0

0
0

文字

分享

0
0
0

汽車塗料與石墨烯合作幫雷達除冰

小斑
・2014/01/03 ・1519字 ・閱讀時間約 3 分鐘 ・SR值 548 ・八年級

電子顯微鏡下,石墨烯奈米帶嵌入聚胺酯塗料,比例尺為1μm。由萊斯大學與Credit: The Tour Group
電子顯微鏡下,石墨烯奈米帶嵌入聚胺酯塗料,比例尺為1μm。由萊斯大學與洛克西德‧馬丁公司共同開發。Credit: The Tour Group

美國萊斯大學的化學家James Tour與軍事用品公司洛克西德‧馬丁合作開發出一種塗料,可以幫海洋和空用雷達天線罩除冰,並且不會影響無線電波接收,穿透率很高。文章於12月11號刊載於美國化學學會期刊Applied Materials and Interfaces

所謂的雷達天線罩,可以幫雷達裝置擋住凍雨(freezing rain)和冰,不過在天寒地凍的天氣中,這些雷達天線罩也需要除冰,免得損壞。目前多是用金屬支架支撐和加熱氧化鋁陶瓷,其缺點是重量很重,金屬部分也要離裝置很遠,避免干擾雷達。

photo credit: Arenamontanus via photopin cc
photo credit: Arenamontanus via flickr cc

「而且氧化鋁陶瓷非常難加熱,需要耗很多能量,因為導熱很差。」Tour表示。而只有幾個原子厚的石墨烯則能夠導電,還很薄讓無線電波可以輕易通過。若是將能夠除冰的材料噴在石墨烯奈米帶上,除冰裝置就能更輕更便宜更有效。

「當洛克西德‧馬丁公司的工程師Vladimir Volman聽到我的博士生Yu Zhu的報告,講述如何噴塗製造奈米帶薄層,他馬上就知道這是他需要的東西。因為Volman計算過只要用小於100奈米厚的石墨烯薄層,就可以因電阻加熱達到除冰效果。」

-----廣告,請繼續往下閱讀-----

未加工的石墨烯原材有彈道電子傳導的特性(Ballistic onduction),電子幾乎不會散射,電阻很小,因此沒有辦法產生足夠的熱量融冰,但是Tour團隊從多層奈米碳管切割出來的石墨烯奈米帶(graphene nanoribbons, GNRs,)經過化學反應處理後可以產生足夠熱量融冰。當石墨烯奈米帶平均地散佈在固體表面時,各個奈米帶會互相重疊,這樣當電子在奈米帶間移動的時候,就會因電阻而產生熱量。而電流通過副產出的熱量多寡,只要調整塗層的厚度就可以調整控制。

在一開始的實驗中,Zhu和Volman所帶領的團隊,是用水溶性的石墨烯奈米帶噴塗在物體表面。「他們跟我說運作的效果很好,但是當我們一用手指摸,就會剝離沾到我們手上。」Tour表示。他在休士頓的一家汽車配件店找到了解決方法:「我買了聚胺酯汽車烤漆,因為它非常耐用,可以在黏著汽車上好幾年都不會掉。所以我們就將聚胺酯與石磨烯奈米帶結合在一起,結果既能生熱融冰,也不會輕易從物體表面剝離。」

在實驗室中做出約 0.18 平方公尺的樣品,其基底是有彈性的聚亞醯胺,噴塗上聚胺酯放乾後,再用加熱板加熱軟化塗料,再用噴槍噴上石墨烯奈米帶薄層。如此一來,乾燥後的石磨烯奈米帶就會嵌入塗料,極難移除,不會再動不動就掉下來。Tour說他們的團隊也有嘗試過先噴石磨烯奈米帶再噴聚胺酯,效果也不錯。

4-graphenenano
石墨烯奈米帶通電並且對無線電波透明示意圖。Credit: Tour Group

將其製作出的只有頭髮千分之一厚的100奈米薄層接上白金電極,通以一般船艦上的電壓,在攝氏零下二十度幾分鐘內,就可以把雪融化。進一步的實驗則發現,他們新開發出的塗料,在無線電波的頻率波段近乎透明,因而能應用在雷達天線罩除冰而不會影響訊號。

-----廣告,請繼續往下閱讀-----
5-graphenenano
用波導管量測樣品電磁波特性。Credit: Tour group

Tour表示由於石墨烯奈米帶已經可以工業量產,現在實驗室的下一步則是,希望能做成幫汽車的擋風玻璃除冰。Volman補充表示他們的聚胺酯石墨烯奈米帶,有望取代目前噴在飛機上除冰的奈米管氣凝膠。

資料來源:Phys.org – News and Articles on Science and Technology

科技大觀園相關文章:

