0

0
0

文字

分享

0
0
0

揪出英國水災的幕後黑手

李杰翰
・2014/03/14 ・1436字 ・閱讀時間約 2 分鐘 ・SR值 576 ・九年級

-----廣告,請繼續往下閱讀-----

英國環境署「洪水警報地圖」2014年2月16日網站截圖。(圖片來源:作者)
英國環境署「洪水警報地圖」2014年2月16日網站截圖。(圖片來源:作者)

這大概是南英格蘭百年來最潮濕的冬天。

2014年1月是英格蘭有氣象紀錄以來,降雨最多的1月分。連日暴雨加上2月7日襲來的洪水,導致泰晤士河沿岸上千戶民宅遭洪水淹沒;2月14日新一波暴風雨重創英格蘭西南部,造成一萬六千多戶房屋停電。慘烈災情不僅逼得首相卡麥隆取消下周前往西亞的訪問行程,也讓威廉與哈利兩位尊貴的王子穿上防水衣物,前往第一線親自救援勘災。

「英格蘭會浸泡在這場彷彿無休無止的暴雨中,影響全球的氣候變遷仍是關鍵因素。」英國氣象局(Met Office)首席科學家史琳戈(Dame Julia Slingo)說道。儘管倫敦紳士一邊撐傘、一邊抱怨天氣的形象深植人心,這場降雨無論在長度、強度甚至沿岸海浪高度等各方面的數據都異乎尋常。「我們往前追蹤到1766年,發現過去從未有過這樣的紀錄。去年冬天開始,英國經歷了248年來最特殊的降雨時期,而在未來,海平面上升會讓洪水問題更難對付。」

從2013年12月開始,英國各地傳出的嚴重水災警告超過130件,遠遠多於2012年的9件。英國政府贊助的「生態和水文中心」(Centre for Ecology and Hydrology)為近來氣候異常現象整理出一份報告:北大西洋及太平洋噴流(jet stream)的擾動、以及周圍海域高於常溫的海水溫度,都可能是造成歐洲及北美極端氣候頻繁出現的因素之一。

-----廣告,請繼續往下閱讀-----

英國東安格里亞大學的氣候學家柯芮(Corinne Le Quere)也同意上述看法:「降雨量變得又多又強,往往是氣候變暖的預兆。因為更多更快的蒸發與降水,代表水循環正在加速。」

許多研究指出,過去50年來英國的暴雨逐漸增強。對此柯芮表示:「雖然國內對於暖化和暴雨兩個事件是否有關尚未達成共識,但越來越多人相信,氣候早晚會對日漸增多的溫室氣體做出回應。」此外,北極海冰的融化也改變了氣候模式。當海冰融化越多,海水就能在夏季吸收更多的熱,並在秋冬兩季釋放至大氣,間接影響該區域的大氣壓力,而大氣間不同往常的壓力差,正是導致極端氣候以及促成暴風雨的動力。

儘管如此,我們是否能斷定全球暖化現象觸發了這次的水災?「並不盡然,還有許多因素也有影響。例如氾濫平原的空曠程度會決定水災的大小。」柯芮說,「將來或許會有明確證據,我們現在只能猜測兩者應有明顯關聯。」按照這個趨勢,未來暴雨和水災將會更頻繁、更強,也更難對付。

每到暴雨氾濫、洪水成災的季節,英國環境署(Environment Agency)經營的網站「洪水警報地圖」(The Flood Alerts Map)或許能幫你一把。該網站將洪水預警標示分成三個等級:黃色的「洪水警報」(Flood Alerts)、紅色的「洪水警戒」(Flood Warnings)以及橘紅色的「嚴重洪水警戒」(Severe Flood Warnings)。

-----廣告,請繼續往下閱讀-----

「洪水警報」代表洪水可能在2小時到2天之內到來,該區域居民應提早做好疏散準備;「洪水警戒」則縮短為半小時到1天內,居民應關好電源、瓦斯、供水設備,並迅速遷移到安全場所;「嚴重洪水警戒」代表水已淹至腳邊,可能有威脅生命的立即危險。身為廣大人類渺小的一份子,單憑一己之力顯然無法防止水災發生,我們能做的就是防患於未然、並了解自保的方法。(本文由科技部補助「新媒體科普傳播實作計畫─重大天然災害之防救災科普知識教育推廣」執行團隊撰稿)

責任編輯:鄭國威|元智大學資訊社會研究所

本文原發表於行政院科技部-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!

 

-----廣告,請繼續往下閱讀-----
文章難易度
李杰翰
9 篇文章 ・ 0 位粉絲
國立台灣大學地理環境資源學系學士。曾實習於鼎漢國際工程顧問公司。 2014年錄取東京工業大學《YSEP 青年科學家交換計畫》,現於該校「環境與交通工學」領域研究室潛心向學。

1

6
0

文字

分享

1
6
0
思韋茨冰川底下的暖水觀測,揭示未來融化速率可能超乎預期?
陳柏成 (Po Cheng Chen)
・2021/05/07 ・3427字 ・閱讀時間約 7 分鐘 ・SR值 571 ・九年級

-----廣告,請繼續往下閱讀-----

思韋茨冰川 (Thwaites Glacier),又稱末日冰川 (Doomsday Glacier),是南極洲西部冰蓋 (ice sheet) 的一部分,面積約為 192,000 平方公里,相當於美國堪薩斯州的大小。也因其如此大的面積,加上近年快速的融化速率,使得科學家難以預估當前全球平均海平面的上升速率。為能更準確了解冰川消融對全球的影響,科學家有必要找出三個關鍵問題的答案:第一,是什麼造成冰川融化速率加快?第二,造成冰川融化加快的機制有哪些?以及第三,冰川融化加快將如何影響全球平均海平面上升?

