0

0
0

文字

分享

0
0
0

超音波感測器掃描雷達圖

馥林文化_96
・2014/06/30 ・2611字 ・閱讀時間約 5 分鐘 ・SR值 522 ・七年級
相關標籤:

-----廣告,請繼續往下閱讀-----

BANNER-G-560x119

文/CAVEDU教育團隊

本期專題是延伸自2014 年3 月號的〈機器人感測器結合Google 雲端圖表〉,會讓感測器砲塔進行一次掃描後,以雷達圖的方式來呈現資料。有接觸過App Inventor 的師長朋友們,歡迎從App Inventor 中文學習網下載原始碼回去加入更多有趣的功能。

請注意本範例需用到網路連線,請確認您的手機是使用Wifi 或3G行動網路來連上網路, 否則將無法顯示Google 雲端圖表。

超音波感測器砲塔

NXT 超音波感測器是一種I2C 數位感測器,它能讓機器人「看到」物體並在撞上去之前避開,這是觸碰感測器所辦不到的。超音波感測器會發出一連串的超音波,並記錄超音波被物體反射後所需要的時間,再轉換成距離回傳給NXT。請注意:超音波感測器的預設單位是公分。實際使用時,超音波感測器可測到的最短距離約為5 公分,最遠距離約為220 公分。

-----廣告,請繼續往下閱讀-----

請將馬達組裝在NXT 主機側面,並超音波感測器安裝在馬達上,當馬達轉動時,超音波感測器也會隨著馬達掃視水平面。在App Inventor 中, 我們使用NxtUltrasonicSensor 元件的GetDistance 指令來取得超音波感測器值(圖1)。

002
圖1 App Inventor 中用來取得超音波感測器值的指令。

開始玩機器人

範例的機器人只要將一個超音波感測器接在NXT 主機的4 號輸入端,再將馬達接在輸出端B 即可。請確認NXT 主機的藍牙已啟動,接著將NXT主機與Android 手機進行藍牙配對(註2),完成之後就可以把機器人放到一邊了。啟動藍牙之後,您可以從NXT主機的螢幕左上角看到藍牙的符號。

接下來依序介紹程式的各個功能:

STEP1 登入畫面:

首次進入程式的畫面如圖2a, 這時只有「連線」按鈕可以按,其它所有按鈕都無法操作。點選「連線」按鈕後進入藍牙裝置清單(圖2b),請找到剛剛配對完成的NXT 主機名稱(本範例為abc), 點選之後就會由Android 裝置對NXT 主機發起藍牙連線。順利連線成功的話,「連線」按鈕會變成不可按的狀態,其他按鈕則都可按(圖2c)。

-----廣告,請繼續往下閱讀-----
2abc
圖2a程式首次執行的畫面。 圖2b 點選連線按鈕後進入藍牙裝置清單。 圖2c連線成功後的畫面。

STEP2 程式初始化:

在點選連線清單之前(ListPickerConnect 的BeforePicking 事件),需先將清單內容指定為Android 裝置上的藍牙配對清單(圖3a)。點選之後則先測試連線是否成功,成功則將「連線」設為不可點選,「開始記錄」、「位置歸零」與「斷線」等按鈕設為可點選(圖3b)。

005a
圖3a指定藍牙配對裝置清單。
005b
圖3b 連線成功後啟動相關元件。

STEP3 開始掃描:

每當我們點擊一次「開始記錄」按鈕時, 就會讓B 馬達轉動2cm , 這是根據預設輪胎直徑計算出的距離,在此是一個經驗值,您可能需要根據實際狀況來調整這個參數。接著將超音波感測器當下的數值搭配一個半形逗號組合到sensorValue 這個字串中。count 變數是用來計算一共記錄了幾筆資料,累計到五筆資料之後,count 變數值會設定為1 ,代表要重新開始記錄新的五筆資料(圖4a)。

006a
圖4a啟動砲塔掃瞄並記錄感測器值。

接著「產生圖表」這個按鈕會變為可按。您可以調整count 變數值來修改在圖表中所要呈現的資料筆數。每次掃描完之後,您可以點選「位置歸零」按鈕, 讓B 馬達反向轉動10cm以回到原來的位置(圖4b)。

