0

1
1

文字

分享

0
1
1

究竟是科學大發現的神秘化石,還是撿到不知來由的標本?

阿樹_96
・2013/12/30 ・2681字 ・閱讀時間約 5 分鐘 ・SR值 513 ・六年級

本文由民視《科學再發現》贊助,泛科學獨立製作

近來一則新聞:三葉蟲化石,虎頭山現蹤。在各大媒體都有類似的報導篇章,也引起不少討論。有人說:有許多網友認為學者不該這麼武斷,「從海裡冒出來的也有可能是啊」、「科學上有很多大發現,都是出自於直覺的不可能,所以…」看了不禁莞爾一笑,其實多數人不太清楚化石代表的意涵,而地質學家的採樣原則,更是十分嚴謹的。

Trilobite_Ductina
引用自維基百科三葉蟲條目的圖片,作者為Dlloyd,出產地點為中國湖南,體長2.3公分。

在了解地質學家採化石的工作之前,我們還是先談一下,化石是什麼:「你知道我們挖出來的暴龍骨骼化石,其實是石頭,不是骨頭嗎?」

我有許多非地質領域的朋友聽到這個說法,都覺得再神奇不過。維基百科上提到「化石就是生活在遙遠的過去的生物的遺體或遺跡變成的石頭」這句話是無誤的,跟一般生物死掉的殘骸不一樣之處在於,化石是被沉積物埋藏後,經過了成岩作用,大多時候性質都會因長時間的物理或化學作用而改變,只有外貌保留著。我們看到,只是和恐龍骨頭長的一模一樣的「石頭」。化石也不會只有動物的骨骼、外骨骼等堅硬部分會形成化石,植物也會成為化石,有時被置換成「矽化木」等石頭,而在地面上的印痕、移動的痕跡、甚至動物的「大便」都有可能會變成化石。

適當的運用、解讀化石,便可以知道過去的地球發生了什麼事。我們可以知道過去的時候有哪些生物在這個世界上、而這些生物生長的年代、環境、氣候等資訊也能表露無疑。如果是現生生物的化石,我們就能比較環境的變遷,如果是與現生生物類似的生物,就可以用來研究演化的歷程,而如果是更久遠的生物,我們就可以將這些古生物與演化學研究追溯的更早。當然,有時會有一些化石可以幫助我們知道其存在地層的年代,但這往往不是化石本身能告訴我們的,而化石也從來不是一個最好的定年工具。

為什麼化石不能直接測定年代,其實從其成份與形成的過程來看就可以知道,化石已經經過了長時間的物理與化學作用,已非原始的生物組成成份,其成份應該是和周遭岩石一樣的,因此該測定的是化石所在岩層的年齡。一般都採用「放射性定年」來測定岩石的「絕對年代」,其原理就是利用岩石中某些元素的同位素產生放射性衰變來鑑定岩石形成年代,這種「放射性」當然和我們平常照射的x光、害怕的核電廠不太一樣,非常的微量、衰變也非常緩慢,以碳-14來說,它的半衰期有5730年,每過5730年,母元素就會少一半,所以到了5萬年後,母元素已經變得非常非常少,也就成了其定年的極限。不同的元素也會有不同的半衰期,像是從鈾衰變成鉛、鉀衰變成氬就可用來研究上億年的年代,只不過誤差也會變成是幾百萬年的等級。

雖然化石本身不能定年,但化石仍是建立地質年代表過程中不可或缺的重要的工具之一,如果生物的分布範圍廣、生存時間短,且特徵明顯好認,如果經過絕對年代分析其出現的地層年代後,就可以用作定年之用,譬如我看到三葉蟲,大概就不逃離古生代的範圍,我看到菊石,就知道這個地層可能是中生代,這類的化石我們就會叫他「指準化石」。上述這兩種化石尺寸為一般肉眼可見,另外一種更好的指準化石,那就是海洋中的微小生物「有孔蟲」,有孔蟲在地層的定年、環境的鑑定甚至應用在找尋石油等地質探索上有極大的貢獻。

顯微鏡下的有孔蟲照片,取自維基百科,原出處為USGS美國地質調查所。
顯微鏡下的有孔蟲照片,取自維基百科,原出處為USGS美國地質調查所。

只是,即使我們在利用指準化石來鑑定年代時,其主體是「地層」,而非探究化石本身,畢竟這些指準化石是已經知道其年代的物種,地質學者更感興趣的,是地層的位置、形態、上下邊界等資訊,這些才是真正重要的科學。所以平常在野外調查時,首要的任務是先辨認是否有「地層」存在,如果可以甚至先調閱相關的地質圖資料(不少教科書、地質調查所都會有),並且利用GPS定位、拍照、素描(因為素描可以描繪3D構造,且便於描述地層)等,如果有重要的岩石礦物、化石等物質,在敲下來之前還有兩件更重要的事:第一件事就是前述的拍照與記錄,唯有如此才能證明化石與礦物的採集處;而第二件事,則是「追蹤」,開始追尋該化石的地層,到底向何處延伸、甚至看上下層範圍,即使是有人為的建物阻擋,還是要一一標明。至於要不要敲下來帶回家,其實做完前述的工作,心理應該就有底了,而帶回家不是用作收藏,而是要作各種需要計量化的定年,多以放射性定年為主。通往過去的鑰匙不會只有一把,如果只出現一個證據,以科學的角度來看,我們理應先懷疑那個證據的合理性,而非用單一證據來推翻前人心血的結晶。