圖一、思韋茨冰川 (Thwaites Glacier) 於南極洲的所在地。圖/USA TODAY

為什麼南極洲冰川加速融化

是什麼造成南極洲冰川融化速率加快?在過去科學家的研究中,就已注意到南極洲的冰蓋、冰棚 (ice shelf),會受到周圍相對溫暖的水流影響而導致融化 [1][2]。然而這些溫暖的水流是如何流動,以及這些水流如何影響這些冰川地形,受限於直接觀測資料的缺乏,一直是一個亟欲解決的問題。直到西元 2019 年,來自美國和英國的科學家,透過一項科學計畫 International Thwaites Glacier Collaboration (ITGC),針對思韋茨冰川進行更進一步的觀測 [3][4]。科學團隊們藉由多波束測深探測儀 (multibeam echo-sounder ,MBES) 的資料,試圖繪製出思韋茨冰川周圍的海床地形變化,以便進一步了解暖水在冰川周圍流動的路徑;掌握路徑分佈後,則可以改善模擬冰川融化的模型,從而提高預測全球海平面上升速率的準確性。

思韋茨冰川周圍海床地形分佈動畫。

觀測冰川底下暖水數據

今年最新的研究中,科學家首次針對思韋茨冰川底下的暖水收集觀測數據 [5]。這項任務的重要性在於,它可以幫助科學家回答以下問題:冰川底下海洋環流的基本性質是什麼?暖水主要是由哪一個路徑影響冰川?暖水可以深入冰川底下的洞穴到多遠的距離?以及冰川的融化速率有多大程度取決於暖水的流動?

要完整的了解暖水如何影響思韋茨冰川融化,首先要了解整體冰川地形的結構。從圖二可以看到,冰川 (Glacier) 屬於在陸面上緩慢流動的巨大冰體,而冰蓋 (Ice Shelf) 則為從陸地流入海洋大量的冰,在出海口累積成一片厚而廣大的浮冰,並與附近海岸線連成一體(可參考圖二)。當暖水流經冰棚底下,便會加速冰棚局部融化,而一旦冰棚融化,便會加快冰川流入海中的速率,從而加速冰川融解。第二,了解暖水的流動路徑及性質十分重要,其中路徑取決於冰川周遭的海底地形分佈。比喻來說,當水流經一道高牆時,流動的方向就會受到阻攔,反之當流經一個通道時,就會特別順暢;其中海脊 (ridge) 相對周圍地勢來得高,就如同那道高牆,而海槽 (trough) 則相比周遭地勢來得低,如同一個凹槽。因此對於暖水來說,海槽更像是一個容易經過的通道。

-----廣告,請繼續往下閱讀-----
圖二、冰川 (Glacier)、冰蓋 (Ice Shelf) 與冰山 (Iceberg) 之間的關係。圖/UCDAVIS

目前科學家對於思韋茨冰川周圍的海床分佈已有一定了解,並推估出在冰川北方存在三個主要的海槽,分別標示為 T1、T2 及 T3(見圖三 A),推斷暖水可能透過這些區域進入冰棚底下。根據觀測,目前已知最高的融水 (meltwater) 濃度出現在思韋茨海槽 (Thwaites Trough),然而並不了解冰棚底下暖水的流動分佈;此外從圖三中可知,在東側存在海脊,因此暖水相對受到東側海脊的阻擋,更有可能經由北側透由深海槽進入思韋茨冰川舌 (Thwaites Glacier Tongue, TGT) 底下。根據先前模擬模型,思韋茨冰川的侵蝕與海洋動力存在關係 [6][7],且暖水主要從北側的路徑而來,東側進入的水體則相對少了許多,並僅在冰棚下流動約幾公里之遠。然而如先前所述,受限於觀測資料的缺乏,模型的模擬仍有許多改進空間。

圖三、思韋茨冰川研究範圍及其海床分佈。其中 TGT 為思韋茨冰川舌 (Thwaites Glacier Tongue, TGT),EIS 為東側冰棚 (Eastern Ice Shelf, EIS)。T1、T2、T3 為冰川北方主要三個深海槽。其他部分可參考文獻 [5] 中之 Fig. 1。

找出冰棚消融的主因

這次的研究中 [5],科學家透過新的觀測數據,發現海槽比原本預期的還要深約 100~300 公尺,並透過其他觀測儀器,如自主水下載具 (Autonomous Underwater Vehicle  , AUV) 等,量測這些海槽中海水的性質,確認在 T2 及 T3 兩個海槽中存在厚度約 200-300 公尺的暖水,並透過聲學都卜勒流速剖面儀 (Acoustic Doppler Current Profiler, ADCP) 數據的收集,推斷出在 T2 海槽中存在一向北流出的水體,而在 T3 海槽,則存有向南流入冰棚底部的暖水,該熱流約達 0.9 兆瓦 (terawatt, TW);根據推算,其將產生一年約 85 Gt(gigatonne, 十億噸 )的融水。從先前 2010-2018 年所建立的數據可得知,該處整體冰棚的融化速率約為 97.5 Gt/year,揭示出在 T3 流入的暖水可能為影響冰棚大部分消融的原因。

當相對高鹽度的暖水流入冰棚底部,失去潛熱並接觸融化的冰水後,水溫開始下降,由於與融水的混合,鹽度也隨之降低,最終提高含氧量 [8][9]。

透過這些資訊,科學家發現在 T2 海槽,融水的比例相對高於 T3,尤其是位於上層向北的水流(水深 400 公尺內)。另外透過 AUV 資料的收集,科學家發現來自 Pine Island Bay 的深層水透過流經東側冰棚 (Eastern Ice Shelf, EIS) 底下而抵達 T3 海槽區域。該發現比原先模型所預期的深層水流動範圍更向西延伸 [7],說明在 EIS 底下的海脊可能比原先預估的深度還要深(>1050 公尺),又或者並沒有如原先所推估的延伸至北邊,以阻擋來自 Pine Island Bay 的深層水。

