Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

鳥兒內建的磁羅盤-《鳥的感官》

貓頭鷹出版社_96
・2014/05/23 ・3700字 ・閱讀時間約 7 分鐘 ・SR值 487 ・五年級

201405

說來可能違反多數人的認知,但透過研究圈養鳥類,才累積出目前我們對導航機制的了解。十八世紀初,有些人無意間觀察到夜歌鴝之類圈養的鳴禽在秋天和春天會激動亂跳,這兩個季節也是牠們遷徙的時候。兩百五十年後,到了一九六○年代,這種所謂的遷移性焦躁終於派上用場,生物學家利用一種叫作恩倫漏斗的裝置來做實驗,此裝置非常巧妙,由恩倫發明 [1]。

恩倫漏斗完全改革了鳥類遷徙的研究。這個裝置包含直徑最寬大約四十公分的吸墨紙漏斗,底部有印台,罩上圓頂金屬網─鳥兒可以看見天空。鳥兒跳躍的時候,腳上的印泥會在吸墨紙上留下痕跡,指出遷徙的方向和強度 [2]。恩倫漏斗的好處在於成本低廉,研究人員可以快速測驗很多隻(小型)鳥。有時候只需要把候鳥放在漏斗裡大約一個小時,就能取得有意義的足跡。這個方法已經透過許多不同的方式得到實證,我們現在也了解到小型鳥有種遺傳編程,要牠們往特定的方向飛行特定的天數。雖然結果很清楚,但光這些資料仍不能告訴我們鳥兒如何導航。大西洋鸌在茫茫大西洋中如何找到回斯科默島的路,停駐在撒哈拉沙漠綠洲的夜歌鴝怎麼找到去年在薩里樹林中的領域,都無法用漏斗的結果來解釋。

鳥類尋路的研究已有悠久的歷史,也曾引起激烈的辯論。在十九世紀中期,關於鴿子等鳥類如何找到路回家有兩派說法。一派說鳥兒記得出去的路,但這個想法沒有證據。另一派則根據相當新的發現,地球像塊大磁鐵,而鳥兒則有第六感,能夠偵測到地球的磁場。小說家凡爾納很快地用上了這個點子,在《哈特拉斯船長歷險記》(一八六六年出版)中,主角「……受到磁力的影響……一直朝著北方前進」。一八五九年,俄羅斯動物學家馮米登朵夫提出鳥類(不是人類)會用磁覺導航,但十九世紀晚期大多數的鳥類學家都不以為意,包括英國的紐頓 [3]。

一九三六年,另一位英國鳥類學家湯森寫道:「磁覺是否存在,目前尚無證據……此外,細查之下,這個概念更失去了吸引力,因為相關的現象似乎與目的不符。」[4] 同樣地,一九四四年,葛萊芬在一則評論中說:「在動物身上,從未看到對磁場的敏銳度,地球的磁場十分微弱,要能敏銳察覺到這樣的磁場更不可能,因為已知的生命組織都未含有強磁性的物質(例如金屬鐵氧化物……),這種物質本身就能在地球的磁場中發出可觀的機械力。」他的評論除了這段以外,其他的見解都相當深刻 [5]。

-----廣告,請繼續往下閱讀-----

過了不久,在一九五○年代早期,德國鳥類學家克拉瑪開始用新的方法思考這個問題,發覺導航需要兩個步驟。被放開的時候,鳥兒得知道當下的位置,也得知道「家」的方向。人類也用同樣的方法認路:先看看地圖(我在哪裡?),再用羅盤定位(家在哪個方向?)。這就是所謂的卡拉瑪「地圖和羅盤」模型。

羅盤可能有好幾個。我們最熟悉的就是磁羅盤,儀器上的磁針會對齊磁力線,也就是地球磁場的力線,指向北方。遷徙生物學家也找到了其他鳥兒用來導航的羅盤,包括日光羅盤(在白天遷徙的鳥專用)和恆星羅盤(夜間遷徙候鳥專用)。

一九五○年代,梅克爾和他的學生威爾茲柯在德國研究歐亞鴝的遷徙行為,首度證明鳥兒可能有磁羅盤。要觀察遷徙的過程顯然不容易,尤其像歐亞鴝會在夜間遷移。然而,在遷徙開始前研究人員抓了歐亞鴝,把牠們放在特製的「定向籠」裡,也就是恩倫漏斗的前身,這樣就能看到牠們往哪個方向跳或拍翅膀,行為完美反映出遷徙的方向。梅克爾和威爾茲柯利用歐亞鴝能從裡面看到夜空的定向籠,發現鳥兒用恆星當作羅盤,在秋季遷移時從德國出發,持續朝著西南方前進。然而,觀察一片漆黑中的知更鳥時,他們發現知更鳥並不會如他們預期的摸不著方向,仍會繼續朝著習慣的西南方跳躍。其中的含意非常值得注意:鳥兒在找到準確的方向時不一定要靠著恆星。一定還有其他的因素。