-----廣告,請繼續往下閱讀-----
文章難易度
小斑
16 篇文章 ・ 1 位粉絲
PanSci實習編輯。 一顆在各個學科間漂流的腦袋~

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

12
0

文字

分享

1
12
0
我已經鎖定你了!多頻譜影像處理演算法於軍事監測系統的應用
科技大觀園_96
・2021/11/04 ・2878字 ・閱讀時間約 5 分鐘

戰場上,分秒之差就能是決定勝敗生死的關鍵。因此如何更迅速捕捉敵軍的動向蹤跡,便成為國防軍備的一大研發重點。多頻譜影像技術能確切捕捉到物體反射的光譜資訊,並已在衛星、醫學、動植物辨識領域取得可行的成果。來自中正大學的研究團隊,便致力於建立多頻譜影響處理演算法的資料庫,期望能應用在軍事目標物的偵測追蹤上,為前線戰士助一臂之力!

掌握物體的「本色」:多頻譜影像技術

色差,是日常生活中會碰到的困擾:不管是印刷品的呈色與預想不符,或是網購的衣服顔色與想象中有所落差。這與傳統的色彩影像量測技術,如電腦電視使用的 RGB 三原色光模式及彩色印刷的 CMYK 四分色模式,在不同裝置上檢測及重現時出現的差異有關。但是,只要回歸到視覺與色彩形成的根本——光線,我們可以解決這些問題。

兩種模式最大的差異在於,三原色光模式的原理是紅、藍、綠的光線同時照射在視網膜上,我們眼睛會辨識成白光。四分色模式則是青色、洋紅、黃色顏料疊色後會變成黑色。RGB模式常用在螢幕等發光產品上,而CMYK模式則使用在印刷上。

大家都知道,光源照射物體後,會根據物體特性產生反射、吸收和透射等現象,人眼接收了物體反射的光線,會經由大腦分析視網膜收到的電子訊號,產生視覺色彩的感知。光線是一種電磁波,不同顔色的光有不同的頻率。而所謂的頻譜,就是物體的反射頻譜、投射頻譜或發光頻譜。頻譜影像,顧名思義即是每個畫素都帶有頻譜資訊的影像。

號稱可以捕捉物體本色的多頻譜影像技術(Multi-spectral imaging),厲害之處在於它可以直接擷取畫面頻譜的反射值。這個反射值是唯一值,不會受到不同廠牌的擷取技術或光源影響,因此是十分準確的影像資訊。一般頻譜影像的波段範圍落在可見光範圍(380 – 780nm),在定義上高光譜影像(hyper-spectrum)泛指使用儀器設備所拍攝到的多頻譜影像資料;超頻譜影像,則是以演算法將影像進行計算所得。其所具備的豐富影像資訊,也成為近年來醫學影像判識(如早期癌症病變的診斷)及衛星遙測的一大福音。

衛星遙測也可以使用多頻譜影像技術來提升影像資訊品質。圖/國家太空中心

從依靠人力,到交給演算法裝置代勞的自動目標識別演算法

自動辨識技術(Automatic target recognition,ATR)的源起,可以追溯至二戰前的雷達(註1)。雷達的操作原理,便是將電磁能量以定向方式發射至空間中,藉由接收空間中的物體所反射回來的電波,計算出物體的方向、高度及速度,並探測物體的形狀。過去的雷達偵測技術,仰賴訓練有素的操作員去解讀雷達訊號,如辨識戰機的大小、型號,以幫助戰場上的同胞第一時間掌握敵營的部署。

-----廣告,請繼續往下閱讀-----

不過,人的經驗能力終究有限,因此軍方目標偵測系統也逐漸從人力辨識,逐步發展至交由演算法或裝置來代勞,即自動辨識技術 ATR。準確率更高、速度更快的 ATR,除了可辨識海陸空的軍武,也能偵測生物性目標如動物、人類和植被。目前軍事上通常僅利用一個波段,如近或遠紅外光的資訊來判別目標物,但利用多頻譜影像或超頻譜影像豐富的資訊來進行目標物識別,卻有待發展。

雷達能夠計算出物體的方向、高度及速度,並探測物體的形狀。圖/pixabay

利用多頻譜影像技術,打造鎖定目標的軍事鷹眼!