-----廣告,請繼續往下閱讀-----
圖四、依據觀測資料推估出思韋茨冰舌及東側冰棚下水流的路徑分佈。其中紅色箭頭表示溫鹽水流的主要路徑,藍色箭頭為流出冰棚富含融水的水流,紅色虛線箭頭指示可能流入的溫鹽水流。來自 Pine Island 海槽的兩條箭頭則表示以當前資料,仍無法確認深層水主要由哪一條路徑流入東側冰棚 (Eastern Ice Shelf, EIS)。[5]

根據本次研究 [5],科學家總結出高比例的融水主要在西側流出,而另兩個深層水主要分別流入冰棚兩側,其中之一為先前已知由思韋茨海槽進入的暖水,另一個則為之前未知、由 Pine Island Bay 流入的暖水路徑。後者由於受到在地氣候條件 [10] 以及 Pine Island 冰川融化的影響 [11],意味著未來思韋茨冰川的融化速率以及該處整體冰川動力機制,將會比原先模型所預期的,更加依賴於 Pine Island 區域當地條件。

冰川消融帶來的影響

由於冰棚的存在有助於減緩冰川上冰流入海水的速率,當冰棚因流入的暖水融化而逐漸脫離海床(失去如路障般的作用),便會反過來加速思韋茨冰川上的冰流入海中。冰川的前緣不斷融化導致朝陸地後退,最後高聳的冰川峭壁將承受不住自身重量,而快速崩解;一旦思韋茨冰川消失,會使得南極洲西側的冰蓋更不穩定,並可能造成連鎖崩解的效應。[12]

思韋茨冰川的融化貢獻每年全球海平面上升的 4%,而若整個冰川全部消失,則將造成全球海平面上升近 0.5 公尺的高度 [13],這將進一步影響各國海岸線的分佈、人口的遷移,甚至是氣候乃至生態系統的改變。當前南極的冰川融化問題無疑對當代人類再次敲響了警鐘,而若人類對於氣候變遷再不做出更多具體的因應作為,則隨著末日冰川的消失,人類的末日恐怕又將更靠近一步。

參考文獻

  1. Jacobs, S. S., Hellmer, H. H., & Jenkins, A. (1996). Antarctic ice sheet melting in the Southeast Pacific. Geophysical Research Letters, 23(9), 957-960.
  2. Jacobs, S., Giulivi, C., Dutrieux, P., Rignot, E., Nitsche, F., & Mouginot, J. (2013). Getz Ice Shelf melting response to changes in ocean forcing. Journal of Geophysical Research: Oceans, 118(9), 4152-4168.
  3. Hogan, K. A., Larter, R. D., Graham, A. G., Arthern, R., Kirkham, J. D., Totten Minzoni, R., … & Wellner, J. (2020). Revealing the former bed of Thwaites Glacier using sea-floor bathymetry: implications for warm-water routing and bed controls on ice flow and buttressing. The Cryosphere, 14(9), 2883-2908.
  4. Jordan, T. A., Porter, D., Tinto, K., Millan, R., Muto, A., Hogan, K., … & Paden, J. D. (2020). New gravity-derived bathymetry for the Thwaites, Crosson, and Dotson ice shelves revealing two ice shelf populations. The Cryosphere, 14(9), 2869-2882.
  5. Wåhlin, A. K., Graham, A. G. C., Hogan, K. A., Queste, B. Y., Boehme, L., Larter, R. D., … & Heywood, K. J. (2021). Pathways and modification of warm water flowing beneath Thwaites Ice Shelf, West Antarctica. Science Advances, 7(15), eabd7254.
  6. Seroussi, H., Nakayama, Y., Larour, E., Menemenlis, D., Morlighem, M., Rignot, E., & Khazendar, A. (2017). Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation. Geophysical Research Letters, 44(12), 6191-6199.
  7. Nakayama, Y., Manucharyan, G., Zhang, H., Dutrieux, P., Torres, H. S., Klein, P., … & Menemenlis, D. (2019). Pathways of ocean heat towards Pine Island and Thwaites grounding lines. Scientific reports, 9(1), 1-9.
  8. Jenkins, A. (1999). The impact of melting ice on ocean waters. Journal of physical oceanography, 29(9), 2370-2381.
  9. Biddle, L. C., Heywood, K. J., Kaiser, J., & Jenkins, A. (2017). Glacial meltwater identification in the Amundsen Sea. Journal of Physical Oceanography, 47(4), 933-954.
  10. Webber, B. G., Heywood, K. J., Stevens, D. P., Dutrieux, P., Abrahamsen, E. P., Jenkins, A., … & Kim, T. W. (2017). Mechanisms driving variability in the ocean forcing of Pine Island Glacier. Nature communications, 8(1), 1-8.
  11. Webber, B. G., Heywood, K. J., Stevens, D. P., & Assmann, K. M. (2019). The impact of overturning and horizontal circulation in Pine Island Trough on ice shelf melt in the eastern Amundsen Sea. Journal of Physical Oceanography, 49(1), 63-83.
  12. Carolyn Beeler (2019). If Thwaites Glacier collapses, it would change global coastlines forever.
  13. SUSIE NEILSON (2020). Antarctica’s ‘Doomsday Glacier’ Is in Serious Danger, New Research Confirms.
-----廣告,請繼續往下閱讀-----
所有討論 1
陳柏成 (Po Cheng Chen)
12 篇文章 ・ 5 位粉絲
熱愛自然科學,曾擔任PanSci實習編輯,現於美國夏威夷大學就讀博士班。如有任何問題,歡迎來信:consciencecpc@gmail.com

