0

0
0

文字

分享

0
0
0

「懷孕吃得好,寶寶少煩惱」是寫在基因裡面嗎?

葉綠舒
・2014/07/18 ・1330字 ・閱讀時間約 2 分鐘 ・SR值 500 ・六年級

-----廣告,請繼續往下閱讀-----

最近在小鼠中一項新的研究發現,如果孕婦營養不良,會造成她尚未出生的孩子未來有較高的肥胖與第2型糖尿病的風險。這種「孕期營養記憶」可以透過精子傳遞給子輩,甚至孫輩…就如一句以前的人說的:你阿嬤吃什麼,你就吃什麼。

這個研究也讓研究人員問:表觀遺傳學(epigenetics)究竟是如何向下一代傳遞的?以及,這個影響將持續多久呢?

credit: CC by scribbletaylor@flickr
credit: CC by scribbletaylor@flickr

我們如何繼承父母的特徵的機制很容易理解。我們身上一半的基因來自母親,另一半來自我們的父親,所以我們會發現自己的有些特徵像爸爸,有些像媽媽。但是表觀遺傳學如何將我們的雙親所經歷的環境的「記憶」代代相傳,就不是很容易理解。表觀遺傳效應中最容易了解的,是經由所謂的「甲基化」(methylation)的機制:經由甲基分子(-CH3)附著於我們的DNA上,來開啟或關閉基因的表現造成影響。

研究團隊們發現,環境引起的甲基化改變。只發生在我們的基因組(genome,我們的整個遺傳物質)上的某些區域。但是,出乎意料的是,這些甲基化模式不會永遠傳遞下去。

-----廣告,請繼續往下閱讀-----

劍橋大學和哈佛醫學院Joslin糖尿病中心的研究人員,使用小鼠模型發現,營養不良的母親(第一代)的雄性後代(第二代),如預期的小於平均;但是如果在出生後餵食一般飲食,很快就會發展出糖尿病。令人驚訝的是,就算研究人員為第二代提供了一般的飲食,第二代的雌性在懷孕時也提供了充足的食物,但是第三代還是體型偏小,且容易發展出糖尿病。

研究人員認為,當胎兒時期出現食物匱乏的現象,可能使得孩子在出生前就被「預設」好應對營養不良的狀況;因此,當食物突然變得豐富時,他們的身體無法應付,於是就發展出如糖尿病等代謝性疾病。如果能了解這個機制是如何發生的,就可以幫助我們理解我們今天如何在肥胖和第2型糖尿病上屢創紀錄。

為了要了解這個「營養記憶」如何傳遞,研究者在第二代糖尿病發病前檢查了他們的精子。他們發現,第二代的DNA有111個非編碼區域(non-coding region)的甲基化降低。非編碼區域主要的功能為負責調節基因的表現。他們還發現,在第三代,這些區域附近的基因都有功能不正常的現象,也就是說,第三代還是繼承了祖母(第一代)對於營養不良的「記憶」。

沒有預料到的是,當研究人員檢查第三代的DNA甲基化的變化時,他們發現這個變化已經消失:也就是說,第一代對於營養不良的「記憶」,已經由DNA被刪除;或者,至少不再透過甲基化傳遞到第三代。

-----廣告,請繼續往下閱讀-----

研究人員認為,從進化的角度來看,「營養記憶」不傳承到第三代是有道理的。我們的環境年年在變,今年或許有飢荒,但過幾年或許會有大豐收;因此,我們的身體需要能夠適應這些變化。

表觀遺傳學的變化不必然會一直代代相傳,甚至可以去除的這個現象,讓我們對我們社會的肥胖和糖尿病問題可以有一些樂觀的看法。研究人員目前正在觀察,是否這個表觀遺傳現象不會對第四代、第五代產生影響。如果這是真的的話,那麼雖然我們可能會吃得像我們的阿嬤,但我們不見得會吃得像我們的阿祖。

筆者想,如果營養狀況可以透過表觀遺傳寫入基因,是否懷孕時的精神狀態也會寫到基因裡面呢?