如果能將多頻譜影響處理演算法帶來的豐富影像資訊,與 ATR 結合,將有望能提升偵測目標的準確率,在戰場上占盡先機。但這不是一件簡單的事:首先,軍武裝載空間有限,因此需以極精簡的光學裝置,來擷取到光路相同的不同波段影像;再來,多頻譜影像資料龐大,因此需整合不同波段的影像特性,以精確辨識俊基、船艦、坦克和建築等目標物;而如何將複雜的演算法轉化成運算夠快的晶片,應用在真實的武器上,也考驗科學家的能耐。

作為影像辨識技術領域的專業,來自國立中正大學的王祥辰教授研究團隊,就志在建立一套適於分析不同目標物特性的超頻譜影像資料庫、開發目標物偵測的多頻譜演算法程式庫,並打造一個方便高效的模擬及演算平台,讓軍方研究者可以進一步建立合適的 ATR 偵測法則。

這項計劃包含三個子系統,子系統 1 是建立多光譜及高光譜拍攝影像的資料庫。就像過去的雷達系統,是依賴熟練的操作員調度腦中記憶的資訊,去與雷達訊號進行比對辨識。要訓練機器裝置去指認出目標物,首先就得提供它一個可靠的影像資料庫作為基礎。為此,研究團隊在不同的天候條件下,拍攝不同波段下的各種目標物如電塔、水泥建築、海面船艦及空中飛行物,來建立一個涵蓋陸、海、空特性的多頻譜與高光譜影像資料庫。

-----廣告,請繼續往下閱讀-----

接著,上述涵蓋不同波段的影像,可以經過子系統 2,進行超頻譜展開運算。在子系統 2 時,為了減少計算量,使用者可設定挑選效果最好的數個頻帶,讓目標與其背景的差異達至最大化。這個過程如同指導電腦來玩「大家來找碴」的游戲,讓電腦可以學會如何在不同的場景、天氣條件下,快速辨識出指定的目標物。

子系統 2 將原本有限頻段的多頻譜影像,轉換為特定目標物適用的超頻譜影像,作為子系統 3 的輸入。在這個友善而直覺的圖形化人機介面,軍事研究人員可以在複雜的影像資料庫及法法則程式庫中不斷進行模擬,找出不同目標物的最佳化演算法則,縮短軍事研發所需的時間,提高所開發武器的效能。

如今,王教授的研究團隊已完成三個子系統的建設。此項研究成果,預計可以應用在各式對地、對空及對海飛彈,以及各式影像偵蒐系統的 ATR 設計開發上,成為新一代的鷹眼。而該研究的系統,也能幫助縮減開發測試的時間,對演算法和超頻譜頻帶最佳化都將有所助益。

【注解】

1.雷達(Radio Detection and Ranging,縮寫為 RADAR),是始於二戰前的偵測技術,其原理是利用將電磁能量以定向方式發射至空間中,藉由接收存在於空間中的物體所反射回來的電波,就可以計算出該物體的方向、高度及速度,並探測物體的形狀。

-----廣告,請繼續往下閱讀-----

參考文獻

-----廣告,請繼續往下閱讀-----
所有討論 1
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

0
0

文字

分享

0
0
0
未來城市 – 無人駕駛美夢如何成真?
李柏昱
・2015/12/02 ・2487字 ・閱讀時間約 5 分鐘 ・SR值 561 ・九年級

Google-Self Driving Cars
眾多汽車與科技大廠相繼投入無人駕駛技術的發展,未來道路或許將會更加安全。圖為Google研發的無人駕駛車輛。Source: flickr

自動駕駛,減少交通事故的福星?

從客觀的統計數據來看,人們實在稱不上是好駕駛。美國每年平均有三萬人死於車禍事件,而台灣每年則約有三千多人死於交通事故。與人類相比,機器至少不會酒駕、不會邊開車邊講電話,也能在短時間內處理更多的訊息並作出反應。Google 在 2008 年提出發展無人駕駛車輛的構想,以過去 6 年實際上路測試的統計數據來看,一共發生過 11 起事故,不過全部都是人類駕駛開車去撞無人駕駛車,諸如追撞或闖紅燈撞上等。

「自主學習」的車輛,從經驗中學習如何應變

車輛的中央運算系統必須即時處理各項觀測儀器回傳的資料,並分析周遭各種移動物體,例如其他汽車、行人等等。在程式撰寫上,有些程式指令是寫死在軟體中,例如看到紅燈就一定要停車。不過道路上情況瞬息萬變,光靠程式設計師要把所有的情形都納入並不實際,因此程式設計師賦予車輛「自主學習」的能力,從之前的駕駛經驗中學習該如何反應。舉例而言,Google的車輛已經學會辨認以及回應下列幾種情況:

  • 右線道有台烏龜車,它後方的車輛有高度可能性會超車。
  • 路上的坑洞或障礙物代表其他汽車駕駛有高度可能性會繞過它。
  • 左線道壅塞時,駕駛有高度可能性會切換到右側車道。

隨著駕駛里程累計,車輛會試著在面對各種情形中,測試可行的解決方案,此外所有車輛的資訊與經驗也會交流,最終車輛會學會遇到特定狀況最佳的反應方式,甚至學習在偵測特定狀況發生的徵兆時,進一步去避免它。

-----廣告,請繼續往下閱讀-----

Google 無人駕駛車,用到了哪些技術?