0

2
0

文字

分享

0
2
0
黑洞甜甜圈之後:宇宙噴火槍 3C 279 黑洞噴流影像現蹤跡!——《科學月刊》
科學月刊_96
・2020/04/27 ・3964字 ・閱讀時間約 8 分鐘 ・SR值 549 ・八年級

-----廣告,請繼續往下閱讀-----

  • 文/陳明堂,中央研究院天文所及天文物理研究所研究員,兼天文所夏威夷運轉副所長。

去 (2019) 年,臺灣黑洞團隊與事件視界望遠鏡 (Event Horizon Telescope, EHT) 公布第一張黑洞照片。一年後,他們雖然沒有呈現新的黑洞照片,卻推出一張所未見的黑洞噴流影像。黑洞噴流如同兩隻金魚的發光體,起初讓研究團隊摸不著頭緒。所幸 EHT 強大的解析能力逐漸解開噴流的真面目,原來圖片左上的影像是噴流的源頭,右下則是逐步遠離的噴流。此外,這把宇宙等級的噴火槍其實是耀變體,在觀測中展現出許多令人驚奇的特性。

圖/Kim et al. (2020), EHT Collaboration

宇宙級的噴火槍:3C 279

在去年公布的首張黑洞影像後,事件視界望遠鏡團隊今 (2020) 年又再次發表另一張超高解析度的影像(下圖)。這次的目標是一個叫做 3C 279 的星體,影像呈現出一對橢圓狀的發光體。這兩個光體的位置左上右下,似乎處在一種隨遇而安的狀態。與去年發表的黑洞甜甜圈不同,反而像在一潭黝黑的池水中,偶爾浮上水面的兩條金魚。

今年 EHT 公布的 3C 279 影像。圖右是本次拍攝到的黑洞噴流,根據EHT 的分析,左上光影是噴流的源頭,右下光影則是正在遠離源頭的噴流。
圖片來源/J.Y. Kim (MPIfR), Boston University Blazar Program (VLBA and GMVA), and the Event Horizon Telescope Collaboration

3C 279 是一個類星體(quasar,下圖),位在室女座(Virgo Constellation,又稱處女座)附近,靠近春季大三角 (Spring Triangle) 的角宿一 (Spica)。

-----廣告,請繼續往下閱讀-----

雖然肉眼看不見 3C 279,但是從過去的觀測,天文學家知道它是銀河系外頭的另一個星系。它發出的訊號,從低能量的無線電波、紅外線到可見光、紫外線延伸至高能量的 X 光,應有盡有;甚至也會發出強烈的超高能量的射線。

藝術家筆下的類星體 (quasar) 想像圖。 圖/ESO/M. Kornmesser

與去年的 M87* 黑洞相比,為什麼這次的影像中沒有看到甜甜圈呢?

因為 3C 279 距離地球太遠了,相比之下,去年拍到 M87* 離地球「僅僅」5500 萬光年,而 3C 279 則幾乎是 100 倍遠的距離。不僅如此,根據天文學家的估計,3C 279 中心黑洞的大小還不到 M87* 的五分之一。由於又小又遠,因此以目前 EHT 的影像解析能力,還無法完全看到 3C 279的黑洞,所以在此影像中才看不到任何的甜甜圈。

-----廣告,請繼續往下閱讀-----

黑洞物理參數的比較

黑洞名稱

天空位置 距離地球 估計質量 天空視角

人馬座 A*
(Sgr A*)

人馬座
(射手座)

26000 光年

4 百萬個太陽

50 微角秒

M87*

室女座
(處女座)

55000 萬光年

65 億個太陽

38 微角秒

3C 279 室女座
(處女座)
53 億光年 10 億個太陽

0.06微角秒

看不見甜甜圈沒關係,EHT 還是有辦法解析!

雖然看不到黑洞,但是天文學家可以利用 EHT 的超級解析能力來研究黑洞外圍的物理現象。

當環繞黑洞的星際物質從吸積盤掉進黑洞時,並非所有物質都會進入黑洞之中。其中一部份的物質會以電漿能量包的形式,以極高的速度從黑洞的兩個極點朝外噴出,物質噴出的速度趨近光速,這就是所謂的噴流。目前科學家還不了解噴流的確切成因,但是一般認為是吸積盤與黑洞周遭的磁力場所造成,這也是 EHT  的科學家研究 3C 279 的主要動機。

人們對黑洞的了解是建立在愛因斯坦的廣義相對論。黑洞是經由重力塌縮 (gravitational collapse) 後形成的星體,它具有質量、自轉和事件視界 (event horizon)。根據理論,任何發生在事件視界裡面的資訊都無法傳遞到外面,所以對外界的觀察者而言,黑洞的物理性質來自於事件視界之外的空間,因此事件視界代表黑洞的視覺大小。

-----廣告,請繼續往下閱讀-----

2017 年 4 月的觀測期間,EHT 除了使用參與團隊的天文台之外,還另外動用其它兩組望遠鏡陣列,總共三組陣列透過不同的電波波長擷取 3C 279 的影像。其中,長波段的影像(超長基線陣列 VLBA 波長 7 mm)擷取到 3C 279 大範圍的相貌,影像明顯顯示左上角黑洞所在的熱點及從熱點衝往右下方向的噴流;中波段的影像(全球毫米波特長基線陣列 GMVA 波長 3 mm)把目光聚焦在靠近黑洞和噴流的起始點,期望從影像中能透露出關於噴流起源的訊息。但結果卻不盡人意,此波段呈現出來的影像幾乎是長波長的翻版,導致很難從結果中分辨出熱點和噴流之間的差別。