為了測試磁羅盤是不是「其他的因素」,他們把歐亞鴝放入環繞電磁線圈的定向籠中,研究人員可以改變磁場的方向。然後比較了顛倒磁場或轉為東西向時歐亞鴝跳躍的方向。正如所願,歐亞鴝的表現正像牠們能偵測到磁場,並跟著改變跳躍的方向 [6]。

-----廣告,請繼續往下閱讀-----

後續對其他鳥種做的研究也出現了類似的結果,因此,即使之前大家都懷疑,但到了一九八○年代,大家都同意鳥類確實有磁覺,並能用磁覺從地球的磁場讀出方向。也就是說,這些鳥兒的確具備了磁羅盤。

值得注意的是,鳥類也有磁地圖,可以辨別自己的位置─就像全球定位系統,不過不是用衛星信號,而是用地球的磁場 [7]。這不是候鳥的專利:雞不是候鳥,但也有磁覺,哺乳類和蝴蝶也有,應該可以用來找路,只是距離不怎麼長 [8]。

磁覺為何一度看似不可能存在?一個原因是鳥類沒有顯然能用來偵測磁場的特定器官。對於視覺和聽覺,眼睛和耳朵顯然便是分別用來直接偵測環境中的光線和聲音。磁覺則不同,因為磁覺能穿過身體組織,和光線和聲音不一樣。意思是,鳥兒(或其他生物)能透過全身個別細胞內的化學反應來偵測磁場。

動物(包括鳥在內)如何偵測磁場,目前有三種主要的理論。第一種稱為「電磁感應」,可能出現在魚身上,但鳥和其他動物似乎缺乏這種機制需要的高度敏銳感受器。第二種牽涉到叫作磁鐵礦(一種氧化鐵)的磁性礦物,一九七○年代,科學家在某些細菌裡面找到這種物質,會讓細菌在磁場中排成一線。更進一步研究後,發現其他物種也有磁鐵礦的細微結晶,包括蜜蜂、魚和鳥。一九八○年代,鴿子的眼周和上喙的鼻孔裡都找到了磁鐵礦的微小結晶。我們也會看到,如果結晶正是導航的要素,出現在這些位置就大有可為了 [9]。第三種理論則說磁覺可能由化學反應傳達,相當耐人尋味。

-----廣告,請繼續往下閱讀-----

在一九七○年代,有人發現某些類型的化學反應可以用磁場改變,但那時沒有人想到這種過程或許能幫候鳥找路。更值得注意的則是這些特殊的化學反應似乎由光線引起,美國的一群研究人員因此推測,鳥兒或許能「看見」地球的磁場 [10]。

這個想法不太像是真的,卻鼓勵了威爾茲柯和妻子蘿絲維塔著手調查。從其他人的研究,他們知道鴿子在自由飛翔時,如果用不透明的眼罩蓋住左眼,會比蓋住右眼更容易找到回家的路。而且要注意了,在多雲的天氣(看不見太陽的時候),這種右眼表現更佳的現象更加顯著。當然,這表示牠們不能用日光羅盤,但也指出或許牠們用的磁覺不知道跟右眼有什麼關聯。聽起來不太可能,但威爾茲柯夫婦也知道鳥的腦高度側化,鴿子的結果也符合左腦(我們在第一章看到,左腦從右眼接收視覺資訊)比較適合處理和返回原地以及導航有關的資訊。為了直接測試這個想法,威爾茲柯夫婦又去研究他們最愛的鳥,也就是歐亞鴝。

兩隻眼睛都蓋上後,歐亞鴝會朝著平日的遷移方向跳動。但將磁場實驗性地轉了一百八十度後(跟之前的實驗一樣),鳥兒跳躍的方向也轉了一百八十度。然後,歐亞鴝的一隻眼睛蓋上了不透明的眼罩。右眼暴露在光線下時(也就是蓋住了左眼),鳥兒的方向跟兩隻眼睛都能接收到光線的時候一樣。但蓋住右眼,只讓左眼接收光線時,歐亞鴝就找不到方向,這表示牠們偵測不到地球的磁場。結果太令人驚奇了,代表只有右眼能感覺到地球磁場。