很可惜的是,由三葉蟲這個系列的報導我們僅能知道,化石是來自桃園虎頭山的某處,不知道處於原先認定何處的地層,更不知道是否為原先存在於本地,抑或是後來隨著外地來的建材、失落的標本等人為的因素造成。地質學家或古生物學家的工作,就如同偵探或刑警一般,需要綜合各種不同的資料來剖析,抽絲剝繭的找出最接近真相的答案。隨著沒有其它的紀錄下,單單被搬離案發現場的「屍體」,第一手訊息早已被破壞,現在再來討論各種可能性,只剩一堆看熱鬧的人你爭我吵,即使是專業的地質學教授,也只能依他所學的告訴你:台灣真的沒有這麼老的沉積岩層。因此,無論是哪一家媒體的報導,也只是變成以科普作為包裝紙,但由於科學事實早已隨化石離開現場而消逝,實質內容只是一般社會或綜合的新聞而已。

DSC_1422
或許你會著迷於地質鎚的威力和帥氣,但實際上,量測與記錄才是更重要的關鍵。

「現在是通往過去的一把鑰匙」是地質學之父赫登的經典名句,也是許多學習地球科學的人們耳熟能詳的句子,這句話甚至也被編進中學的教科書中。依現今的自然現象,搭配上出土的各種地質紀錄,可以帶領我們走進地球的歷史,一探過去,然而若是拿錯鑰匙開錯門,你通往的,可能只是臆測的野史,而非地球的真相。別以為科學就是「什麼都有可能」的無限上綱,回過頭來,我們更要先審視所有已知的理論,檢驗其正確性。

牛頓說:「我看的比別人遠,是因為我站在巨人的肩膀上。」就算是當代的頂尖科學家,在科學面前也只是個小矮人而已,請別忘了科學該有的高度。

關於台灣地史的簡略,您可以看這篇:台灣的地史與「滄海桑田」的真正意義!

延伸閱讀:火成岩年代測定

本文同時發布於作者部落格地球故事書

文章難易度
阿樹_96
72 篇文章 ・ 16 位粉絲
地球科學的科普專門家,白天在需要低調的單位上班,地球人如果有需要科普時時會跑到《震識:那些你想知道的震事》擔任副總編輯撰寫地震科普與故事,並同時在《地球故事書》、《泛科學》、《國語日報》等專欄分享地科大小事。著有親子天下出版《地震100問》。


2

6
0

文字

分享

2
6
0

地球在20年間「亮度」變低了!——地球暖化讓陽光反照率直直落

Mia_96
・2021/10/23 ・2757字 ・閱讀時間約 5 分鐘

地球暖化會造成溫度升高?不稀奇!地球暖化會造成人類生活環境越來越嚴峻?也不稀奇!但你有聽過,因為地球暖化,讓我們的亮度竟然逐年遞減,地球變得越來越暗嗎?

地球亮度的改變並不是近期才出現的新興議題,關於地球亮度的變化,科學家早在 1990 年代前後便提出一種現象「全球黯化」(global dimming)去解釋為何地表獲得的太陽光能量越來越低。

當時透過資料指出,進到地球的太陽能量大幅降低,從 1950 到 1990 年入射至地表的太陽光能量,竟然平均減少 4%! 也就是身處在地球上的人類會覺得地表的亮度似乎逐漸地降低。

但入射地表能量降低的原因並非是太陽發出能量的變化,而是因為近幾年我們最常耳聞的,空污現象! (圖/pixabay

當人類使用石油、煤炭等非再生能源發電時,會在環境中產生許多氣膠微粒,而這些氣膠微粒進入大氣,微粒可以吸收、反射入射到地球的太陽光,使太陽之能量無法進到地球表面,進而造成地球亮度降低。

而全球黯化同時也影響著人們過去對於全球暖化的理解,當全球黯化造成入射到地表的太陽光減少時,代表著地球所獲得的能量並不如過往我們所想像的這麼多。換句話說,全球黯化所造成的冷卻效應竟比不上人們所造成的暖化速度!

知曉地球改變亮度的方法——地照!

近期最新研究更是顯示,1998 年到 2017 年近十年內,地球的反照率逐年下降!除全球黯化造成地表獲得太陽能量減少外,當從外太空看著地球時,地球竟然也越來越暗了!

反照率是一種常用於亮度表示的方式之一,其指的是太陽電磁波段入射至地表的總量質,除以被地表反射的量值所得出的數字。不同的地表特性即有不一樣的反射量質。因此,透過反照率的升降,科學家也可以推估氣候變遷對環境所產生的變化與影響。

計算反照率的方式十分特別,在科學中我們將其稱為「地照」!