實際上,Google 無人駕駛車輛使用的技術大部分都在既有的車輛、或其他的應用領域中十分常見,這些技術我們多半並不陌生,且已通過實際測試,讓 Google 的無人駕駛車顯得更為可行。Google 無人駕駛所使用到的技術包括了以下幾種:

  1. 光達(LIDAR)判逼近物體:光達(Laser Illuminating Detection and Ranging, LIDAR)主要用於建構3D的立體地圖,讓車輛探測周遭環境並能趁早發現潛在的威脅。光達會發射雷射光束,並藉由量測光束反射回來的時間,判斷車輛本體和周遭物體的遠近。
  2. 雷達加強判定逼近物體的「速度」:縱使光達已經能偵測周遭物體距離,然而光達卻無法即時準確衡量周圍物體的移動速度與方向,在道路上車輛皆為高速移動的情形下十分危險。因此 Google 在汽車的前後保險桿上各安裝了兩台雷達,讓車輛得以避開可能的撞擊。
  3. 高畫質攝影機提供立體視覺:目前市面上許多車輛都已經裝配有攝影機且功能各異,在 Google 車上,攝影機則是用來提供周圍影像,透過多台攝影機稍微不同的拍攝角度差異,能提供諸如景深以及物體的各種角度等影像,此功能就像人類左眼右眼的視差所造成的立體視覺。
  4. 聲納創造更多交叉比對資料:聲納與前述幾項技術目的相同,都是用於偵測周遭環境以防止碰撞,不過聲納限制較多,像是較窄的探測範圍與較短的有效距離。然而聲納與其他系統合作,能提供更完整的資料交叉比對。
  5. 定位系統:不過即便有各種防撞的安全機制,如果無人駕駛車不知道自己在哪裡也是徒然。Google 使用自己的地圖系統、GPS 衛星、慣性感測器等設備來監測車輛的實際移動速度,同時結合前述的攝影機,車輛能透過拍攝周圍的環境與 GPS 資料作比對。藉由上述技術的合作,Google 車輛定位系統的誤差能縮小到幾公分之內。

未來挑戰:如何讓無人駕駛真正安全?

在無人駕駛車真正「大行其道」前,仍然有許多障礙有待跨越。

在技術上,感測元件在豪大雨、下雪等天候不佳時,可能會運作失常,例如光學元件無法正確判讀紅綠燈等狀況,就必須在天候異常時避免開車上路。另外,由於車輛會將偵測到的物體像素化,車輛雖然會避開一個過馬路的小孩,但一團飛過道路的報紙也會有同樣的結果。因此無人駕駛車接下來的首要瓶頸,會是如何提升其各種觀測儀器的運轉穩定性與偵測準確性。

在系統上,各種不同的觀測系統的整合會是一大挑戰。正如 Google 試著讓車輛能夠自主學習,車商必須克服系統間相互干擾的問題,車輛之間的通訊是否真能如上述所說能順暢交流各自的道路經驗也備受考驗。

-----廣告,請繼續往下閱讀-----

在環境上,目前的圖資精確度還無法滿足無人駕駛車的需求。Google 無人駕駛車輛使用的地圖相當精細-細到連路肩的高度、車道的寬度都必須仔細記錄,才能讓車輛辨識自己的位置而不至於開到人行道上。為了進行測試,Google 已經繪製約 3200 公里的詳細道路地圖,測試期間優良的安全紀錄絕大部分歸功於這份過於精細的圖資。不過,要繪製如此精細的國家尺度道路地圖實際上並不容易,美國全國公路長達六百萬公里,即便是台灣公路長度也有四萬公里,皆遠超過現有的圖資規模。

在市場上,「價格」也就是最根本和最現實的問題。以 Google 自動駕駛車為例,各項額外設備總價達 7 萬美元(約新台幣 210 萬),如此天價無法使無人駕駛車輛普及大眾化,反將淪為少規模生產的炫耀性財貨。話雖如此,無人駕駛車仍然是值得期待的科技,一旦各項觀測元件與整合技術發展成熟,隨著生產成本降低,無人駕駛車有朝一日仍可能走向商品化,讓原本只存在於科幻電影中的夢幻車輛實際駛入生活當中。

(本文由科技部補助「新媒體科普傳播實作計畫-智慧生活與前沿科技科普知識教育推廣」執行團隊撰稿)

責任編輯:鄭國威|元智大學資訊社會研究所
審校:陳妤寧

-----廣告,請繼續往下閱讀-----

本文原發表於行政院科技部-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!

延伸學習:
-----廣告,請繼續往下閱讀-----
李柏昱
81 篇文章 ・ 2 位粉絲
成大都市計劃所研究生,現為防災科普小組編輯。喜歡的領域為地球科學、交通運輸與都市規劃,對於都市面臨的災害以及如何進行防災十分感興趣。