Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

【2013回顧】PNAS 十個細菌小故事(下)

陳俊堯
・2014/02/04 ・3506字 ・閱讀時間約 7 分鐘 ・SR值 464 ・五年級

這篇其實有個上集,也是五個過去一年發表的細菌故事。

Western_corn_rootworm
圖片是長大後的玉米根蟲。來自維基百科

肚子裡細菌的魔法

現在的農業大規模種植同一種作物,讓病原們有了個容易大展身手的舞台。輪作有很多已知的好處,其中一項是讓病菌害蟲失去原本的宿主而沒有辦法建立穩定而龐大的族群,用生物性的方法控制了病害的發生。不過為了生存,這些病菌害蟲也會用盡方法要打破人類的限制來求生存。

這個研究的主角是玉米根蟲(Western corn rootworm, Diabrotica virgifera)。它的幼蟲會啃食玉米的根,當然就影響了玉米的生長。在美國大規模推行的玉米和大豆輪作可以抑制病害的大發生,因為黃豆的組織裡有對抗食的秘密武器. 大豆組織裡含有一種蛋白酵素抑制素( cysteine protease inhibitors)可以讓玉米根蟲沒辦法消化吃下去的蛋白質而無法生存。看起來這方法不錯,但是實行一陳子後還是出現了可以生存下來的玉米根蟲

這篇研究想找出是什麼原因讓玉米根蟲也能在靠大豆裡生活。研究團隊先是發現具抗輪作能力的根蟲有特殊的腸道細菌組成,懷疑細菌跟這能力有關。接著他們用抗生素先除掉根蟲腸道裡原有的細菌,再把它們放在大豆葉子上。結果發現具抗輪作能力的根蟲在少了腸道菌的幫助後,變得無法對抗大豆葉子帶來的毒性。原來生物可以利用腸子裡細菌朋友的幫忙,來找出活下去的新契機,而不一定要慢慢痛苦地等突變了。

-----廣告,請繼續往下閱讀-----

研究原文

Chu CC, Spencer JL, Curzi MJ, Zavala JA, Seufferheld MJ. Gut bacteria facilitate adaptation to crop rotation in the western corn rootworm. Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11917-22. doi: 10.1073/pnas.1301886110.

 

teeth
圖來自 Humphrey et al. 原研究.

飽暖生蛀牙

蛀牙跟食物有很大的關係。在人類文明裡一直到開始農耕生活,有了充足的富含碳水化合物的食物,才讓口腔裡的細菌有機會使用這些化合物發酵產酸,進而引起蛀牙。哺乳類以吃東西能力好打天下,牙齒隨年紀逐漸磨損,不少哺乳類壽命上限都跟沒有堪用的牙齒有很大的關係。如果針對引起蛀牙的細菌 Streptococcus mutans 的 DNA 序列進行分析,也可以看到它們族群大擴張的黃金時期剛好就在人類進入農耕生活之後。

故事轉到摩洛哥境內的 Grotte des Pigeons 遺址。這個地區在 1995 被聯合國教科文組織(UNESCO)指定為世界遺產,埋藏著過去近兩萬年來的人類歷史。從找到的很多人類遺骸裡可以看出在當時成人的蛀牙狀況非常嚴重,可以高到51.2%,跟現代人有一樣的問題了。奇怪的是,在這時期的人類還以在原野裡採集食物為生,沒有農耕技術。難道過去認定的蛀牙與農耕間的關係是錯的嗎?