原刊載於作者部落格Miscellaneous999 

-----廣告,請繼續往下閱讀-----

參考文獻:

  1. 2014/7/10 Inherited ‘memory’ of poor nutrition during pregnancy passed through sperm of male offspring — ScienceDaily
文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

1
1

文字

分享

0
1
1
家長留意!「胎兒小於妊娠年齡」影響生長發展,從出生到成年都會面臨健康問題
careonline_96
・2024/03/05 ・2446字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

  • 林口長庚醫院 兒童內分泌科 邱巧凡醫師/新生兒科 江明洲醫師

兒童內分泌生長門診中很常出現的一個族群是「胎兒小於妊娠年齡」的孩子。

這些小朋友在長大的過程中,相較於正常出生體重的孩子,容易出現身材矮小、性早熟、過重、肥胖,甚至到成人時期罹患代謝症候群與心血管疾病的風險也明顯較高,兒童健康守護者應特別留意。

什麼是「胎兒小於妊娠年齡」

胎兒小於妊娠年齡(small for gestational age, SGA)是指「出生體重低於同樣妊娠週數新生兒第十百分位或低於負二個標準差者」。

如何知道我的孩子是否為「胎兒小於妊娠年齡」

大家可以參考以下圖片對照寶寶出生週數與體重,即可得知寶寶出生體重是否符合該週齡。

舉例來說:一個懷孕 39 週出生的足月寶寶,出生體重只有 1800 公克,屬於「胎兒小於妊娠年齡」。

為什麼會「胎兒小於妊娠年齡」

造成「胎兒小於妊娠年齡」的原因包含:母體因素、胎盤因素與胎兒因素。

-----廣告,請繼續往下閱讀-----
  • 母體因素:如高血壓、子癲前症、營養不良、甲狀腺功能低下、感染、抽菸、吸毒、飲酒、高齡妊娠等。
  • 胎盤因素:如胎盤血管異常(如單一臍動脈、雙胞胎輸血症候群)。
  • 胎兒因素:染色體異常、先天性異常、胎兒感染等。

胎兒小於妊娠年齡」孩子成長過程會面臨哪些健康問題

  • 新生兒時期

約有 1/3「胎兒小於妊娠年齡」寶寶,在新生兒時期因為肝醣儲積不足,脂肪量不足,造成「低血糖」的發生。也容易因為體表面積相對較大,皮下脂肪相對不足,而增加「低體溫」的風險。若早產合併胎兒小於妊娠年齡,也明顯「增加新生兒死亡率」。

  • 嬰兒期

「胎兒小於妊娠年齡」的寶寶往往在出生後 3~6 個月開始出現「追趕生長」,且常常體重追趕得比身長來的快。研究發現,此階段的體重快速增加將大幅提升未來長期肥胖、代謝性症候群與心血管疾病的風險。

  • 兒童時期與青春期

生長

大多數「胎兒小於妊娠年齡」的兒童,可在成長過程發生「追趕生長」。即生長速率可高於同齡同性別之平均值,使生長曲線逐漸邁入正常範圍。將近 90%「胎兒小於妊娠年齡」的兒童可在兩歲前完成「自發性追趕生長」;若「早產」合併「胎兒小於妊娠年齡」,則需要更長時間完成追趕生長,大部分可在四歲前追趕達標。

-----廣告,請繼續往下閱讀-----

然而,仍然有 10% 左右的「胎兒小於妊娠年齡」兒童無法完成自發性追趕生長,造成終生持續身材矮小。此族群目前在美國、歐盟與日本皆已列為「生長激素治療」之適應症族群。此族群透過適當的生長激素治療,除了可改善身高預後,還可改善身體組成(減少脂肪量、增加肌肉量)、改善高膽固醇血症,並提升骨質密度。

青春期發育

大多數「胎兒小於妊娠年齡」的青春期發育時間會落在正常時間:女孩 8~13 歲,男孩 9~14 歲。但平均而言,「胎兒小於妊娠年齡」兒童的青春期還是會早於正常出生體重的兒童(初經比正常出生體重兒童提前 5~6 個月),女孩容易發生「早發性陰毛發育」,青春期的進展速度也較快,但青春期階段的生長速率卻較為緩慢,而這樣「偏早又偏快的青春期,以及偏慢的長高速率」,往往不利於理想成人身高的達成。

神經發展與認知

-----廣告,請繼續往下閱讀-----

大部分「胎兒小於妊娠年齡」兒童的腦部發育是正常的。但在極度早產兒,會增加發展遲緩、認知功能障礙、注意力不足過動症與學習障礙的風險。

  • 成人時期

相較於正常出生體重的兒童,「胎兒小於妊娠年齡」兒童在成人階段有較高的機率罹患中樞型肥胖、脂質異常、胰島素阻抗、葡萄糖代謝異常、高血壓等代謝症候群與心血管疾病,特別是兒童時期高熱量飲食、體重快速增加的肥胖兒童。由此可見「小時候胖」幾乎註定成人以後肥胖的趨勢,甚至助長成人肥胖併發症的發生。

「胎兒小於妊娠年齡」的寶寶,從出生一直到長大成人,都有許多健康議題需要特別關注。建議此族群家長,應格外留意以下幾點:

  1. 「胎兒小於妊娠年齡」的寶寶,於兩歲以前的生長曲線未達標請先不要過度擔心,出生後應密切配合新生兒科醫師或兒科醫師的追蹤安排,留意後續的生長發育狀況。
  2. 若 3~4 歲生長曲線仍明顯落後,請就診兒童內分泌科進一步評估診療。
  3. 應留意是否過早出現第二性徵。若女孩 8 歲前胸部、陰毛發育,10 歲前初經來潮;男孩 9 歲前睪丸長大、陰莖明顯變長變粗、長陰毛,請務必就診兒童內分泌科。
  4. 應避免不當餵食導致過度的體重增加,因為這將大幅提升未來代謝症候群與心血管疾病的風險。

討論功能關閉中。

careonline_96
453 篇文章 ・ 271 位粉絲
台灣最大醫療入口網站

2

8
3

文字

分享

2
8
3
基因上的魔法師——不改 DNA 就可以調整性狀的「表觀遺傳調控」,為作物改良帶來新曙光
Jean
・2022/11/13 ・3085字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/黃湘芹、謝若微、李映漾、陳柏仰|中央研究院植物暨微生物學研究所
資料來源/中研院植物暨微生物學研究所陳柏仰研究室。圖:Nien Illustration

可以在不改變 DNA 的狀況下,調整性狀?——表觀遺傳調控,幫助植物快速適應環境變化

DNA 是生物細胞內攜帶遺傳訊息的物質,當 DNA 發生變異時,會影響基因的表現進而改變性狀。但很多生物也可以在不改變 DNA 的情況下調節基因表現影響性狀,此方式稱為表觀遺傳調控,其中常見的機制包括 DNA 甲基化、組蛋白修飾、小分子 RNA 等。

其中「DNA 甲基化」為在 DNA 特定位置上添加甲基的化學修飾,當基因前端的區域——啟動子被高度甲基化時,常會導致基因表現量較低。

而「組蛋白修飾」是針對被 DNA 纏繞的蛋白質——組蛋白,在其尾端上做的各種修飾,如乙醯化、甲基化、磷酸化等,這些修飾會影響 DNA 纏繞的緊密程度,進而加強或抑制基因表現[1]。另外,由長度約為 18 到 30 個核苷酸構成的「小分子 RNA」,也會抑制基因表現。

對生物而言,表觀遺傳調控提供生物在基因序列突變外,另一種有效適應環境變化的反應方法。而這樣的反應對植物特別重要,它能幫助植物在面對氣候、環境快速變化時,迅速調整基因表現讓植物得以生存。

-----廣告,請繼續往下閱讀-----

如果將表觀遺傳運用在改良作物性狀上,由於不需外來基因插入或是基因編輯,便能達到基因表現的變化,因此大幅減少食物安全上的諸多考量,免除基改作物對人體健康疑慮的爭議性,在農業發展上相對有利。

目前在作物中已有不少研究,分析基因體上特定位置的表觀遺傳變異,與抵抗逆境性狀之間的關聯性;例如在稻米基因體上,已發現數個特定位置的 DNA 甲基化程度與抗旱[2]、抗缺鐵[3]甚至碳儲存有顯著的關聯性。

番茄有機會作為培育優良性狀的作物。圖/Pexels

在番茄裡也發現,由小分子 RNA 對特定位點的基因調控,可影響番茄外型及抗旱性狀。顯示透過影響表觀遺傳機制,的確有機會用來培育出具有優良性狀的作物。

如何運用在作物改良上?

當應用於作物改良時,偵測表觀遺傳變異與性狀之間的關係為首要任務,其中一種用來偵測表觀遺傳變異的策略仰賴的是近年才逐漸普遍化的「全基因體定序」。由於每個作物的基因體序列不同,需逐一檢視不同作物在各種逆境條件下產生的表觀遺傳變異,然而在技術與基因體資料分析上仍是挑戰。現階段而言,利用表觀遺傳進行作物改良,雖有潛力但未能普及[4]

利用全基因體定序偵測表觀遺傳變異(圖表一):先透過外在刺激誘導表觀基因座產生變異,接著藉由分析眾多植株間表觀基因座變異的差別,並計算其與目標性狀的關聯性,進而推定能產生目標性狀的表觀基因座。

-----廣告,請繼續往下閱讀-----
(圖表一)利用外在刺激誘導植株產生遺傳變異,透過生物資訊研究與目標性狀相關的表觀基因座。

在已知可誘導表觀基因座的策略中,以 DNA 甲基化為例 ,透過伽馬射線照射、DNA 甲基轉移酶抑制劑以及組織培養,皆可在稻米基因體產生隨機且有效的 DNA 甲基化變化[4]