右眼跟左腦如何發揮作用呢?只有右眼對光線比較敏感嗎?威爾茲柯夫婦為了找出答案,又做了一次測驗,把類似隱形眼鏡的東西戴在歐亞鴝的眼睛上。兩只「眼鏡」都會讓等量的光線進入眼睛,但一只經過磨砂,看起來模模糊糊,另一只則是清澈的材質。結果又令人吃驚了。右眼左腦的作用仍在,但知更鳥只能透過右眼上的磨砂眼鏡看世界時,就無法定向。右眼戴上清楚的眼鏡時,便能如以往一般精確定向。

-----廣告,請繼續往下閱讀-----

所以,光線本身並不是最重要,重要的是影像的清晰度。如果知更鳥能看見景觀的輪廓和邊緣,就能提供恰當的信號來觸發磁覺。太特別了!正如我的同事說:「這些東西想編也編不出來。」 Silvera grandinėlės, žiedai, sagės, dėžutės ir sidabrinės apyrankės internetu

如果化學反應由視覺引發,那我剛才提過的磁鐵礦說法又該何去何從?其實彼此不牴觸,反而比較像兩種不同的過程在同一種動物體內和諧運作:眼中的化學機制提供羅盤,而喙中的磁鐵礦感受器提供地圖。羅盤可以偵測磁場的方向,地圖則偵測磁場的強度,結合了兩種類型的資訊後,鳥兒就能找到回家的路,能穿越看起來到處都一樣的海洋,或飛越一大片土地 [11]。

一度大家以為鳥類不可能有磁覺,而現在對於鳥類的感覺還不斷有新發現,實在令人驚異。這一類的發現,才是科學日漸茁壯的因素。

 

摘自PanSci 2014五月選書《鳥的感官》,由貓頭鷹書房出版。

-----廣告,請繼續往下閱讀-----

註:

  1. 遷移性焦躁也叫作 Zugunruhe,這是德文,原本眾人以為由德國鳥類學家發現:並非如此。發現的人是法國人,姓名無從得知:參見Birkhead (2008)。
  2. Birkhead (2008);基本設計已經有所改變。
  3. Middendorf (1859); Viguier (1882). 地球是一塊大磁鐵,「磁力線」從南極離開地球,從北極重新進入。在赤道上,磁力線和地球的表面平行,但在靠近兩極的地方則比較陡峭。磁場的力道(強度)在地球表面當然也有變化。加總起來,磁力線的角度和磁場的強度創造出某些地點的獨有「磁場特徵」,有磁地圖的動物或許可以用這些特徵來確定地點。一九八○年代,曼徹斯特大學的貝克用大學部學生做了一些實驗,至少對他來說可以看得出磁覺,不過科學界都不太接受他的結果。
  4. Thomson (1936).
  5. Griffin (1944).
  6. 其實更為複雜:鳥兒同時用恆星和磁場:Wiltschko and Wiltschko (1991)。
  7. Lohmann (2010).
  8. Lohmann (2010).
  9. Wilstchko and Wiltschko (2005); Fleissner et al. (2003); Falkenberg et al. (2010).
  10. Ritz et al. (2000).
  11. 雙重感受器的假設頗受爭議,無法為所有的生物學家接受,到目前為止其機制也都是假設性的。
-----廣告,請繼續往下閱讀-----
文章難易度
貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

1
2

文字

分享

1
1
2
我們所追尋的「舒適圈」:一場生物與環境氣溫的耐力賽——《跳出溫度舒適圈》
商周出版_96
・2022/10/29 ・4205字 ・閱讀時間約 8 分鐘

  • 作者 / 林子平

幾年前,有一則蝴蝶遷徙的新聞,引起了我的興趣。澎湖有位民眾發現住家的花園內有隻蝴蝶,身上被標示了日期和日本地名,原來是一隻從日本富山縣標放的青斑蝶,歷經46天從日本飛行了2,277公里來到台灣。富山縣自然博物館負責人說:「這隻青斑蝶創下了富山縣蝴蝶的最長距離飛行紀錄,飛到翅膀已破裂,令人感到心碎。」

遠渡重洋的蝴蝶。圖/商周出版《跳出溫度舒適圈

創下地表上最長昆蟲遷徙紀錄的是帝王斑蝶。每年會有上億隻帝王斑蝶在接近冬天時,由北美寒冷的洛磯山往南遷徙至溫暖的墨西哥,並在春天來臨時往北飛回洛磯山,但因為不順風,長達4,800公里、歷時四個月的長途遷徙,讓生命週期僅有一個多月的蝴蝶沒辦法在有生之年飛抵目的地,中途還得暫停德州來繁衍下一代,一共要歷經三代接棒才能返回洛磯山。