-----廣告,請繼續往下閱讀-----

研究人員同時也發現當地一萬五千年前的植物化石,證實在當地有不少可食植物,提供包括橡實及松子等高品質食物。雖然當時的人們還是以採集為生,但是食物供應充足,導致牙齒壞光光。過年期間大家也會過著食物充足的日子,請把這篇研究的教訓謹記在心,記得刷牙,不要留給細菌太多好處。

研究原文

Humphrey LT, De Groote I, Morales J, Barton N, Collcutt S, Bronk Ramsey C, Bouzouggar A. Earliest evidence for caries and exploitation of starchy plant foods in Pleistocene hunter-gatherers from Morocco. Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):954-9. doi: 10.1073/pnas.1318176111

 

800px-Colorado_potato_beetle
圖片是長大後的科羅拉多金花蟲。來自維基百科

聲東擊西的金花蟲

植物其實也有免疫系統可以攻擊外來的病原。當植物被咬了一口,組織裡的茉莉酸(jasmonic acid)會上升,啟動植物的免疫系統進行防衛,就像動物受傷了會腫會發炎一樣。一旦免疫系統啟動了,這些啃植物的蟲兒就慘了。

-----廣告,請繼續往下閱讀-----

為了要能持續保有好吃的食物,這些蟲兒必須有更厲害的步數。這篇研究發現科羅拉多金花蟲(Colorado potato beetle, Leptinotarsa decemlineata)的幼蟲可以分泌某種東西抑制茉莉酸的出現,以及植物免疫系統的啟動。進一步檢驗後他們發現這種神奇物質可能是分泌物裡的細菌。幼蟲在經過抗生素處理後失去這項能力,追加細菌後又重獲這能力。他們逐一測試分離出來的細菌,發現屬於 StenotrophomonasPseudomonas, Enterobacter 三個屬的細菌真的可以抑制植物植物免疫系統的啟動。細菌到底有什麼魔力可以關掉植物的防守?其實應該這樣說,植物在碰到蟲咬時會啟動茉莉酸為首的防衛機制,碰到微生物進攻時則改用水楊酸(salicyclic acid)開頭的機制應戰。科羅拉多金花蟲很巧妙利用細菌騙過植物,讓植物進入對付微生物攻擊的模式,植物的免疫攻擊就對它不管用囉。

研究原文

Chung SH, Rosa C, Scully ED, Peiffer M, Tooker JF, Hoover K, Luthe DS, Felton GW. Herbivore exploits orally secreted bacteria to suppress plant defenses. Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15728-33. doi: 10.1073/pnas.1308867110.

 

slime

小改變,好友變晚餐!

過年是靜下來回顧這一年來得失的日子。有的人前一秒是友,下一秒成敵,有時這關鍵只因一個小小的轉換,利益總是最大考量。自然界裡原本緊密的共生關係也有這樣因為小事而大翻盤的例子,例如會種細菌來吃的黏菌。

-----廣告,請繼續往下閱讀-----

養細菌的變形蟲是怎麼回事?這裡的主角 Dictyostelium discoideum 是一種黏菌(slime mold),它是單細胞的真核生物,平常以變形蟲的長相在環境中生活。當環境變差的時候會展現出它們的社會行為,大家聚在一起變成一個大群體,決定分工,長出子實體(fruiting body)產生孢子來延續族群的生命。過去有一篇在 2011 年的研究指出這種黏菌會在孢子上攜帶自己愛吃的細菌,走到哪種到哪,食物不缺乏,可以被當做是在演化上最早出現的農夫了。

在今天談的這篇研究裡,研究人員從這些黏菌上分離出兩株螢光假單胞菌(Pseudomonas fluorescens) 菌株。雖然都是同一種細菌,但是特性不一樣,就像你能區分台灣人跟白種人間有差別。這兩株細菌的命運大不相同,一個是食物,另一個則是黏菌的好伙伴,能分泌毒素對抗真菌(這毒素叫 pyrrolnitrin),以及分泌一種能促進黏菌產生更多孢子的 chromene 類分子。研究人員很好奇,為什麼它們明明是同一種細菌卻可以出現這麼大的特性差異,導致它們由朋友身份變成食物,於是對它們做了基因體定序,來解讀所有的 DNA 密碼。比對兩株菌的 DNA 後他們很驚訝地發現這一切的改變都源自一個 gacA 基因上的點突變。這個突變導致 gacA 失效,連帶著所有受這個蛋白質調控的基因全部停擺,於是這隻細菌對黏菌不再能提供保護,就被打入食物界當養份了。這個故事告訴我們,新的一年還是要認命地被利用才不會被吃掉(咦?)。

研究原文

Stallforth P, Brock DA, Cantley AM, Tian X, Queller DC, Strassmann JE, Clardy J. A bacterial symbiont is converted from an inedible producer of beneficial molecules into food by a single mutation in the gacA gene. Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14528-33. doi: 10.1073/pnas.1308199110.