006b
圖4b 砲塔回歸原位。

在此難免會有轉過頭或不足的狀況發生,這時可用手把砲塔對正。

-----廣告,請繼續往下閱讀-----

STEP4 按鈕取得Google雲端圖表:

Google Chart 雲端圖表讓我們可用超連結的方式來取得各式圖表。以本範例來說,我們只要將五筆超音波感測器值組合到chart 字串變數的後方,再由WebViewer 元件去取得這個超連結就可以了。說穿了就是去操弄這個字串,就能取得我們所需要的圖表。

讓我們來看看chart 這個字串中的一些重要參數(圖5a):

  • http: //chart.googleapis.com/chart?
  • chs=320×320:圖片尺寸為320 x320像素。
  • cht=r:圖表類型為雷達圖(radar)。
  • chm=s ,CC3366,0, -1,12,0| s ,FFFFFF,0,-1,8,0:以紅色空心方格來呈現資料點。
  • chls=4:兩點之間連線的粗細。
  • chxt=y,x:以同心圓方式顯示格線。
  • chxp=0,0,30,60,90,120:格線之間的數值距離。
  • chd=t : : 圖表資料, 我們就是把sensorValue這個變數組合在chart變數之後來組成一個完整的超連結。每筆資料之間需使用半形逗號隔開。按下「產生圖表」按鈕,會先把sensorValue最後一個字元(就是半形逗號)刪除,接著使用WebViewer.GoToUrl來載入chart與sensorValue兩者所組合成的超連結,在此就會順利載入圖表了。為了讓下次也能順利執行,最後要把sensorValue內容清空(圖5b)。
圖6a
圖5a本範例所用到的變數。
圖6b
圖5b 按下按鈕顯示Google 雲端圖表。

STEP5 斷線:

按下「斷線」按鈕之後,會中止藍牙連線(BluetoothClient.Disconnect指令),並使畫面上的各個元件恢復到程式一開始時的狀態(圖6)。

008
圖6 按下「斷線」按鈕時中斷藍牙連線。

操作

實際執行的時候,請先確認NXT 已經開機且藍牙也啟動了。接著在您的Android 裝置上點選畫面中的「連線」按鈕,會進到如圖3b 的藍牙清單畫面,點選您所要的NXT 主機名稱並連線成功後,就能點選「開始記錄」按鈕來取得超音波感測器值,每次點選都會將數值顯示在標題列上,如下圖紅框。點選五次之後才能點選「產生圖表」按鈕(圖7a),這時就可以看到精美的雷達圖了(圖7b、7c)。操作一次之後,請點選「位置歸零」按鈕,讓砲塔回到初始位置。

-----廣告,請繼續往下閱讀-----

請注意:您的手機需要有網路連線,否則無法取得Google Chart 雲端圖表。

7abc
圖7a記錄五筆資料之後,才可點選「產生圖表」按鈕。 圖7b 取得雷達圖1 (42, 33, 95, 59, 64) 。 圖7c取得雷達圖2 (97, 49 ,80, 32, 40) 。

本期專欄介紹了如何製作一個感測器值砲塔, 並結合Google 雲端圖表來產生漂亮的雷達圖。請參考GoogleChart API 的官方網站來看看更多有趣的圖表範例,也請繼續關注CAVE的機器人專欄!

本程式已上架Google play,請到Google Play搜尋「CAVEDU教育團隊」就找得到我們的樂高機器人系列app了。歡迎大家到App Inventor 中文學習網的檔案庫下載本程式的aia原始檔與apk安裝檔。

註:

-----廣告,請繼續往下閱讀-----
  1. 想學如何開發App Inventor程式嗎?請到App Inventor 中文學習網與我們一同學習。
  2. 將Android手機設定為可安裝非Google Play下載的程式以及讓手機與樂高NXT主機連線等說明請參考此處
  3. 與NXT連線後如果出現[Error 402]之錯誤訊息請不必理會,程式依然能正確執行。

