列為瀕危物種,臺灣卻直到今年才列入保育名單。根據臺灣珊瑚學會長年調查估計,臺灣龍王鯛的數量現在可能不到三十隻,族群數量岌岌可危!

泳姿優雅就像君王出巡

龍王鯛其實是隆頭魚科大家族的「巨人」,泳姿優雅。潛水的人在海中遇見牠時,都覺得像看到君王出巡一樣,因此給牠取了「龍王鯛」的雅號。根據記載,牠們體長最大可長到兩百二十九公分,體重可超過兩百公斤,是墾丁海域中最大型的魚類。

其實牠的正式學名是「曲紋脣魚」,「曲紋」指的是魚體上彎彎曲曲的紋路。當牠游動時,就像波浪般迷人。名字裡加個「脣」字,則因為牠有豐厚的嘴唇。在東南亞海洋保護區內,有些個體因為長期與餵食的潛水人員親近,對人類比較沒有戒心,還會跟人玩「親親」,增添觀光潛水的樂趣。

天生高額又稱拿破崙魚

龍王鯛的額頭會突起來,並不是不小心撞到珊瑚礁後留下的紅腫,而是天生就高額頭。魚類學家檢查過上百條龍王鯛後,發現幼魚要到體長大約三十七公分,前額才會稍稍隆起,等到體長大約到七十五公分,頭部的隆起才會明顯突出。

西方人稱龍王鯛為「拿破崙」,一八三五年,西方人在珊瑚礁意外發現牠們,馬上聯想到拿破崙頭上那頂兩側向下,中間向上突起的帽子。所以就以「拿破崙」來取名。

以往魚類學家推測,這種「凸頭」是雄魚獨有的性別特徵,用來吸引雌魚的注目。近來科學家研究卻發現,不管雌魚或雄魚,頭上都有隆起的現象,而且體形越大,突起越明顯。換句話說,只要從額頭突起程度的大小,就可以推斷牠們大約的年紀。這點倒是與樹的年輪相似—-活得越久,樹幹越粗。

阿宅一生珊瑚礁中稱王

龍王鯛終其一生都「宅」在珊瑚礁中,很少遠離,幼魚大都在軸孔珊瑚所在的淺水區活動,以逃避大型掠食魚類追捕;身形巨大的成熟個體,則常單獨在珊瑚礁外緣的深水區巡弋,捕獵蝦、蟹與貝類為食。

牠們上下顎都有錐狀利齒,可以輕易將帶有硬殼的物種咬碎,也是珊瑚礁中少數以海膽、棘冠海星與具有堅硬外殼的箱魨為食的掠食者。曲紋唇魚長成後,體形僅次於鯊魚,兇猛的程度並不亞於大石斑,所以海洋食物鏈上,扮演的是「調節者」的關鍵角色。

人類為了滿足口腹之慾,大量撈捕,卻不知道龍王鯛族群消失,可能會造成珊瑚礁生態系失衡,甚至引發生態系統的瓦解!所幸目前已經正式公告龍王鯛為禁止撈捕的保育物種,希望能為牠們留下一線生機。

我們也要記得對珊瑚礁魚類「只觀賞、不捕捉、拒食用」,才能遏止漁民撈捕,畢竟豐富的魚群才是最吸引人的觀光資源,才是兼顧保育與生態觀光最好的永續經營方式!

相關標籤:
文章難易度
childsci_96
6 篇文章 ・ 1 位粉絲
「國語日報科學版」臉書專頁,是提供給國小師長及三年級以上學童閱讀的科普平臺。 每日刊出報版內容摘要,希望大家更親近科學!


0

1
0

文字

分享

0
1
0

隱翅蟲的毒液生化武器,演化上如何組裝而成?

寒波_96
・2022/01/17 ・3910字 ・閱讀時間約 8 分鐘

隱翅蟲是一群小型甲蟲的總稱;牠們以毒聞名,卻不見得都具有毒性。有些隱翅蟲會生產毒液儲存在身體裡,需要時噴射攻擊。毒液不只是嚇唬人的工具,像是跟螞蟻搶地盤這類場合,生化武器能發揮實在的優勢。

本文沒有真實隱翅蟲的圖像,閱讀時不用擔心。

隱翅蟲毒液的用途之一:攻擊螞蟻。圖/參考資料 1

隱翅蟲的毒液包含毒素和溶劑兩部分,有意思的是,兩者是獨立生產;溶劑本身沒有毒,毒素單獨存在也沒多少毒性。兩者極為依賴彼此,生產線卻是獨立運作,此一狀況是怎麼形成的?一項新研究投入大筆資源,便探討其演化過程。