在台灣新竹苗栗等地山區,多達五十萬隻的紫斑蝶,也會在秋末準備南飛度冬,常落腳在高雄茂林。「氣溫是蝴蝶長程遷徙的一個很重要的因素,溫暖的環境讓蝴蝶能夠生存並產卵,還能讓剛孵化的幼蟲找到豐富的食物。」嘉義大學生物資源學系黃啟鐘教授這麼告訴我,他對昆蟲生態及植物病蟲害都很有研究。

圓翅紫斑蝶(Euploea eunice hobsoni)。 圖/Flickr

「也許是遺傳基因,這裡的氣溫一直刻劃在牠們的記憶之中,驅動著牠們歷代返回。」黃教授說,「雖然蝴蝶一代只有一個多月的生命,但為了下一代,牠們長途遷徙到最適合幼蟲出生的氣溫及生態環境,等到春天清明節前,經數代後剛羽化之成蝶,就開始往北飛,回到牠們此生未曾到過的故鄉。」

-----廣告,請繼續往下閱讀-----
紫蝶北返的飛行蝶道。 圖/交通部觀光局

生物為了生存而追尋溫度

昆蟲願意冒這樣的風險長途跋涉,那人類也有這種追求溫度的本能嗎?

我們得從現代人類的起源「智人」(Homo sapiens)的發展談起。科學家普遍認為,在二十萬年前智人起源於非洲。直到了四萬年前,智人已經遍布歐亞大陸。科學家一直在探索,究竟是什麼原因造成我們這個物種「遠離非洲」。

亞利桑那大學地球科學系Jessica Tierney教授透過氣候重建資料,並比對化石及石器的狀況,推論八萬年前非洲東北部溫暖且溼潤,適合居住。然而,在七萬年前,氣候開始變得寒冷而乾燥,艱難的氣候條件,使人類在六萬年前走出非洲進行大遷徙,這才讓歐亞大陸有人類出現。

智人(紅)與直立人(黃)遷徙路徑。圖/wikipedia

無獨有偶,德國科隆大學Frank Schäbitz教授等人則是透過衣索比亞湖岩芯來重建氣候,同樣也發現,在距今六萬到一萬四千年間非洲氣候的極度乾燥達到頂峰,使智人最終在距今五萬到四萬年間抵達歐洲。

-----廣告,請繼續往下閱讀-----

除了因為溫度而遷徙之外,比智人更早,比「露西」(Lucy)[註1]更晚的「直立人」(Homo erectus),大概在一百萬年前開始會用火來獲取他們想要的溫度。除了用來烹煮食物,火還可以使身體溫暖來度過寒冬,得以生存。

今日,我們為了舒適追求溫度

以前的人類,就像會遷徙的蝴蝶及候鳥一樣,追求溫度是為了活命,是最基礎的生理需求 [註2] 。然而,時至今日,人們追求溫度的目的已經不同。

經濟學家西托夫斯基(Tibor Scitovsky)認為,近代人類的第一個需求,就是「舒適」[註3]

近代的人們會為了追求更舒適的氣溫而遷徙。對英國君主來說,白金漢宮是他們的冬季宮殿,溫莎城堡則是夏日宮殿,讓他們在不同的季節中得以維持長時間舒適的居住環境。另外則是觀光旅遊,近代西歐人(如德、法、荷)冬天移動至地中海旁溫暖的國家西班牙、希臘旅遊,或是更遠的東南亞國家,以求得數日的舒適氣溫。

然而,人們逐漸覺得為了追求舒適而頻繁地遷徙和移動有點麻煩,因此反過來想要讓日常生活居住的空間及場域能配合人的需要,常保舒適,於是開始思考如何打造一個四季都舒適的居住空間。在寒冷的國家,增加牆面的厚度,提高隔熱性,來達到保溫的效果,或在屋頂做一個閣樓,能阻擋大雪的低溫直接傳到室內。而在炎熱的國家,則利用室內通風、窗戶遮陽,來確保室內維持舒適,並透過選用適合的植栽、設置水域來調節戶外氣溫,讓人們在戶外行走或活動時都感到舒適。

-----廣告,請繼續往下閱讀-----
對人來說,打造一個舒適的居住空間很重要。 圖/envato.elements

溫度控制全面強力介入

這些使居住環境舒適的方法,其實都不需要耗用能源及資源,我們稱為被動式設計(passive design,或稱誘導式設計)。它雖然能讓冬天暖一點,夏天涼一點,但是沒辦法維持在一個恆定的氣溫。