-----廣告,請繼續往下閱讀-----

 

NASA 的 DC-8 空中實驗室
NASA 的 DC-8 空中實驗室

在高空中旅行的細菌

搭飛機時你一定有這個經驗:飛機起飛後加足馬力往上衝,先要奮力衝過上下晃動的雲層,才進入舒適平穩的高空,接著期待的餐點才會出現。那段上下晃動的地方就是對流層(troposphere),所有的雲啊霧啊都在那混亂的一層,地面上感受到的晴雨也都看這層的狀況決定。細菌跟這些雲霧也能扯上關係,為什麼?在這樣高度,氣温低,也沒什麼養份,過去不認為這裡會有多少活著的微生物的。 不過這些年的研究發現大氣裡的細菌可能有機會影響天氣,因為連在數千公尺的高空,細菌都被證實可以幫助冰晶形成,幫助凝結水滴來形成雲。

這群研究人員為了研究這些離地面幾公里遠的細菌,跟美國航空與太空總署(NASA)借了架 DC-8 四引擎研究機(這機型是可以載兩百人的大飛機啊),在美國本土,加勒比海和大西洋上空採樣。他們的目標是對流層中上層,分別在颱風前後進行採樣,希望知道颱風對空氣裡微生物組成的影響。研究結果發現空氣裡有相當多的細菌,估計每立方公尺約有 15 萬隻,而且樣本裡的細菌 60%-100% 是活著的。細菌大小約在 0.25-1.00 um左右,佔空氣中這種大小顆粒數的 20%。這些搭順風車的細菌來自何方?經過 DNA 分析後,發現這些細菌來自各種環境,但主要還是來自海洋,這跟颱風是打海洋端生出來的有關。颱風後細菌的數量增加,而且颱風過後空氣裡開始出現來自人類糞便的菌種,顯然颱風捲起了不少下面人類世界的微生物同行。那有沒有那種細菌是適合做這種長途飛行的呢?他們發現普遍出現在所有樣本裡的細菌種類有限,多半能利用含一個碳或兩個碳的有機物,而這些化合物恰好在雲裡都不少,看來細菌要能吃天上的食物才可能在雲端安居。如果天上有這麼多細菌,那以後學大氣科學的人是不是該修一下微生物學,或者也有機會讓我這細菌人坐飛機上去做做大研究啊?這個拿來當做新年新希望來努力夢好了。

研究原文

DeLeon-Rodriguez N, Lathem TL, Rodriguez-R LM, Barazesh JM, Anderson BE, Beyersdorf AJ, Ziemba LD, Bergin M, Nenes A, Konstantinidis KT. Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications. Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2575-80. doi: 10.1073/pnas.1212089110.

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
陳俊堯
109 篇文章 ・ 22 位粉絲
慈濟大學生命科學系的教書匠。對肉眼看不見的微米世界特別有興趣,每天都在探聽細菌間的愛恨情仇。希望藉由長時間的發酵,培養出又香又醇的細菌人。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
1

文字

分享

0
2
1
從一片荒蕪到綠色星球:細菌與光合作用如何重塑地球——《你的身體怎麼來的?》
商周出版_96
・2025/01/27 ・3861字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

喜出望外

海中糟粕化為盎然綠意

這個星球現在仰仗光合作用運轉。

──史緹耶可.戈盧比奇(Stjepko Golubic)

四十億年前,地球的陸塊相當單調,黑色、褐色、灰色的岩石上一片荒蕪,火山朝著無氧的大氣噴發毒素,人類乘坐時光機回到那時間點會立刻窒息。當時地球上僅有的生命形態是細菌,以及比英文句號還小得多的單細胞生物。然而若往前快轉幾十億年,來到距今僅三億五千萬年前後,會發現大氣中氧含量接近人類已經習慣了的百分之二十一,這是個很奢華的數字。

那個年代,海洋中滿是巨大生物四處洄游,植物入侵陸地並為人類的演化鋪路。地球從無法居住的荒土蛻變為藍綠色的生命樂園,這麼戲劇性的轉折是什麼力量在背後推動?