要看得更仔細, EHT 使用 8 座次毫米波電波觀測站同時朝熱點觀看,能提供更細微的影像解析能力(波長 1.3 mm),所得到的影像與中、長波段的結果相比,的確有出乎意料的發現。EHT 的影像出現左上與右下兩個獨立的部份,經由影像分析,EHT 團隊科學家認為右下部份訊號的移動方向與速度,和中、長波長影像中的噴流類似,因此他們認為右下部分的光影是大尺度噴流的一部份。此結論比較是可以預期,而沒有太多的爭論。可是該如何解釋位於左上的訊號就不是那麼容易了。

猶如宇宙噴火槍的耀變體

說到這裡,如果讀者對類星體有些認識,可能會猜測左上的光影應該是黑洞吸積盤發出的能量,黑洞就躲在巨大的吸積盤中間;而右下部份的狹長光影就是黑洞的噴流結構。噴流與吸積盤呈現接近 90 度的相對位置,此猜想符合天文學家想像中的類星體(下圖),可是問題卻沒有那麼簡單。

耀變體與類星體的示意圖,上圖的耀星體噴流方向非常靠近從地球的觀測視線。

-----廣告,請繼續往下閱讀-----

3C 279 是類星體中的特殊例子,特別的地方在於它的噴流方向非常接近觀測的視線。如果把噴流當作是一把宇宙噴火槍的火焰,那麼在地球上觀看 3C 279 的方向幾乎是往火槍的噴嘴裡頭看進去,高能量的噴流就只對著地球上的觀測者打出來。由於都卜勒效應 (Doppler effect) 的關係,此噴流看起來會特別亮,因此天文學家給這類型的類星體一個特殊的名字:耀變體(blazar,或稱耀星體)。

令人匪夷所思的觀測結果

換句話說,從地球的角度觀測,3C 279 除了具有一個非常強烈的中心訊號源外,天文家認為應該可以看到整個吸積盤才對,並認為從此角度觀測,吸積盤應該是接近圓形。但是在 EHT 的影像中,左上的光體卻是個狹長的橢圓形,該如何解釋異形怪狀的吸積盤,對理論學家是一大挑戰。

有一種解釋說法認為,左上與右下的光影其實是一樣的,都是噴流的高能量聚集的電漿能量包。二者不同之處在於,左上的能量包非常接近黑洞的噴嘴,並以更對準觀測者視線的角度而來,當然此角度並不完美,因此高能噴流的還是會在觀測的視線中投射出一個狹長的橢圓光影。雖然可以合理解釋觀察到的左上光影,但又該如何解釋左上與右下的能包移動的方向似乎不一樣?難道噴流會改變它的方向?

關於這一點,天文學家從其它類星體的觀測經驗,知道由於吸積盤附近的強大磁場作用,噴流的確有可能改變方向。在類星體中心的磁場作用下,噴流的路徑可能比上下 360 度翻滾的雲霄飛車還複雜,因而造成 EHT 觀測到的奇怪影像,所以目前 EHT 的團隊相信這是一個比較合理的解釋。

-----廣告,請繼續往下閱讀-----

觀測「超光速」移動的噴流?

這次 EHT 共花了4 天的時間觀測 3C 279,而每天都會產生一組非常類似的影像,經過仔細檢查,EHT 的團隊發現影像中的兩個光體的距離每天都有些不同。事實上,兩個光體正在分開中。此觀察符合前一段的論證:左上的光影代表噴流的源頭,右下是正在離開的噴流。

有了 EHT 望遠鏡的超級解析度,天文學家可估計噴流的移動速度。EHT 的團隊發現右下的能量正以超過 10 倍光速的速度離開噴流的源頭位置。讀者可能會納悶,超光速運動是有可能的嗎?

其實天文學家在半世紀前就已經知道,類似耀星體所發出來的噴流「看起來」會有超光速現象 (superluminal motion)。如此奇怪的現象是因為高能量的噴流速度接近光速,但是由於觀測角度的關係,從遠方看起來噴流的速度超過光速。此現象其實可以用相對論解釋,所以看起來超光速並不代表真正超越光速。

 

超光速運動真的是有可能的嗎?圖/GIPHY

-----廣告,請繼續往下閱讀-----

宇宙的更多故事等著被挖掘

53 億年前,那時太陽系正在慢慢成形,地球根本還沒存在。然而,隨著科學的進展,一個發生在距離地球 53 億光年外的物理現象,竟然被天文學家看到了!

此次 EHT 發布的影像雖然沒有如同去年 M87* 黑洞的影像引起一陣轟動,然而 3C 279 的影像透露出來的新資訊,似乎讓天文學家產生更多的問題與好奇。這就是科學發展,隨著 EHT 突破性的觀測儀器發展,人們將會看到許多前所未見的現象,並引導好奇的科學家們,更進一步了解所處在的宇宙。

突破性的觀測儀器發展,將會引導好奇的科學家們,更進一步了解所處在的宇宙。圖/GIPHY

2017 年參與 EHT 的八座望遠鏡中,臺灣參與建造或運作的一共有三座,包含夏威夷的次毫米波陣列 (SMA)、詹姆士克拉克麥克斯威爾望遠鏡 (JCMT) 和智利的阿塔卡瑪大型毫米波及次毫米波陣列 (ALMA),再加上貢獻運作經費與觀測人力,讓臺灣團隊占有顯著的地位,這也是總共 13 席的 EHT 董事成員,臺灣中研院就占兩席的原因。

-----廣告,請繼續往下閱讀-----

臺灣團隊一手主導的格陵蘭望遠鏡,直到 2018 年才加入 EHT,並參與 3C 279 的觀測。目前的觀測資料正在處理中,EHT 團隊期待格陵蘭望遠鏡的加入,能夠揭露更多噴流結構的細節,能讓天文學破解出黑洞周遭的祕密。如此的結果將會大大的提升臺灣天文學家在黑洞研究的地位,也讓臺灣獨特的貢獻受到世人的重視。

延伸閱讀

  • Jae-Young Kim et al., Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution, Astronomy & Astrophysics, 2020.