種子如果曝露於伽馬放射線環境下,或是浸泡在含有 DNA 甲基轉移酶抑制劑的水溶液中,均會造成基因體去甲基化,而去甲基化的程度會隨著放射線強度或是 DNA 甲基轉移酶抑制劑的添加量而不同;如果同時使用上述兩種方法處理種子,則會對於去甲基化有加乘效果[5]

表觀遺傳因子變化,可改變玉米面對熱逆境的耐受性。圖/Pexels

除了水稻以外,玉米基因體上特定位點的表觀遺傳因子變化,可改變其對於熱逆境的耐受性。玉米在幼苗時期,如果受到短暫熱處理,便能促進與基因表現有關的組蛋白修飾,使得葉片的葉綠素含量與活性氧物質提高,以增強玉米在高溫環境下的耐受性[5]

面臨的挑戰——表觀遺傳變異重現與否

表觀遺傳變異與基因變異主要的不同在於其不穩定性,由於細胞有自我修復機制,因此表觀遺傳變異在細胞複製前、後未必能維持;此外,世代遺傳間的「表觀遺傳重組」(epigenetic reprogramming)會重置表觀遺傳的分佈,使得親代的變異未必能完整保留到子代。

-----廣告,請繼續往下閱讀-----

儘管如此,不少研究仍發現部分表觀遺傳變異可以被遺傳至下一代。以茄科中常用的嫁接作物番茄、茄子與辣椒為例,這類的種間嫁接會影響 DNA 甲基轉移酶表現量,進而大規模影響接穗中的 DNA 甲基化分佈,其中有部分 DNA 甲基化的變動被證實可維持至下一代[5]

綜合上述,應用表觀遺傳在作物改良上需特別確認變異在跨世代間的一致性;植株進行處理後所產生的表觀遺傳變異,是否能在性狀植株或甚至下一代重現,以確保有效的作物改良。

甜椒的跳躍基因與 DNA 甲基化

甜椒被視為可利用表觀遺傳進行改良的高經濟價值作物之一。圖/Pixabay

甜椒 (Capsicum species)的基因體解序後,發現當中的跳躍基因(可以在基因體上移動的 DNA 序列)不僅增加了甜椒的多樣性,也能決定轉錄活性高的真染色質及不具轉錄活性的異染色質在基因體上的分佈[6],從而廣泛影響基因調控。

已知 DNA 甲基化是控制跳躍基因的主要因子,已有研究指出,甜椒基因上 DNA 甲基化程度的增加,與發芽、果實成熟及抗鹽性狀都有顯著相關[7][8];顯示透過刺激產生的 DNA 甲基化重新分佈,極可能影響跳躍基因的活性,進而引導出優良性狀。     

-----廣告,請繼續往下閱讀-----

目前甜椒的基因體資料已完備,其重要性狀與表觀遺傳變化密切相關,被視為可積極利用表觀遺傳進行改良的高經濟價值作物之一。

翻開作物育種的新篇章

綜合以上,分析及尋找與目標性狀相關的表觀基因座並不容易,需要結合農藝學、基因體學及生物資訊學的知識與技術,考量表觀遺傳變異的不穩定性因素,為實現可代代相傳的作物改良,需要了解不同植物的基因體中有哪些特定的表觀遺傳變異能夠穩定傳到下一代。因此,若要使用表觀遺傳改良作物,雖有理想但非一蹴可及。

目前主流的基因改造工程,在食品、環境、與生物安全上有著錯綜複雜的影響,僅透過調控基因表現以達到性狀改良的表觀遺傳,更能消除大眾對於作物改良的疑慮。現今對於表觀遺傳的研究資料已經越來越多,在植物面臨逆境時,表觀遺傳能有效且迅速地幫助植物適應環境。在未來環境更加極端的情況下,生產作物將會面臨更嚴峻的挑戰,如何繼續維持高產量,成為農民及研究者必須解決的問題之一。