種種因素之中有一項特別醒目:直到一九六〇年代人類才開始意識到光合作用的力量不下於各種地質學事件,改造這顆星球的手段神祕且驚奇,非常難以想像。

地球從荒土到生命樂園的蛻變,歸功於光合作用的出現。圖 / unsplash

改造過程中,光合作用或許曾經引發大規模生物滅絕。科學家一度認為其威力能夠與核戰浩劫相提並論,使這顆行星被寒冰覆蓋化作巨型雪球。但同時光合作用又輔助、甚至促成「不可能」的演化捷徑,進而提高生命多樣性,最終使植物甚至人類得以存在。科學家如何研究太古時代的自然變動?而光合作用又如何將地球鬧得天翻地覆?

-----廣告,請繼續往下閱讀-----

疊層石背後的生命故事

十九世紀末期,有人找到能夠追溯光合作用悠久歷史的第一條線索。那時候沒有任何證據指向距今大約五億五千萬年的寒武紀之前有生命存在,然而一八八二年冬天美國大峽谷深處名叫查爾斯.沃爾科特(Charles Walcott)的岩石收藏家改變了一切,後來還當上史密森尼學會的主席。

沃爾科特的故鄉是化石天堂紐約州由提卡市(Utica)。小時候他生得瘦瘦高高,喜歡在父母的農場以及附近未來岳父擁有的採石場內找化石,十八歲離開校園之後先去五金行當店員,卻自己閱讀教科書、研究化石並撰寫論文、與著名地質學家通信來維繫心中熱情。他曾經蒐集古代海洋生物三葉蟲的化石標本,品質在全世界而言也是數一數二,後來慷慨出售給了哈佛大學。

沃爾科特的勘探技巧十分高明,也藉此就職於新成立的美國地質調查局。一八八二年十一月,地質調查局局長、同時自己也是探險家的約翰.威斯利.鮑威爾(John Wesley Powell)要求沃爾科特勘測迄今為止無法進入的大峽谷深處。

鮑威爾之前嘗試過,但只能乘坐小木舟趁漂流時稍微觀察最底層岩石,後來他就在偶爾有「刺骨寒霧、雪花飛旋」的地方紮營監督,帶人修建一條從峽谷邊緣延伸到下方三千英尺(約九百一十四公尺)處溫暖地帶的陡峭馬徑,並且讓時年三十三歲的沃爾科特帶著三名工人和足夠支撐三個月的食物、九匹上鞍的騾子沿著那條臨時小徑進入谷底。

-----廣告,請繼續往下閱讀-----

「高原之後就會積滿雪,」鮑威爾告訴他:「春天之前你和搬運工無法離開峽谷。希望這段時間裡,你能好好研究地層序列,盡量收集化石。祝好運!」

對沃爾科特而言,這是千載難逢的機會。他已經發現一些已知的最古老化石,例如神似甲殼類但奇形怪狀的三葉蟲。此外,達爾文發表《物種起源》不過四十年前,但因為缺乏最原始的動植物或細菌化石而遭到很多抨擊。批評者仗著沒有化石這點堅稱所有物種都是神造,懷疑論者也要求達爾文證明古代有過更單純的生物,可惜他只能委婉表示若生物體很小就不容易留下化石,希望有朝一日會出現。

充滿驚喜的山谷

沃爾科特深知達爾文的窘境。他沿著陡峭原始小徑下降到幾乎沒有生命跡象的大峽谷谷底,然後用心觀察周遭環境。山谷、懸崖,除了石頭還是石頭,但這一隅紅色天地很得他喜愛,不過同行的化石收集家、廚師和馱獸管理員就未必能夠分享那份悸動了。