本文轉載自《科學月刊》 宇宙中的噴火槍—黑洞噴流影像現蹤跡

在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

 

-----廣告,請繼續往下閱讀-----
科學月刊_96
249 篇文章 ・ 3735 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
1

文字

分享

0
1
1
人類史上首張黑洞近照:如何層層破譯黑洞影像後的密碼?
活躍星系核_96
・2019/05/16 ・5494字 ・閱讀時間約 11 分鐘 ・SR值 572 ・九年級

-----廣告,請繼續往下閱讀-----

  • 文 / 卜宏毅│加拿大圓周理論物理研究所博士後研究員,事件視界望遠鏡核心成員

這次觀測看見的黑洞近照有兩個特徵,一個是剪影的形狀,一個是不對稱性(下方較亮)。視界事件視界望遠鏡( EHT )團隊在今年四月十日除了公布影像外也發表了六篇論文(在此稱作 paper I, II, III, IV, V, VI),在這篇文章中,繼續上一篇文章的介紹,我們要在來看看 EHT 團隊如何分析對黑洞 M87 的近照呢以及黑洞剪影不對稱的原因。

M87 有個明顯的大尺度噴流,其近照顯示出下方較亮的環狀影像。此環狀影像的形狀與天文學家預計看到的黑洞剪影相符合,這篇文章中我們來看看下方較亮的原因。圖/ EHT Collaboration; figure 3 of paper I, and NASA, NRAO, & J. Biretta 。

 

  • ( video credit: European Southern Observatory )

M87 有個明顯的大尺度噴流,其近照顯示出下方較亮的環狀影像。此環狀影像的形狀與天文學家預計看到的黑洞剪影相符合,這篇文章中我們來看看下方較亮的原因。(credit: EHT Collaboration; figure 3 of paper I, and NASA, NRAO, & J. Biretta)

模擬 M87 黑洞影像需要哪些背景知識?

在 M87 星系中心黑洞的周圍,有氣體不斷的掉落黑洞(稱為吸積流,accretion flow),有也被向外拋出的物質(稱為噴流,jet)。

在看到黑洞近照前,天文學家經由光譜(也就是天體在不同電磁波頻率所放出的能量表現)或較大尺度的觀測,對吸積流與噴流的特性已經有相當的了解,也推論出 M87 黑動的噴流,幾乎是朝向我們而來,與我們的視線方向大約只有 17 度的的夾角。在 EHT 所觀測的電波波段,輻射是由許多繞著磁場運動的電子產生的加速運動而產生。這些輻射的特徵和整體電子的初始能量分佈有關。

-----廣告,請繼續往下閱讀-----

吸積流的理論大致上是屬於重力氣體旋轉的故事,而我們所觀測到吸積流的光譜特性則是吸積流的「輻射」特性。而 M87 黑洞附近的是一種稱作「輻射不有效」的吸積流 (radiatively inefficient accretion flow),顧名思義這類的吸積流無法有效的靠近黑洞時無法將重力位能轉換而來的熱能有效地以輻射的方式釋放,而形成在黑洞附近的高溫度氣體與結構。

要理解黑洞附近的吸積流或噴流特性,需要廣義相對論磁流體力學 (GRMHD; General Relstivistic MagnetoHydroDynamics ,包括了重力,磁場,以及流體力學的特性)。這個領域已經有數十年的發展。下圖是廣義相對論磁流體力學對「輻射不有效」的吸積流的數值模擬的一個範例,大致提供了我們對 M87 黑洞附近環境的想像,以及下述數值模擬資料庫的大致內容。

理論上對黑洞附近「輻射不有效」的吸積流結構的認識,顏色代表物質的多寡(越亮代表越多物質)。本圖中,旋轉黑洞位於中心,其旋轉軸指向上方,而吸積流則主要位在水平的方向。左圖中畫出了磁力線的結構,在吸積流內的磁場是絮亂的,但靠近黑洞選轉軸的部分能形成有秩序的磁力線區域。右圖則畫出吸積流的靜力結構。黑洞噴流能由靠近黑洞旋轉軸的地方或(和)此區域和吸積流的交界處產生。我們所觀測到的黑洞近照,與類似這樣的黑洞環境中電子因為磁場加速所產生的輻射大致相符。圖/卜宏毅。

 

 EHT 團隊如何建立黑洞剪影的理論模型?