早期的人類為了生存而追尋溫度,現代的人類為了舒適而追求溫度。圖/商周出版《跳出溫度舒適圈

因此,人們又想更進一步控制生活及居住環境的溫度,我們開始利用能源及資源來介入控制。一開始是耗費較少電力及資源的手段,例如溫帶國家燒柴的暖爐,熱帶國家使用的電風扇,而後一些更耗能源的設備出現了,如冷氣或暖氣的設備及系統,這些都屬於主動式控制(active control)。以冷氣或暖氣來改變氣溫,讓我們不必大老遠遷徙及移動,可以四季都維持在恆溫舒適的狀況。

而在生活環境中,我們也開始控制各種溫度。例如控制液體的溫度,把冬天冰冷的水加熱,洗澡才舒服;或是使用電冰箱讓飲料涼一些,使用電熱水瓶來保持最適合入口的水溫。

人類當然不會滿足於基本的溫度,我們對於溫度的控制只會愈加精確及全面。我們希望冷暖氣控制的溫度是恆定的,最好一年四季,一天二十四小時,都能維持相同的溫度。我們還希望冬天冰冷的廁所能溫暖些,所以現在廁所的馬桶座不但可以加熱,甚至還可以整晚持續保溫,讓你隨時都能享受剛剛好的溫度。

-----廣告,請繼續往下閱讀-----

人類除了舒適,還要刺激

然而,有時人對溫度需求的還不只是為了舒適。追求「刺激」,則是西托夫斯基提出的人類第二個需求—人們追求溫度,有時只是想要有不一樣的體驗。

就像長年低溫的寒帶國家中,一旦有個難得的溫暖晴天,人們就會傾巢而出到公園做日光浴。同樣的,像台灣一樣位處於熱溼氣候區的人們,偶有山區下雪的機會,許多人會不畏寒冷地上山賞雪,這就是本於氣候刺激造成的新鮮感。

不過,如果是為了刺激而想要控制環境,就可能造成不必要的能源浪費。冬天時,人們湧入滾燙的三溫暖或烤箱,這麼高的溫度絕對算不上是舒適吧,但人們希望透過這樣的生理刺激來滿足心理的需求。

又比如說在寒帶地區滑雪是常態,但位在熱帶國家興建一個室內滑雪場,甚至是單純造雪讓人們遊玩,就是要讓人們能感受到溫帶國家寒冷的天氣能帶來的體驗。

-----廣告,請繼續往下閱讀-----

你追求的是什麼呢?

你或許有過這樣的經驗:當你滑著手機上的社群、新聞、影片,你點擊的每個按鈕,停留的每段時間,都在告訴媒體你喜歡的是什麼;不久之後,頁面上跳出的內容你都喜歡極了,不順眼的內容都消失了,這一切彷彿為你量身打造,你就這麼瀏覽下去。回過神才發現時間已過了大半,你接受了不重要(甚至錯誤)的資訊,買了你不需要的東西。

讓我們從虛擬環境切換到實體空間。當我們進入一個室內空間,你直覺地按下空調開關,它也許就記憶著你上次設定的溫度。先進的系統還能觀察現在室內有多少人、你是靜止或移動的、你以前喜歡什麼樣的溫度,就幫你調得好好的。太冷的時候,你也許會選擇穿上外套,而不是起身去調整溫度設定,或是反映給管理者知道。

這就是舒適圈,為你量身打造客製化的體驗。舒適的感受可能掠奪你的專注力,讓你忘了你真實的需求。

從智人遠離非洲到歐亞大陸,到近代人類移動到舒適的地點、建立舒適的住居,都是有意識地了解需求,因為,這都有風險,也需要付出代價。

然而,當空間內的氣溫控制變成輕鬆自在的生活常態,卻可能導致我們不認真去思考我們的需求。我們得自問:「為什麼要設定在這個溫度呢?」是為了舒適,還是為了刺激,還是只是習慣性地延續你昨天的設定,或是直接由人工智慧幫你決定?

-----廣告,請繼續往下閱讀-----
現代人習慣活在舒適的溫度中。圖/envato.elements

一個根本的問題是,舒適究竟是怎麼一回事?是生理的需求,還是心理的滿足?每個人對舒適需求的差異,又是怎麼產生的?是體質的差異,過去的經驗,還是個人的喜好?

唯有理解舒適的起源,我們才能客觀地檢視我們的觀點及行為,並做出適當的調整與改變。下一節,就讓我們從一盤蛋炒飯,來談談什麼是舒適吧。

消暑涼方03:動物和原始人只為生存而追尋溫度,但現代人卻是為了舒適而改變溫度。嘿,享受舒適的同時,也為地球上其它生物想想吧!