他們沿著八百英尺(約兩百四十四公尺)峭壁吃力前行,其中一段就是現在的南科維山徑(NankoweapTrail),一般認為是大峽谷裡最危險的路線,河流地形坡陡水急即使沿岸也難以行走,有時候不得不自己開路以求深入。後來一頭騾子死亡、另外兩頭受傷。旅程中至少一次,沃爾科特筆中的墨水結凍了,但又必須在篝火邊融冰為水給騾子飲用。但最可怕的其實是死寂與孤獨,才三個星期就導致那位化石收集家夥伴憂鬱求去。但沃爾科特不同,能來到谷底他太興奮了,堅持了七十二天才踏上歸途。

-----廣告,請繼續往下閱讀-----

有一天他爬上爬下,對部分岩石中層層線條感到好奇,乍看很像切開的包心菜。這些圖案極不尋常,所以沃爾科特認定是生物,後來將其命名為藍綠菌(最初曾視為藻類)。他還聯想到自己在紐約州看過來自寒武紀時期的類似化石,取「隱含生命」的含義命名為隱藻化石(Cryptozoön)。然而大峽谷的情況有點不同,這些化石明顯可見,卻又位於更古老的岩層內,因此歷史比任何其他已發現的化石都久遠。

沃爾科特在大峽谷的古老岩層中發現了類似藍綠菌的化石,命名為隱藻化石,揭示比已知更古老的生命存在。圖 / unsplash

沃爾科特後來在蒙大拿州等地持續發現同樣古老的隱藻化石,接著其他古生物學家也在前寒武紀岩石內察覺到疑似化石的特殊圖案,種種線索指向最原始生命形式的證據可能保存在寒武紀前的石頭裡。即便如此懷疑論調不斷,尤其某個長期存在爭議的標本被證明了並非化石,而是火山石灰岩經過壓力和高溫形成獨特的礦物沉積。

隱藻化石的爭議:解鎖前寒武紀生命的證據

一九三〇年代,沃爾科特去世的四年後,劍橋大學最具影響力的古植物學家蘇厄德(Albert Charles Seward)決定加入辯論,卻在後來被古生物學家肖普夫(William Schopf)形容是「讓煮熟的鴨子飛了」。蘇厄德在史稱「隱藻化石爭議」的事件中嚴格審視前寒武紀化石證據,得出結論認為這完全是一廂情願,所謂的化石與現存物種之間沒有明顯關係,大型結構並未顯示出由較小細胞組成的特徵。

他主張沃爾科特在隱藻化石找到的環狀圖案可能是海底富含鈣質的淤泥沉積,人類本來就不該期望細菌這樣微小的生物會被保存在化石,最後又語重心長告誡科學家:有些尋找化石的人太過一頭熱,他們宣稱找到特別古老的標本時不能輕信。

-----廣告,請繼續往下閱讀-----

地位如此卓著的人物提出警告,導致地質學家不願再從岩石尋找距今約五億年以上的化石,畢竟找到的機率幾乎等於零。久而久之許多人認定了生命在地球上的歷史很短,這顆星球的前面四十億年、其歷史的九成之中根本沒有生命存在。微生物學家史緹耶可.戈盧比奇指出許多科學家以「前寒武紀」一詞指稱生命尚未問世的太古時期,其實這是陷入「現有工具檢測不到就代表不存在」的思考偏誤,將缺乏證據直接視為否定證據了。

時間來到二十年後的一九五〇年代中期,澳洲年輕研究生布萊恩.洛根(Brian Logan)隨地質學教授菲利普.普萊福德(Philip Playford)探索了位置偏遠的鯊魚灣,也就是澳洲西北海岸一片孤立的鹹水潟湖。站在這兒的海灘,淺藍色海水退潮時會露出如夢似幻的奇景:數百顆三英尺(約九十一公分)高的圓柱狀岩石林立,彼此間距很小,彷彿堅硬粗糙如石塊的蘑菇聚集叢生。