地照現象指的為當太陽光照射到地表,地表會反射部分太陽光,而當地表反射太陽光至月球未被太陽照到的地方時,月球又會將地表所反射至月面的光線反射回地球。

看似應該沒有被太陽光照射到的月球表面,其實也會因為地球反射之陽光而產生微弱的光。而最適合觀測地照的時間通常為弦月時分。 (圖/Wikipedia

地照的變化與地表的改變息息相關。例如冰雪的反射率較高,當地表溫度較低,累積較多冰雪時,地照數據便可能會上升;而洋面的反照率較低,當地表溫度較高,造成冰雪融化成海洋,則地照數據便可能會下降。

透過地照反射的光線強弱,可以推測地球反照率的變化,進而推測地表本身變化。 (圖/Wikipedia

除了利用地照觀測地球反照率外,為使觀測更加精確,科學家利用於 2000 年發射的 CERES 儀器(Clouds and the Earth’s Radiant Energy System)觀測大氣至地表的太陽光輻射與地表放出之輻射,並進一步分析對影響地球溫度的重要因子──雲,和太陽輻射的交互關係。

CERES 主要希望可以解答雲在氣候變遷中所扮演的角色與造成的影響,是美國國家航空暨太空總署地球觀測系統(EOS)計畫中的一部分。 圖/Wikipedia

研究結果分析發現,從 2000 年到 2015 年,地球反照率曲線一直維持接近平坦的狀態,但近年,地球反照率的衰退卻日益明顯,如下圖表示:

(圖/參考資料 1

橫軸座標為年度,縱軸座標為地照反照率之異常改變(單位為每瓦/平方公尺),黑色為地照異常之數據,藍色為 CERES 觀測到異常之數據,而灰色陰影區域則為誤差範圍。從圖中可以看出,地照反照率在這幾年下降約 0.5 W/m2,而 CERES 之數據則是下降約 1.5 W/m2

十年一變──太平洋年季震盪

科學家推測,改變反照率的原因,是週期性發生在太平洋的氣候變化──太平洋年季震盪。

太平洋年季震盪指的為太平洋的海水溫度會以十年為週期尺度產生變化:當北太平洋和熱帶太平洋間的海水溫度較高時,稱作暖相位;而當北太平洋和熱帶太平洋間海水溫度較低時,稱作冷相位。

而地球亮度改變的原因,正是因為太平洋年季震盪到了暖相位,造成海面低雲減少,反照率降低!

低雲較為溫暖,其主要成分是由水滴組成,當太陽輻射照射水滴時,較多太陽反射至太空,地球的反照率較高,也造成地表溫度降低;而高雲主要成分由冰晶組成,透光性較佳,再加上高雲通常體積較低雲薄,故太陽輻射可以順利進入地表,地球反照率相對降低。

當北太平洋與熱帶太平洋間海水溫度升高時,洋面上空氣需達到飽和的水氣量相對增加,氣塊達到飽和條件較高,低層雲較難生成。(其實背後原因極其複雜,作者僅是以最簡單的方式嘗試解釋。)當低層雲減少時,反射率降低,造成較少太陽輻射至太空,地球亮度因此變得越來越暗。

雲在地球輻射能量中一直扮演著重要的角色,低雲反射太陽輻射的能力較強,高雲吸收地球輻射的能力較強,因此較多的低雲往往造成地表降溫,而較多的高雲則會造成地表增溫。 (圖/pixabay

交織纏繞的反饋機制

看完整篇文章也別急著下結論!其實地球上的現象不僅環環相扣,影響因素更是族繁不及備載,從海溫改變的原因、高低雲量多寡的變化、反照率升降的主因……,我們都很難用單純或是絕對的一段話去完整解釋自然界的現象。

科學家所能做到的,是透過原因推導、盡力的去解釋現象,所以關於地球反照率下降的趨勢原因,除了太平洋年季震盪、海溫升高、低雲變化等,或許也還有科學家尚未清楚的其他可能性。

但同時,令科學家擔心的事情是,因全球暖化造成地表的反照率降低,代表地表接收到的能量、進到地表之能量相對增加,而吸收的能量又加速全球暖化的速度,地球或許會因為這樣的回饋機制持續升溫,造成更加嚴重的溫室效應。如何去因應溫度上升造成的種種問題,也將會是我們需要不斷去思考問題。

參考資料

  1. AGU AdvancesEarth’s Albedo 1998–2017 as Measured From Earthshine
  2. science alert,《Two Decades of Data Show That Earth Is ‘Dimming’ as The Planet Warms Up
  3. Wikipedia,《Clouds and the Earth’s Radiant Energy System
  4. Wikipedia,《行星照

所有討論 2
Mia_96
156 篇文章 ・ 373 位粉絲
喜歡教育又喜歡地科,最後變成文理科混雜出生的地科老師
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策