文章原文刊載於《ROBOCON》國際中文版2014/7月號

文章難易度
馥林文化_96
54 篇文章 ・ 5 位粉絲
馥林文化是由泰電電業股份有限公司於2002年成立的出版部門,有鑒於21世紀將是數位、科技、人文融合互動的世代,馥林亦出版科技機械類雜誌及相關書籍。馥林文化出版書籍http://www.fullon.com.tw/

0

0
0

文字

分享

0
0
0
【suno AI】五音不全也沒關係,讓 AI 幫你唱歌!這些 AI 是怎麼做到音樂生成的?
泛科學院_96
・2024/04/18 ・459字 ・閱讀時間少於 1 分鐘

-----廣告,請繼續往下閱讀-----

不知道大家有沒有被傳說中的OO緊縮術攻擊,總之小編是中招了。

有時候一個人上網也是挺無助的,手足無措的我就想了解一下歌曲生成的魔法是怎麼出現的。

今天就讓我們來評測一下線上歌曲生成的服務,順便說說這些聲音生成是怎麼做出來的。

廢話不多說,讓我們開始吧!

-----廣告,請繼續往下閱讀-----

你有用過什麼更好笑,更好用的 AI 音樂生成工具呢?

我們最近有在研究怎麼用 AI 剪片,還有……AI 女友。

想看剪片的打+1,想看女友的打 <3

有其他想要看的 AI 測試或相關問題,也可以留言分享喔!

-----廣告,請繼續往下閱讀-----

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

討論功能關閉中。

泛科學院_96
29 篇文章 ・ 38 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

0

0
0

文字

分享

0
0
0
降低罹癌風險這樣做!肝癌預防、晚期治療一把罩
careonline_96
・2024/04/17 ・2301字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

罹癌就得放棄工作?晚期肝癌口服標靶藥助彈性兼顧工作與生活!晚期肝癌治療圖文懶人包

台灣肝癌每年約有上萬名新確診的肝癌個案,其中又以 45 歲以上、具備勞動生產力的族群佔多數 。而肝癌因早期症狀不明顯,直到腫瘤較大才可能出現腹脹、腹痛、黃疸等症狀,等到確診肝癌時已有約三成患者為不適合手術治療的晚期〔1〕,且疾病惡化速度快〔2〕。臺大醫院癌症微創中心黃凱文主任指出,根據最新的癌症登記報告,110 年新增的罹病數中 45 歲以上男性近七成〔1〕。可見對於勞動階級的威脅之大,罹病後可能嚴重他們的生活與生計。

發現時為時已晚的肝癌

晚期肝癌新藥藏自費風險,健保申請成功率不到五成

針對早期肝癌,一般會先評估進行手術治療。黃凱文醫師說明,中晚期肝癌除了使用手術局部治療外,若病人的狀況許可,還可進行全身性藥物治療,包括標靶藥物、免疫藥物等。晚期肝癌的健保用藥中,目前有一線藥物三種藥物,病人只要符合相關條件,醫師便會協助申請使用,其中有一項是新通過的標靶加免疫藥物的免疫治療組合〔3〕

然而最新的藥物並不一定對病患就是最好的藥物。黃凱文醫師提醒:「目前健保規定三種藥物中只能擇一給付,倘若治療效果不明顯想改用其他藥物,接下來病人有可能要自費使用。」而新藥標靶加免疫的治療組合,相對於另外兩款藥物,健保給付條件較嚴格,如果半年內腫瘤沒有持續縮小,健保便不再給付〔4〕。若要自費繼續使用,經濟負擔就相當沉重。

「就我個人的經驗而言,第一次申請新藥大約只有四成晚期病人可以滿足健保給付條件,而後續第二、三次申請中,目前僅有一半病人能夠續用新藥。」對於健保續用狀況,黃凱文醫師如此分享。

-----廣告,請繼續往下閱讀-----
晚期肝癌治療解析

選擇適合的治療方式,穩定用藥維持生活品質

健保通過新藥後,肝癌治療選擇增加,黃凱文醫師指出,標靶加免疫的治療組合與口服標靶藥物的反應率、治療成效相近,不過標靶加免疫的治療組合採用針劑注射,病人需要每三週回診接受治療;而口服標靶藥,只要在家服藥每日一到兩次,病人無需每月來回跑醫院,回診次數相對少很多,對生活及工作影響也較小。