兩人詳細調查了這片怪異石陣,然後意識到理解沃爾科特隱藻化石的關鍵。眼前這些不僅是活化石,還能回答一個經典謎語:什麼東西既死又活?石頭表面曾經活著,是藍綠菌累積起來形成網罩般的構造。海水進出時,這層菌網會捕捉沉積物。而藍綠菌死亡後,沉積物固定在原位如海綿狀的石塔,於是又有新的細菌附著其上、形成新的一層網罩。

細菌以同樣方式在太古海洋中創造出沃爾科特的隱藻化石,現在稱為疊層石,語源是希臘文stroma(層)和lithos(岩)。目前只有鯊魚灣等少數幾個地方能找到疊層石,環境對其他多數生物過於鹹澀無法生存。但另一方面,已經化石化的古老疊層石則在世界各地皆有發現。

-----廣告,請繼續往下閱讀-----

澳洲地質學家偶然發現還活著的疊層石,同時美國兩位地質學家史坦利.泰勒(Stanley Tyler)和埃爾索.巴洪(Elso Barghoorn)也宣布找到了蘇厄德口中不存在的化石標本,其中微生物有單細胞也有多細胞,藍綠菌絲也包括在內,而且這些化石都有大約二十億年歷史。「許多人很震驚的,」戈盧比奇表示:「原本以為生命在寒武紀才爆發,之前什麼都沒有。寒武紀應該是起點才對。」但現在普遍接受最古老的疊層石化石上微生物活在三十五億年前,依舊是地球誕生的十億年之後。達爾文和沃爾科特應該很欣慰。

哪種細菌造出最古老的疊層石?無法確定是已經會行光合作用的藍綠菌,抑或是它們的祖先。不過藍綠菌至少二十四億年前已經存在於海洋。

——本文摘自《你的身體怎麼來的?從大霹靂到昨日晚餐,解密人體原子的故事》,2025 年 01 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

1
1

文字

分享

0
1
1
一餐變災難:台北素食餐廳爆食物中毒,這些細菌你不可不知!
careonline_96
・2024/08/30 ・2532字 ・閱讀時間約 5 分鐘

北市素食餐廳的食物中毒事件已造成二死四危急,引發眾人關注。食物中毒可能是因為食物內含有細菌、病毒、或寄生蟲,當這些病菌持續在腸胃道理作亂、生長,就會引發不適。另外,食物中毒也可能與細菌製作出的毒素有關。

食物中毒的症狀

食物中毒算是個很廣泛的說法,包含了各種不同的細菌或病毒感染,多數在幫表現症狀的初期,我們還不知道究竟是哪一種細菌或病毒造成的,因為一般食物中毒還輕微的時候,就是腸胃炎的症狀。患者會肚子絞痛,想要跑廁所,開始有腹瀉症狀。這時要注意自己的糞便是純粹水便,還是含有血絲或大量的血便,這與猜測致病原有關係,要記得就診時告知醫師腹瀉的狀況。另外,還要告知有沒有發燒、嘔吐等情形。

另外,我們也需要注意這些噁心嘔吐及腹瀉症狀發生的時間點,不同的細菌或病毒造成症狀的時間不一樣,有的短至三十分鐘內患者就開始上吐下瀉,有的則是要過上一星期才發病。不過通常是吃到含有病菌的食物後一到三天發病。

多數的食物中毒症狀並不嚴重,很多人會覺得自己只是腸胃不舒服一下下,拉個幾次就會過去了。然而如果有以下狀況,最好趕快就診:

-----廣告,請繼續往下閱讀-----
  • 脫水嚴重:尿尿的量變少,覺得頭暈目眩,嘴巴很乾
  • 一直吐:什麼東西都吃不了,一進食就吐
  • 一直拉:成人拉肚子超過兩天,或是小孩拉肚子連續一天,就算是嚴重了。如果是新生兒,只要看到腹瀉,最好還是就醫。看到血便也是要就醫。
  • 肚子很痛或發燒
  • 家人發現患者意識狀況變差,或發現有複視皮膚變黃等等狀況。

引起食物中毒的知名病菌及其特色

接下來我們來看看幾個容易引起食物中毒的細菌或病毒。

  • 大腸桿菌(E. coli)