「毒」加「液」才有毒液

這項研究探討的隱翅蟲叫作 Dalotia coriaria,為求簡化,本文之後稱之為「隱翅蟲」。它的毒素並非導致隱翅蟲皮膚炎的隱翅蟲素 (pederin) ,切莫混淆。

隱翅蟲的毒液發射器位於背上,體節的 A6、A7 之間,這兒有部分表皮細胞特化成儲存囊壁,並分泌脂肪酸衍生物作為溶劑。而毒素為配備苯環的化學物質 benzoquinone(苯醌),簡稱 BQ;另有一群細胞專門生產 BQ,再運送到儲存囊,和其中的脂肪酸衍生物混合後形成毒液。

生產毒素和溶劑的細胞,是兩類完全不一樣的細胞,各有不同的演化歷史。隱翅蟲的祖先,沒有毒素也沒有溶劑,兩者都可謂演化上的創新 (novelty) 。

一類細胞製毒,另一類細胞產液,兩者合作才有毒液。圖/參考資料 1

論文將生產溶劑的細胞稱為「溶劑細胞」;分析成分得知溶劑總共有 4 種,是碳數介於 10 到 12 的脂肪酸衍生物。合成脂肪酸,本來就是各種生物的必備技能,但是溶劑細胞製作的脂肪酸衍生物,原料並非一般常見的脂肪酸。

脂肪酸的合成,都是以 2 個碳的基礎材料開始,作為類似 PCR 中引子 (primer) 的角色,然後由 FAS(全名 fatty acid synthase)這類酵素一次加上 2 個碳,2、4、6、8 碳一直加上去。人類的 FAS 通常會製作長度為 16 碳的棕櫚酸,昆蟲則會造出 14、16、18 碳的最終產物。

隱翅蟲的溶劑細胞中,脂肪酸衍生物只有 10 到 12 個碳,比 FAS 一般的產物更短。奇妙的是,這兒的脂肪酸並非由 14 或 16 個碳縮短而來,而是溶劑細胞內 FAS 的最終產物直接就是 12 個碳。

隱翅蟲毒液的組成物,碳鏈長度介於 10 到 12 個碳,4 種脂肪酸加工而成的衍生物作為溶劑;3 種 BQ 作為毒素。圖/參考資料 1

改造脂肪酸合成線路,製作溶劑

要闡明其中奧妙,必需先稍微認識昆蟲的脂肪酸合成系統。昆蟲有一群特殊的脂肪酸衍生物,稱為「表皮碳氫化合物(cuticular hydrocarbon,簡稱 CHC)」,具有防止水分散失、費洛蒙等作用。

表皮碳氫化合物多半由 oenocyte 所製造(類似人類的肝細胞),在 FAS 酵素催化形成 14 到 18 個碳長的脂肪酸以後,繼續由延長酶 (elongase) 增加長度,去飽和酶 (desaturase) 加上雙鍵,最後經過兩道尾端的還原手續,分別由 FAR(全名 fatty acyl-CoA reductase)和 CYP4G(全名 cytochrome p450 family 4 subfamily G)兩類酵素執行,產生通常介於 20 到 40 個碳長的產物。

隱翅蟲溶劑細胞和 oenocyte 的脂肪酸生產線的比較,兩邊多數酵素種類是重複的,但是每一類酵素都有好幾個,兩邊各自使用的酵素不一樣。圖/參考資料 1

隱翅蟲和其他昆蟲一樣,oenocyte 細胞內有完整的表皮碳氫化合物生產線,每一步驟的酵素一應俱全。比對可知,溶劑細胞內也有一條脂肪酸衍生物的產線,顯然是由表皮碳氫化合物的生產線改版而成。

隱翅蟲至少有 4 個 FAS 基因,3 個負責製作一般的脂肪酸和表皮碳氫化合物,只有一個特定的 FAS 參與溶劑生產,專職在溶劑細胞中大量表現,製造 12 碳的脂肪酸,最後也由 FAR 和 CYP4G 收尾形成衍生物。值得一提,已知產物長度為 12 碳的 FAS 酵素相當罕見。

溶劑細胞和表皮碳氫化合物的生產線,兩者都有 FAS、FAR、CYP4G 三類酵素,但是在溶劑細胞作用的三種酵素,都不管其他細胞的脂肪酸合成。除此之外,有時候還有另一種酵素 α-esterase 的參與。依靠這些專門在溶劑細胞工作的酵素們,隱翅蟲能生成 4 種溶劑。