註釋

  • 註1: 露西是在衣索比亞發現的南方古猿標本。也就是由盧貝松執導且在台北取景的《露西》片中,那位將人腦用到100%且具有超能力的主角,在片尾回到遠古時期時見到的人類祖先。
  • 註2: 馬斯洛需求理論(Maslow’s hierarchy of needs),是由亞伯拉罕.馬斯洛(Abraham Harold Maslow)於1943年提倡的理論,他劃分出五種等級的需求:自我實現、尊重、社會、安全、生理。生理屬於為基礎的需求,如食物、呼吸、基本維生環境等—溫度就是屬於最基礎的生理需求。
  • 註3: 西托夫斯基認為人有舒適和刺激兩種需求,舒適又分為個人舒適(personal comforts)及社會舒適(social comforts)兩種。

——本文摘自《跳出溫度舒適圈》,2022 年 9 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 1
商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

6
0

文字

分享

0
6
0
看不見的歐若拉——物理學家解釋火星上極光的成因
Ash_96
・2022/07/05 ・4548字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

極光。圖/envato elements

形成極光的要素有三,其中之一就是磁場。地球具有覆蓋全球的磁場,可以在兩極地區生成北極光和南極光;然而,火星沒有覆蓋全球的磁場,因此火星上的極光並非出現在兩極,只能在特定區域生成。

近期,愛荷華大學領導的研究團隊,根據美國航空暨太空總署(NASA)火星大氣與揮發物演化任務(MAVEN)探測器的數據,確認了火星離散極光是由太陽風和火星南半球地殼上空殘存的磁場相互作用所生成

極光三要素:大氣、磁場、高能帶電粒子

在介紹火星前,讓我們先把鏡頭轉到地球,談談地球上的極光在哪裡形成,以及如何形成。

地球極光出現的區域稱為極光橢圓區(auroral oval),涵蓋北極與南極地區,但並非以兩極為中心;換句話說,極光橢圓區也涵蓋了極圈以外的部分高緯度地區。另外,極光橢圓區的寬度與延伸範圍,會隨著太陽黑子 11 年的循環週期而變動。

-----廣告,請繼續往下閱讀-----

當太陽風和地球磁層的高能帶電粒子被地球磁場牽引,沿著磁力線加速往高緯度地區移動,最後和大氣中的原子碰撞時,就會形成多采多姿的極光。

綜合以上所述,可以得知極光的三個要素是:大氣、磁場、高能帶電粒子。

地球上這些「指引我們美妙未來的魔幻極光」,若屬於可見光波段,就能用肉眼觀測,並以相機記錄這夢幻舞動的光線。

極光橢圓區與地理北極、地磁北極相對位置圖。其中紅色實線表示極圈範圍,綠色區域則為極光橢圓區。圖/National Park Service

-----廣告,請繼續往下閱讀-----

火星的大氣層、磁場以及離散極光

在介紹離散極光之前,得先介紹它的幕後推手——行星際磁場(Interplanetary Magnetic Field,IMF)。IMF就是太陽風產生的磁場,在行星際空間主導著太陽系系統內的太空天氣變化,並阻擋來自星際間的高能粒子轟擊。

那麼 IMF 是如何產生的呢?當太陽風的高能帶電粒子從太陽表面向外傳播,會同時拖曳太陽的磁力線一起離開;太陽一邊自轉一邊拋射這些粒子,讓延伸的磁力線在黃道面上形成了螺旋型態的磁場。

以蛋糕裝飾來說明的話,太陽就像是在轉盤上的蛋糕,太陽風粒子就是擠花裝飾;而當蛋糕一邊以固定速度自轉,擠花逐漸向外擴散的同時,就會在蛋糕產生螺旋狀的軌跡。

因為太陽一邊自轉,一邊拋射太陽風的關係,IMF的磁力線會扭曲呈現如圖的螺旋狀。圖/維基百科
蛋糕的螺旋狀擠花。影片/Youyube

對太陽風和 IMF 有基本認識之後,讓我們把鏡頭轉向火星,談談火星的大氣層和磁層和地球有什麼不同。

-----廣告,請繼續往下閱讀-----

相較地球來說,火星的大氣層非常稀薄。這是因為太陽風的高能粒子轟擊火星大氣層,強大的能量將大氣層的中性原子解離為離子態,導致大氣層的散失;該過程稱作濺射(sputtering),發生在火星大氣層的濺射主要透過兩種方式達成—–第一,在 IMF 的作用之下,部分的離子會環繞磁力線運動,隨著 IMF 移動而被帶離火星;另外一部份的離子則像撞球一般,撞擊其他位於火星大氣層頂端的中性原子,引發連鎖的解離反應。 