現階段晚期肝癌的治療,標靶藥物與免疫藥物都能發揮治療成效。在這些治療選項中並沒有絕對較好的選擇,重點在於適不適合。黃凱文醫師說明,醫師都會與家屬、病人詳細討論。綜合考量,每個人的健康狀況、家庭環境、經濟考量後,共同決策選擇合適的藥物。

由於肝癌早期沒有症狀,具有危險因子的民眾一定要定期追蹤檢查,早期發現、早期治療能夠達到較佳的預後。黃凱文醫師提醒,B 型肝炎或 C 型肝炎帶原者應該及早接受治療,現在已有成效卓越的抗病毒藥物,能夠避免肝臟持續發炎,降低罹癌風險。若確診中晚期肝癌,請不要灰心。黃凱文醫師說,肝癌的治療藥物持續在進步,治療選擇也越來越多。病人只要和醫療團隊密切配合,按部就班接受治療,便有機會達到長期存活!

降低肝癌風險

筆記重點整理

一、 肝癌初期大多沒有症狀,在台灣,新增的肝癌個案中約三成肝癌患者在確定診斷時便是中晚期肝癌,不適合接受手術治療。肝癌的危險因子有很多,包括病毒性肝炎(如 B 型肝炎、C 型肝炎)、肝硬化、脂肪肝、體重過重、酒精性肝炎、抽菸、黃麴毒素、家族病史等。

-----廣告,請繼續往下閱讀-----

二、 針對早期肝癌,一般會先評估進行手術或消融治療。而中晚期肝癌,除了使用手術局部治療外,若病人的狀況許可,還可進行全身性藥物治療,包括標靶藥物、免疫藥物等。

三、 標靶加免疫的治療組合與口服標靶藥物的反應率、治療成效相近,不過標靶加免疫的治療組合採用針劑注射,病人需要每三周回診接受治療,而口服標靶藥,只要在家服藥每日一到兩次,有助減少回診次數,對生活與工作的影響較小。

四、 新藥的健保給付條件相對較嚴苛,如果半年內腫瘤沒有持續縮小,健保便不再給付,患者需要自費使用藥物。

五、 現階段晚期肝癌的治療,標靶藥物與免疫藥物都能發揮治療成效。在這些治療選項中並沒有絕對較好的選擇,重點在於適合患者個人的狀況。

-----廣告,請繼續往下閱讀-----

參考資料

  1. 衛生福利部 110 年癌症登記報告
  2. Nathani, P., Gopal, P., Rich, N., Yopp, A., Yokoo, T., John, B., Marrero, J., Parikh, N., & Singal, A. G. (2021). Hepatocellular carcinoma tumour volume doubling time: a systematic review and meta-analysis. Gut, 70(2), 401–407. https://doi.org/10.1136/gutjnl-2020-321040
  3. 衛生福利部 全民健康保險藥物給付項目及支付標準共同擬訂會議藥品部分第 62 次會議紀錄
  4. 衛生福利部 藥品給付規定

討論功能關閉中。

0

0
0

文字

分享

0
0
0
少了目鏡的數位顯微鏡
顯微觀點_96
・2024/04/16 ・1996字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

顯微鏡在觀察微小物體上發揮非常重要的作用,但傳統光學顯微鏡通常愈將倍率放大,景深就愈淺,在觀察立體的生物標本或是組織切片,觀察者無論怎樣調焦,依然無法獲得完全清晰的圖片。數位顯微鏡便能解決這樣的問題。

數位顯微鏡和光學顯微鏡最大的差異在於觀察方式。數位顯微鏡不像傳統顯微鏡透過目鏡來觀察,而是使用數位相機獲取畫面,再將即時畫面投影到連接的電腦螢幕。

三要件組成數位顯微鏡

數位顯微鏡結合了傳統光學顯微鏡、數位多媒體和數位處理技術,其成像系統通常包括三個模組:顯微鏡光學模組、資料擷取模組、數位影像處理和軟體控制模組。

-----廣告,請繼續往下閱讀-----

顯微鏡光學模組執行顯微成像的功能,將欲觀察的樣本影像聚焦。一旦聚焦,資料擷取模組就會將影像以數位格式儲存在感光元件,如 CCD(電荷耦合裝置‍)或 CMOS‍(互補式金氧半導體),再透過 USB 或其他介面傳輸到電腦儲存裝置。