溶劑細胞內,4 種脂肪酸衍生物的合成過程。acetyl-CoA 作為引子,由 FAS 以 malonyl-CoA 為材料,一次加上 2 個碳,再分別經還原酶或 α-esterase 加工。圖/參考資料 1

演化上,隱翅蟲並沒有捨棄原本的脂肪酸生產線,整套都還存在;相對地,隱翅蟲在少數特定細胞新增一條產線,不影響原本的重要部門。這是隱翅蟲在遺傳和細胞層次的演化創新。

改造粒線體代謝線路,生產毒素

類似的狀況,也在毒素生產線觀察到。隱翅蟲的毒素,也是由原本有重要功能的古老生產線,調整再改版而成。

論文將生產毒素的細胞稱為「BQ 細胞」,這部分沒有溶劑細胞了解的那麼詳盡,不過經由碳的穩定同位素追蹤,還是得知毒素原料來自食物中的氨基酸:酪胺酸 (tyrosine) ,經過一系列加工後形成 BQ。

這條生產線上有個關鍵酵素叫作 laccase,它一般的功能是參與 Coenzyme Q10,也就是 ubiquinone 的合成。這是粒線體有氧代謝中的重要成分,對生存不可或缺。和其他甲蟲相比,隱翅蟲多出一個 laccase 酵素,專門在 BQ 細胞表現,將 HQ (hydroquinone) 催化成 BQ 作為毒素。

由此看來,隱翅蟲祖先演化出溶劑和毒素的道理是一樣的。

溶劑方面,以舊的表皮碳氫化合物生產線為基底,改用多個新酵素基因,形成新的生產線。毒素方面,源自古老的粒線體代謝線路,同樣加入新的酵素基因,改版後變成毒素產線。兩者各自皆為遺傳與細胞層次的新玩意,合在一起則衍生出功能上的演化創新。

由粒線體代謝線路改版而成的 BQ 毒素生產線,有一個專職生產毒素的 laccase(Dmd)酵素參與。圖/參考資料 1

組合新功能,一步一步累積有利變異

這項研究有許多潛在的討論方向,有興趣的讀者可以自行鑽研。像是生物學研究者能估計所有實驗耗資多少,感受自己的微渺(例如為了分辨不同細胞的作用,論文使用大量昂貴的「單細胞轉錄組 single cell transcriptome」進行分析)。這邊只提兩點。

第一點有趣的問題是:隱翅蟲的溶劑和毒素要同時存在才有效果,可是演化上是哪個先出現呢?論文推測是溶劑細胞先出現。

假如只有 BQ 這類毒素存在,殺傷效果非常差(論文用果蠅幼蟲做實驗),但是溶劑細胞的產物,即使不作為 BQ 的溶劑,脂肪酸衍生物也可以有其他用途,像是潤滑油之類的,或是扮演別種物質的溶劑。

想來新的脂肪酸生產線比較可能先出現,扮演某些不是太重要的角色,接著再加入 BQ;毒素加上溶劑,兩者合體產生新的強大功能,脂肪酸生產線又由於獲得新功能而調整優化,最終形成現在的樣貌。

替隱翅蟲帶來優勢的毒液,由兩個原本獨立的部門組合而成。圖/參考資料 1

第二點有趣的是,這回發現產物為 12 碳的 FAS 酵素。乍看沒什麼,影響卻很關鍵。

FAS 這類酵素的差異,在於催化生成的脂肪酸最終產物有幾個碳(或是說,可以加到幾個碳那麼長);已知幾乎皆為 14、16、18 個碳,隱翅蟲的溶劑細胞表現的 FAS 卻是 12 個碳。好像只差一點,然而實際測試發現,脂肪酸衍生物超過 13 個碳,作為 BQ 溶劑的效果便會差一大截。

也就是說,隱翅蟲倘若沒有脂肪酸產物僅 12 碳長的 FAS,儘管仍然可以生成溶劑,毒性將弱化不少。由此推想,隱翅蟲如今威力強大的毒液,並非透過少數變化一次到位,而是逐漸累積有利變異的結果。

想得更遠一點,由兩種細胞合作衍生而成的毒液,可以視為由多種細胞合夥,複雜器官的最簡單版本。原本不相關的各式細胞們,持續累積一個一個微小的改變,也有機會組合發展成複雜的組織或器官。

延伸閱讀

參考資料

  1. Evolutionary assembly of cooperating cell types in an animal chemical defense system.
  2. A beetle chemical defense gland offers clues about how complex organs evolve

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
84 篇文章 ・ 331 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。