表觀遺傳調控提供植物學家與農民新的作物改良方法,儘管當前的流程尚不完善,也有許多困難需一一克服,但看好其在未來為作物育種開啟新篇章。

參考資料

  1. Tirnaz, S. & Batley, J. (2019). Epigenetics: potentials and challenges in crop breeding. Molecular Plant, 18, 1309–1311. 
  2. Sapna, H., Ashwini, N., Ramesh, S. & Nataraja, K. N. (2020). Assessment of DNA methylation pattern under drought stress using methylation-sensitive randomly amplified polymorphism analysis in rice. Plant Genetic Resour Charact Util, 18, 222–230.
  3. Sun, S., Zhu, J., Guo, R., Whelan, J. & Shou, H. (2021). DNA methylation is involved in acclimation to iron deficiency in rice (Oryza sativa). Plant J, doi:10.1111/tpj.15318.
  4. Springer, N. M. & Schmitz, R. J. (2017). Exploiting induced and natural epigenetic variation for crop improvement. Nat Rev Genet, 18, 563–575.
  5. Varotto, S. et al. (2020). Epigenetics: possible applications in climate-smart crop breeding. J Exp Bot, 71, 5223–5236.
  6. Kim, S. et al. (2014). Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet, 46, 270–278.
  7. Xiao, K. et al. (2020). DNA methylation is involved in the regulation of pepper fruit ripening and interacts with phytohormones. J Exp Bot, 71, 1928–1942.
  8. Portis, E., Acquadro, A., Comino, C. & Lanteri, S. (2004). Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci, 166, 169–178.
所有討論 2

3

26
0

文字

分享

3
26
0
沒有子宮的人類,想嘗試懷孕可以嗎?|【科科齊打交】
stage_96
・2021/02/22 ・1727字 ・閱讀時間約 3 分鐘 ・SR值 553 ・八年級

-----廣告,請繼續往下閱讀-----

S編按:在【科科齊打交】中,泛科學編輯部會盡力蒐集資料,提供可以協助討論的科學內容,希望能塑造一個開放與理性討論的空間。

這次,我們想邀請你,在閱讀完內容後,於本文下方留言分享你的看法!說說你對於子宮移植手術的看法!

May the knowledge be with us.

網紅透過人體試驗懷孕?

2021 年 2 月 18 日,網紅「罔腰」在 IG 上宣布懷孕三個月的消息,引發軒然大波。

不少人質疑,罔腰雖然動過變性手術,但礙於沒有子宮,照理來說應該「沒辦法懷孕」,到底是怎麼辦到的呢?

面對一連串懷疑的聲浪,罔腰的男友 PO 出高醫人體研究同意書。這樣的舉動,引來高雄醫學大學不滿,第一時間出面駁斥,強調院內並未進行「無子宮受孕試驗」;高雄市衛生局也提出約談罔腰,確認事情的來龍去脈,釐清是否有接觸密醫……

事件仍持續延燒,我們先暫時放下目前社群上既有的討論,試著思考一下:如果沒有子宮的人類,想嘗試懷孕,到底該怎麼做呢?

-----廣告,請繼續往下閱讀-----

子宮移植,有可能嗎?

腹腔懷孕基本上屬於魔法等級,但是,子宮移植其實是有可能達成的。

為了回應極少數婦女因缺乏子宮而無法懷孕的需求,醫學上已有「子宮移植」的技術,然而,子宮移植仍存在著許多未知的風險。 

2020 年,曾有義大利團隊進行研究,在 52 例移植案件中,記錄到 38 例移植後子宮恢復功能,其中僅有 16 人成功懷孕。而這 16 名婦女,有 6 位於孕期出現嚴重併發症,更有高達 10 人早產。

那麼,變性者接受子宮移植是有可能的嗎?此議題有不少科學家討論,以下提供手術示意圖供大家參考:

-----廣告,請繼續往下閱讀-----

需要注意的是,除了手術風險外,有其他必須搭配的措施,例如:於術後服用雌激素以增厚子宮內膜備孕、生育必須採剖腹來排除骨盆差異造成的障礙等等。

更多內容,可以參考此文:《沒有子宮能懷孕嗎?淺談異位妊娠與移植子宮

透過子宮移植懷孕,你認為……?

承上資料,我們可以知道,現今的科學與醫療技術是可以協助無子宮女性與變性者接受子宮的。

然而,最難的或許不是技術本身,而是相關的法律規範與倫理。

-----廣告,請繼續往下閱讀-----

現在,我們希望可以請你分享自己的看法,你認為透過子宮移植懷孕是可以的嗎?可以或不行的理由為何?

此外,子宮移植對象為女性/男性/變性者,會影響你的答案嗎?

所有討論 3
stage_96
26 篇文章 ・ 50 位粉絲
此為「科科齊打交」系列討論專用帳號!希望能藉由大家的討論,一起打造屬於我們的魔幻舞台! PanSci編輯部將會盡力蒐集資料,提供可以協助討論的科學內容。 想邀請科夥伴們在閱讀完相關內容後,藉由留言的方式,與我們分享你的想法! 「霹靂卡霹靂拉拉波波麗娜貝貝魯多。」