MAVEN 任務的領銜研究員 Bruce Jakosky 說明,根據團隊研究的成果,太陽風的濺射效應會將火星大氣層中的惰性氣體氬解離,並將這些氬離子從大氣層中剝離。火星大氣層內氬的同位素(質子數相同,但是質量不同的元素)以氬-38 以及氬-36 為主,後者因為質量較小而較容易發生濺射。

藉由氬- 38 和氬-36 的佔比,Jakosky 的團隊推估火星約有 65% 的氬已經散逸至外太空。基於該研究結果還可以推算出火星大氣層中其他氣體的散逸情形;其中又以二氧化碳為焦點,畢竟行星需要足夠的溫度才能維持液態水的存在,而二氧化碳在溫室效應有很大的貢獻。

火星的大氣層因為太陽風的濺射效應逐漸被剝離。圖/NASA

接著,讓我們一探究竟火星磁場與地球有何不同。地球能形成全球磁場的奧秘是什麼呢?這要先從行星發電機理論開始說起,該理論指出行星要維持穩定的磁場有三個要件——導電流體、驅動導電流體運動的能量來源、科氏力。

-----廣告,請繼續往下閱讀-----

以地球為例,地核內部保留了地球形成初始的熱能,約有 4000°C 至 6000°C 的高溫。位於地核底層的高溫液態鐵,因為密度下降而上升至地核頂端,接觸到地函時,這些液體會喪失部分熱能而冷卻,因為溫度比周圍環境低,密度變高而下沉;如此不斷的熱對流循環下,讓帶有磁力的流體不斷運動,進而形成電磁感應。另外,科氏力的作用讓地球內部湧升的流體偏向,產生螺旋狀的流動效果,有如電流通過螺旋線圈移動的效果。

在火星所發現的地殼岩石證據顯示,火星在數十億年前曾經和地球一樣具有全球的磁場。科學家對火星磁場消失的原因還不是很清楚,其中一種假說認為可能跟火星質量較小有關,在火星形成之初散熱較快,造成火星外核液態鐵短時間內就凝固,無法像地球一樣,保留高溫地核使液態的鐵和鎳因為密度的變化,不斷從地核深處上升至地函,再冷卻下降,持續進行熱對流。

火星地核內部缺乏驅動導電流體的原動力,導致火星內部的發電機幾乎停止運轉,無法形成全球的磁場。話雖如此,火星仍然具備小區塊的磁場,主要分布在火星南半球留有殘存磁性的地殼上空。

行星發電機理論中科氏力影響行星地核內熱對流的導電流體偏向。圖/Wikipedia

磁層與大氣層相互依存,火星在太陽風不斷吹襲之下,大氣層愈趨稀薄;火星內部又缺乏發電機的動力,無法形成完整的磁層。火星缺乏厚實的大氣層保護,就難以阻擋外太空隕石的猛烈攻勢,因此如今呈現貧瘠乾燥又坑坑疤疤的外貌。

-----廣告,請繼續往下閱讀-----

既然這樣,看似缺乏極光形成要素的火星,又是如何形成極光的呢?

雖然火星沒有覆蓋全球的磁層作為保護,但火星南半球仍帶有區域性的磁場。在那裡,磁性地殼形成的殘存磁場與太陽風交互作用,滿足了極光生成的條件。這種極光被稱為「離散極光」,與地球上常見的極光不同,有些發生在人眼看不見的波段(比如紫外線),所以也更加提升了觀測難度。

那麼,研究團隊是怎麼發現這種紫外線離散極光的呢?那就是藉由文章首段提到的 MAVEN 探測器所搭載的紫外成像光譜儀(Imaging Ultraviolet Spectrograph,IUVS)!