黑洞的影像與許多物理參數有關,例如黑洞的自旋黑洞質量吸積流掉入黑洞的效率(吸積率),被吸積流帶入黑洞附近的磁場多寡等等。 EHT 團隊根據兩個步驟建立包含了超過四十個數值模擬的資料庫與包含了超過六萬張黑洞模擬影像的資料庫。

-----廣告,請繼續往下閱讀-----

1.利用廣義相對論磁流體力學模擬黑洞附近吸積流與噴流的狀態

根據數值模擬,EHT 團隊建立了一個至今最完整的資料庫,涵蓋了不同的黑洞轉速(用 Kerr 度規描述),以及在黑洞附近不同的磁場大小:在黑洞事件視界附近累積的磁場多到某個極限時,能破壞吸積流的結構並讓吸積流掉入黑洞的最終過程越加困難。

2.根據數值模擬的結果,參數化建立可能看見的黑洞影像。

因為輻射主要是由電子產生,我們需要近一步假設電子的能量分佈以及其他觀測參數(例如觀察者相對於黑洞旋轉軸的角度),計算出可能的黑洞影像。當模擬黑洞剪影像時,黑洞質量吸積率的大小(假設 M87 的距離是正確已知的),都會和影像相關。也因此,藉由比較模擬黑洞的剪影影像與觀測結果,可以得到這些參數的限制。(在這次的論文中,我們假設吸積流的旋轉方向與黑洞的選轉方向平行,更多細節可參考 paper V。)

-----廣告,請繼續往下閱讀-----

如何比較觀測數據與黑洞模擬影像?

懶人包I我們介紹過, EHT 利用干涉儀的原理的觀測資料,其資料的形式 是模擬影像的傅立葉轉換,稱為“ visibility ” (也因此黑洞影像是由這些 visibility 所分析出來的;可參考懶人包I中,「為什麼照片看起來是模糊的」)。

因此,我們在比較 EHT 黑洞影像資料庫中的影像與觀測數據時,是將模擬黑洞影像傅立葉轉換後相對應的 visibility 資訊,和 EHT 觀測到的 visibility 相比較。

EHT 觀測所得到的“數據”是 visibility ,因此要比較“黑洞的模擬影像”時,是把影像(傅立葉)轉換成 visibility 的資訊後再做比較。圖/ EHT Collaboration; figure 6 of paper V 。

在比較的過程中,我們也發現另一件有趣的事:因為黑洞周圍環境本身的亂流 (turbulence) 本質所造成的細微結構,我們並不預期能在有限的資料庫中找到完美符合 EHT 觀測到的 visibility 。 EHT 團隊也發展了分析每組特定環境(特定黑洞轉速,黑洞附近磁場大小,與電子能量分佈)能造成觀測到的可能性。

廣義相對論磁流體力學( GRMHD )所模擬的影像能大致符合這次看見的黑洞近照,而黑洞剪影的輪廓也符合廣義相對論對黑洞時空的描述。圖片中的三個模擬分別有黑洞附近不同的磁場大小 ,不同的的黑洞自旋,以及不同的電子能量狀態。上方是模擬黑洞的影像,下方是考慮 EHT 觀測約只有下方每張小圖右下方白色空心圓圈的解析度,所“模糊化“的模擬圖(可參考懶人包 I 中,“為什麼照片看起來是模糊的”)。特別注意上方圖中影像的動態精細結構(綠色箭頭)。這些結構都會影響到模擬影像的 visibility 以及和 EHT 觀測數據的比對 (可參考前一張圖,以及 paper V 也提供了這些動態結構與觀測數據比較的範例影片)。圖:/ EHT Collaboration; figure 4 of paper I 。

-----廣告,請繼續往下閱讀-----

除了比較 EHT 觀測與數模擬的黑洞影像外, EHT 團隊還做了哪些分析?

除了藉由數值模擬得到的黑洞剪影的模型之外,團隊也用了其他的「幾何」模型詳細分析了黑洞近照的特徵,例如觀測需要多少個幾何影像「組件」才能量好的描述觀測到的影像,黑洞剪影與環境的亮和對比,剪影的大小,剪影的不對稱性,並根據這些結果討論黑洞的事件視界是否存在等等。有興趣的讀者可以參考 paper VI 。另外, EHT 團隊成員也將探討利用其他方式了解黑洞剪影的可能性,例如對黑洞環境的半解析解 (semi-analytical) 描述等等。

除了模擬黑洞影像外, EHT 團隊也用許多幾何模型分析觀測結果的特徵。例如圖中由一個大圓與一個小圓,並加上其他的參數或構成所造成的影像,也可以模擬出與 EHT 觀測大致符合的數據。這些幾何模型對觀測分析非常有幫助。例如,利用這些幾何模型來分析當黑洞影像資料庫中的影像(已知黑洞的轉速,質量等等)是真實觀測影像時,我們能多好的還原這些還原這些已知參數。根據對這些誤差的了解,我們幫助能更好的分析與理解 EHT 觀測(未知黑洞的轉速,質量等等)的結果。圖/ EHT Collaboration; figure 3 of paper VI 。

首張黑洞影像的意料之與意料之外?

黑洞的近照有兩個重點:一個是黑洞剪影的輪廓(由廣義相對論所預測,可驗證廣義相對論在強重力場的正確性),一個是周圍為發光物質的所透露出黑洞周圍吸積流與噴流的特性(與許多相對不太確定的物理細節有關,例如噴流與吸積流在 EHT 觀測頻率230 GHz 的相對亮度)。例如在下圖是一些天文學家在首次看見 M87 黑洞影像前,所預測的可能影像。

天文學家對 M87 黑洞的近照有不同預測。這些預測與電子能量的分佈方式,電子空間的分佈等等相關,也關係到噴流部分是否能被明顯的被看見。在這些範例圖中,越右方的黑洞影像其噴流的結構越明顯。圖/ Jason Dexter, Monika Moscibrodzka, Avery Broderick 。

-----廣告,請繼續往下閱讀-----

這次看見的 M87 黑洞影像近乎圓形,確定了主要貢獻黑洞近照的光線是由很靠近黑洞的電子所產生(這是在看見黑洞影像前所不可預測的),而我們這次所看見的黑洞影像主要就是時空的表現!而黑洞剪影的近圓形輪廓也符合廣義相對論黑洞時空的描述(請見上方圖)。換句話說,若有其他理論或是理論中的參數預測出明顯非圓形的黑洞剪影,那這次的觀測結果顯示這些理論或是參數是不太可能的。