最常見的狀況是吃到沒有完全煮熟的絞肉,像是沒煎到全熟的漢堡排。不過大腸桿菌也會出現在受到污染的蔬菜(像是生菜沙拉)、水果、或生水之中。

  • 沙門氏菌(Salmonella)

沙門氏菌存在沒有煮熟的肉類與蛋類食物,或是喝到沒有完全經由巴斯德滅菌過程的乳製品。

  • 金黃色葡萄球菌(Staphylococcus aureus)

備餐的時候沒有先洗手,而處理食物後沒有再經過烹煮,像是切肉片肉排,切三明治或包裝三明治,就可能讓人因金黃色葡萄球菌而食物中毒。

-----廣告,請繼續往下閱讀-----
  • 產氣莢膜桿菌(Clostridium perfringens)

產氣莢膜桿菌存在自然界,可以形成具有耐熱性的孢子,有些甚至在沸水中仍能存活許久。因此,除了生肉、蛋類、奶類可能含有產氣莢膜桿菌外,土生土長的蔬菜、穀類也可能含有產氣莢膜桿菌。當燉煮的肉湯、肉汁放在室溫一陣子,沒有放到冰箱冷藏的話,可能會引起食物中毒。

  • 肉毒桿菌(Clostridium botulinum)

這屬於少見但容易致死的食物中毒。肉毒桿菌是存在自然界土壤與水源的常見細菌,如果沒有藉由煮沸煮熟來殺死肉毒桿菌的話,是無法停止其生長的。最容易造成食物中毒的狀況有兩種,一種是吃到沒有正確保存的醃漬物或罐頭食物,尤其是居家自己醃漬的小品,無論是醃菜、醃魚、醃肉,都可能會導致肉毒桿菌滋生。另一種傳染途徑是讓小於一歲的幼童吃到蜂蜜或玉米糖漿,裡面的孢子可能含有肉毒桿菌而造成幼兒食物中毒,記住記住,千萬不要以為讓幼兒吃蜂蜜很營養喔,會因為感染肉毒桿菌而致死的。

肉毒桿菌會影響神經肌肉的控制,造成的食物中毒特色是患者的視力出現複視,講話講不清楚,肌肉無力,無法吞嚥,有這種狀況務必趕緊就醫。

  • 李斯特菌(Listeria)

李斯特菌可以存在未經巴斯德滅菌過程的牛奶及乳酪中,也會存在於豆芽、瓜類、和香腸熟肉裡。

-----廣告,請繼續往下閱讀-----
  • 諾羅病毒(Norovirus)

諾羅病毒的傳染能力很強,只要碰到帶有諾羅病毒的餐桌表面、再將食物送往口中,就可能感染。因此只要有個人感染諾羅病毒,很容易在與他人共餐的同時藉由分享食物、備餐等狀況而傳給其他人。

預防食物中毒

  • 擤鼻嚏、咳嗽、抽菸、上廁所之後,請記得都要好好洗手
  • 如果是備餐的人,請好好清洗蔬菜及水果,用來備餐的表面及餐具也都要在準備食物之前好好清洗。
  • 肉類、蛋類等務必都要好好煮熟,不要讓生肉或未煮熟的肉或肉汁去污染到其他食物。
  • 不管是煮過的食物或生肉,不要任其停留在室溫內超過兩小時,放兩個小時後的食物都不安全,請儘早把食物冰到冰箱。解凍的食物要趕快煮一煮,不要放在室溫過久。
  • 保存食物的時候,生的肉類要與蔬菜水果、煮過的食物、或加工食物分開擺放。
  • 買含有沙拉醬、美乃滋的食物沒吃完一定要冰起來。
  • 不知道放了多久的食物請丟掉。一打開有味道,或是罐頭蓋子鼓起的一定要丟掉。

預防食物中毒的重點是自己常洗手,並好好保存食物,備餐時也要用心。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

careonline_96
571 篇文章 ・ 279 位粉絲
台灣最大醫療入口網站