該團隊的成員 Zachary Girazian 是一位天文及物理學家,他解釋了太陽風如何影響火星上的極光。

-----廣告,請繼續往下閱讀-----

火星離散極光的發現

研究團隊根據火星上離散極光的觀測結果,比較以下數據之間的關係——太陽風的動態壓力、行星際磁場(IMF)強度、時鐘角和錐角[註 1] 以及火星上極光的紫外線,發現在磁場較強的地殼區域內,極光的發生率主要取決於太陽風磁場的方向;反之,區域外的極光發生率則與太陽風動壓(Solar Wind Dynamic Pressure)關聯較高,但是太陽風動壓的高低則與極光亮度幾乎無關。

N. M. Schneider 與團隊曾在 2021 年的研究發表提到,在火星南緯 30 度至 60 度之間、東經 150 度至 210 度之間的矩形範圍內,當 IMF 的時鐘角呈現負值,如果正逢火星的傍晚時刻,較容易觀測到離散極光;也就是說在火星上符合前述的環境條件很可能有利於磁重聯(Magnetic Reconnection)——意即磁場斷開重新連接後,剩餘的磁場能量就會轉化為其他形式的能量(如動能、熱能等)加以釋放,例如極光就是磁重聯效應的美麗產物。

未來研究方向:移居火星

因為火星上離散極光的生成與殘存的磁層有關,而磁層又關乎大氣的保存。所以觀測離散極光的數據資料,也能作為後續追蹤火星大氣層逸散情形的一個新指標。愛荷華大學的研究成果,主要在兩個方面有極大的進展——太陽風如何在缺乏全球磁層覆蓋的行星生成極光;以及離散極光在不同的環境條件的成因。

人類一直以來懷抱著移居外太空的夢想,火星是目前人類圓夢的最佳選擇;但是在執行火星移民計畫之前,火星不斷逸散的大氣層是首要解決的課題。缺乏覆蓋全球的大氣層保護,生物將難以在貧瘠的土壤存活。或許透過火星上極光觀測的研究成果,科學家們將發掘新的突破點;期許在不久的將來,我們能找到火星適居的鑰匙。

-----廣告,請繼續往下閱讀-----
  • 註1:IMF 的時鐘角(Clock Angle)與錐角(Cone Angle)

如何判定 IMF 的角度呢?因為磁場空間是立體的關係,我們測量 IMF 方向切線與 X、Y、Z 軸之間的夾角——也就是運用空間向量的概念,來衡量 IMF 的角度。時鐘角是指 Y、Z 軸平面上,IMF 方向與 Z 軸的夾角;而錐角則是在 X、Y 平面上,IMF 方向與 X 軸之間的夾角。

IMF 時鐘角和錐角示意圖。圖/ResearchGate

參考資料

  1. Science Daily. Physicists explain how type of aurora on Mars is formed.
  2. Z. Girazian, N. M. Schneider, Z. Milby, X. Fang, J. Halekas, T. Weber, S. K. Jain, J.-C. Gérard, L. Soret, J. Deighan, C. O. Lee. Discrete Aurora at Mars: Dependence on Upstream Solar Wind Conditions. Journal of Geophysical Research: Space Physics, Volume 127, Issue 4.
  3. Michelle Starr. Mars Has Auroras Without a Global Magnetic Field, And We Finally Know How. ScienceAlert.
  4. Michelle Starr. For The First Time, Physicists Have Confirmed The Enigmatic Waves That Cause Auroras. ScienceAlert.
  5. Southwest Research Institute. SwRI Scientists Map Magnetic Reconnection In Earth’s Magnetotail.
  6. 呂凌霄。太空教室學習資料庫
  7. 頭條匯。火星上的「離散極光」是如何形成的?物理學家有新發現,帶你揭秘
  8. Wilson Cheung。【北極物語】承載北極文化──極光。綠色和平
  9. 大紀元。火星上的極光是如何形成的? 科學家解謎
  10. BBC News 中文。北極光:美國科學家首次在實驗室驗證北極光產生原理
  11. 明日科學。科學團隊藉由 NASA 的太空船所收集的資料得知火星大氣層的流失可能肇因於強烈的太陽風
  12. 台北天文館。NASA 首次繪製火星周圍電流分布圖,證實火星有磁場。科技新報。
  13. 交通部中央氣象局太空天氣作業辦公室。太空天氣問答集
  14. Denise Chow. In an ultraviolet glow, auroras on Mars spotted by UAE orbiter. NBC News.
  15. NASA. NASA Mission Reveals Speed of Solar Wind Stripping Martian Atmosphere.
  16. NASA Goddard. NASA | Mars Atmosphere Loss: Sputtering.
-----廣告,請繼續往下閱讀-----
Ash_96
2 篇文章 ・ 2 位粉絲
外交系畢業,很多人看成外文(是不是又回頭看一次? ) 常常在外向與保守的極端之間擺盪;借用朋友說的詞彙,我屬於營業式外向。 喜歡踩點甜點店和咖啡廳,大概是嚮往那種文青都會女子的感覺,或是純粹愛吃。 喜歡k-pop ,跳舞的時候會自動設定為開演唱會模式,自我催眠現在我最帥。