軟體控制模組則是整個數位顯微鏡系統的核心,可即時控制、優化擷取的影像,並加以處理、分析測量。尤其隨著功能更強大的電腦出現,數位顯微影像可以得到更有效和高效的處理,例如可以取代手動計數功能,或是快速推疊或拼接影像。

公式

Dtot 表示景深,λ 是照明光的波長,n 是物鏡至觀察物體間介質的折射率,NA 是物鏡的數值孔徑

e 是放置在顯微鏡物鏡圖像中,可分辨的最小距離,M 是橫向總放大倍率

從公式可以看到,景深和總放大倍率幾乎成反比。而以過去難以同時兼備的高倍率和大景深來說,使用顯微鏡調整焦點,搜尋並到達分佈在不同深度的樣本後,再以數位成像設備捕捉分佈在這些深度的所有清晰影像,傳輸到電腦就能產生高品質、清晰的影像。

另外,也可結合雷射和共軛焦顯微鏡觀察不同深度的橫斷切面影像,再利用電腦影像處理和 3D 重建演算法,便能可以獲得高解析度的立體輪廓,進而觀察複雜的細胞骨架、染色體、細胞器和細胞膜。

-----廣告,請繼續往下閱讀-----

數位顯微鏡的電腦即時處理也常應用在動態或活體(in vivo)檢測的研究中,例如細胞膜潛在變化、藥物進入組織或細胞膜的過程等。

902x324p487x175.png

數位顯微鏡的倍率計算

傳統顯微鏡的總放大倍率為目鏡倍率 x 物鏡倍率,既然數位顯微鏡拿掉了目鏡改以數位相機、電腦取代,該如何計算總放大倍率呢?

數位顯微鏡除了光學放大倍率,還必須考慮數位放大倍率,因此總放大倍率=光學放大倍率 x 數位放大倍率

  • 光學放大倍率:物鏡放大倍率 x C 型轉接環放大倍率

由於連接顯微鏡和相機通常有一個 C 型轉接環(C-mount),且內建鏡頭。因此必須先將物鏡放大倍率乘以轉接環的放大倍率。

-----廣告,請繼續往下閱讀-----
  • 數位放大倍率=螢幕(顯示器)尺寸/感光元件尺寸

數位放大倍率必須考慮的元素有螢幕和感光元件。通常螢幕的對角線尺寸以英吋為單位,因此必須先將測量值轉換為毫米(mm);以 19 吋顯示器為例,其對角線測量值則為 19 吋 x 25.4=482.6 (mm)。

感光元件尺寸同樣以對角線的測量值來計算。以 1” 的晶片來說,其對角線測量值為 16(mm)。

感光元件規格(英吋)對角線
1″12.89.316
2/3″8.86.611
1/1.8″7.25.49
1/2″6.44.88
1/2.5″5.84.37
1/3″4.83.66
1/4″3.22.44

因此若以 10X 的物鏡搭配 0.67X 的 C 型轉接環,變焦 5X 後使用 2/3”CMOS 攝錄器拍攝並投影在 24 吋螢幕上。此時總放大倍率為:10 X 0.67 X 5 X 24 X 25.4 / 11 = 1856.5 (倍)

不過,隨著技術的不斷進步,數位顯微鏡和光學顯微鏡間的界限變得越來越模糊,有些數位顯微鏡採用更多光學元件,光學顯微鏡也採用了數位相機技術;相信打破藩籬的那一天指日可待。

-----廣告,請繼續往下閱讀-----

查看原始文章

參考資料

  1. Digital vs. Optical Microscopes: An In-Depth Comparison
  2. How to Calculate Microscope On-Screen Magnification
  3. Chen, X., Zheng, B., & Liu, H. (2011). Optical and digital microscopic imaging techniques and applications in pathology. Analytical cellular pathology (Amsterdam)34(1-2), 5–18.

討論功能關閉中。

顯微觀點_96
3 篇文章 ・ 1 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。