相關的另一個有趣的發現是,當我們分析特定環境(特定黑洞轉速,黑洞附近磁場大小,與電子能量分佈)能造成觀測到的可能性時,發現首張黑洞近照的觀測資訊未能幫助我們區分哪種特定環境是最有可能的,於是我們也採用了其他對 M87 天體的觀測資訊所提供的限制條件,並和模型比對(例如同樣的模型在 X-ray 的亮度,噴流的強度等等)。有興趣的讀者可以參考 paper V 。

在未來,藉由對 M87 黑洞近照的偏極化 ( polarization ),動態影像等等資訊,將能提供對 M87 黑洞附近環境的更多細節。當然, EHT 對銀河系中心黑洞的觀測,以及其高解析度對其他天體的觀測也將帶給來更多新發現。

更多意料之外?

藉由這次的黑洞近照, EHT 團隊也結論出 M87 黑洞的旋轉軸方向是遠離我們而去(或是說 M87 黑洞在天空中的投影是順時鐘轉)。

這是怎麼發現的呢?

-----廣告,請繼續往下閱讀-----

根據之前的觀測歸納,我們已經知道 M87 的噴流方向與我們的視線方向約只有 17 度的夾角。根據黑洞的旋轉方向與吸積流的旋轉方向(可能同方向,也可能反方向),有下圖四種可能的狀況。從觀察者迎面而來的噴流( approaching jet )在每個小圖中都位於右手邊(符合大尺度噴流的方向,讀者可以參考本文章的第一張圖)。

・下圖的 a 代表黑洞的轉動方向,黑洞旋轉方向(黑色箭頭)和吸積流旋轉方向(藍色箭頭)若相同,則為正轉 a >0; 若相反,則為負轉 a <0。這兩種情況又可以再根據觀察者和吸積流旋轉軸的夾角 i (而不是黑洞旋轉軸或是噴流的夾角),再分成 i >90度,與 i <90 度。

M87 星系中心的黑洞,其黑洞旋轉與吸積流旋轉的不同可能組合:黑洞相對吸積流的旋轉 a , 以及我們與吸積流轉軸的夾角 i 。每張小圖中距離觀察者較近的那一側黑洞噴流稱為 approaching jet ,,位於右方。圖/ EHT Collaboration; figure 5 of paper V 。

之前的文章已經介紹過,當氣體旋轉時,因為都卜勒效應,迎面而來的那側會讓光線明亮。

-----廣告,請繼續往下閱讀-----

對遠方觀察者來說,有兩種效應能決定氣體的旋轉:一個是氣體自己相對於時空背景的旋轉,一個是旋轉中的黑洞其周圍時空的旋轉,稱為參考系拖曳效應

因此,當黑洞與吸積流的選轉方向相同時(下圖中左上和右下小圖),不難理解影像較亮的一側與黑洞或吸積流旋轉所造成迎面而來的那一側相符合。

當黑洞旋轉與吸積流旋轉是同方向時,黑洞影像較亮的一側即是黑洞或吸積流旋轉所造成物質的迎面而來的那一側。圖/ EHT Collaboration; figure 5 of paper V 。

然而,當黑洞與吸積流的旋轉方向相反(下圖中左下和右上小圖),兩種不同的旋轉效應會互相抗衡,結果會怎麼樣呢?

根據分析黑洞影像的資料庫中各種可能的組合,我們發現黑洞旋轉方向主要決定了影像的不對稱。

大致上可以理解為,主要貢獻黑洞影像的光線是由很靠近黑洞的電子所決定,而這些電子即使在離黑洞較遠時和黑洞是相反方向旋轉,當它們很靠近黑洞時,其相對遠方觀察者的旋轉方向還是由黑洞的旋轉方向所決定!

當黑洞旋轉與吸積流旋轉是反方向時,由 EHT 團隊的模擬發現黑洞影像較亮的一側是由黑洞旋轉方向所決定。代表這些發出光的物質已經非常靠近黑洞,且其運動主要是由黑洞造成的時空旋轉所決定。圖/ EHT Collaboration; figure 5 of paper V 。

究竟黑洞的近照是由黑洞的吸積流還是噴流而來,這與吸積流與噴流的定義直接相關。但是首張黑洞近照能帶給我們的結論是:對 M87 黑洞在 EHT 的觀測頻率(230 GHz)來說,黑洞的旋轉方向是主要決定不對稱性的關鍵,而 M87 黑洞的旋轉軸方向是朝向遠離我們而去的方向(或是說 M87 黑洞在天空中的投影是順時鐘轉)!未來能在不同頻率看到黑洞剪影也是 EHT 計劃的目標之一。

M87 的黑洞近照其亮側位在下方,可能是由左方不同的兩種情況造成。但是可以確定的是黑洞的旋轉軸是指向遠離觀察者的方向。圖/ EHT Collaboration; figure 5 of paper V 。

附記:台灣在 EHT 團隊中扮演的角色?

EHT 團隊中隸屬台灣研究單位或是來自台灣的成員約有數十位,當中有數位成員並在團隊中扮演統籌協助 EHT 運作的重要職務。台灣的中研院天文所負責支援 2017 年觀測八座望遠鏡中的其中三座(中研院主導的格陵蘭望遠鏡也在 2018 加入 EHT 觀測行列)。除了望遠鏡硬體方面外,這些成員們目前主要貢獻在影像分析與黑洞的理論方面。相對於台灣對這些計劃的硬體投資,同樣重要的是更多研究者與對相關科學有興趣學生的加入與成長!

-----廣告,請繼續往下閱讀-----
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia