Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

可口可樂與福特汽車為何都愛生質丁醇

生質能源趨勢 BioEnergy Today_96
・2013/12/11 ・1369字 ・閱讀時間約 2 分鐘 ・SR值 597 ・九年級

-----廣告,請繼續往下閱讀-----

ford_cokecola
圖片來源

生質丁醇指的是從生物質製造出來的丁醇,大部分用於製造生質酒精的生物質都可以作為丁醇的原料。丁醇的性質比酒精更近似汽油,熱值較酒精更高,而且化學特性安定,是一種很有潛力的生質燃料。除此之外,它還可以做為其他化學品的原料,具有很好的經濟價值。目前比較活躍的公司有:杜邦(DuPont)與BP合資成立的Butamax、向美國海軍供應丁醇以轉化成航空燃料的Cobalt、以及在美國股市公開發行的Gevo。

isobutanol-3d

早在2011年,可口可樂(Coca-Cola)就選擇Gevo合作開發一項名為PlantBottle™的技術。在這項合作案中,Gevo由植物精煉出 isobutanol, 然後轉化為可作為保特瓶包裝原料的對二甲苯(para-xylene),並供應給可口可樂生產能夠對環境友善的包裝,讓食品工業能夠遠離石化產業。

gevo福特汽車也看中了這項材料。他們與可口可樂合作,將在Ford Fusion Energi的全新概念車中,利用PlantBottle™技術來製作他們的坐墊、椅背、車門內裝、車頂內裝…等。福特方面預估,如果將這項技術實踐在全系列車種上,僅在美國本土一年就可以節省四百萬磅的石油衍生包裝原料,換算為原油將會是6000桶,若將全球120個銷售福特汽車的國家都納入,這個數字將會更驚人。

Print不只是可口可樂與福特汽車,日本的化學原料製造大廠東麗(Toray Industries, Inc.)也看中了生質丁醇的潛能,與Gevo合作開發由Isobutanol轉化而成的polyethylene terephthalate (PET) ,作為織物與纖維的原料。根據Gevo的估算,在PET的全球市場中30%用於生產保特瓶,另外超過60%則用於製造合成纖維。生質丁醇的發展潛力實在不容小覷!

-----廣告,請繼續往下閱讀-----

丁醇在化學特性方面,是比酒精更好的燃料,每單位所含的能量高出25%~30%。它不易吸水,與酒精相比蒸氣壓(vapor pressure)較低,而閃燃點(flash point)較高,因此儲運設備簡單許多,甚至可以直接使用管線運輸、比起僅能用槽車運輸的酒精減少許多成本;而且丁醇與既有車輛的相容性很高,有些汽油車甚至不需修改任何零件即可添加。之前一間丁醇公司ButyFuel LLC便讓一台別克轎車(1992 Buick Park Avenue)添加100%的生質丁醇橫跨美國。

然而就目前的技術水準而言,生質丁醇的生產成本還太高。目前最主流的生產技術是「ABE發酵」程序,也就是主要的發酵產物有丙酮(acetone)、丁醇(butanol)、以及乙醇(ethanol),產量的比例大約是6:3:1,但事實上產物並不只有這三種,還有其他不少低濃度的產物,因此濃縮純化出高純度的丁醇是一大課題,而這個步驟會需要耗費許多能量,是目前製程的一大弱點。另一大弱點是目前發酵所用的菌株,並不耐丁醇,也就是說丁醇濃度只要超過1%就會有「抑制作用」發生,降低生成丁醇與其它產物的反應速率,這是第二大課題。簡言之,目前生產的門檻都和發酵技術有關,誰先突破了這道門檻,就有機會奪下市場。

藉由這篇文章,我們想讓讀者認識的是生質能產業並不是封閉的產業,它與農業、化工、食品、汽車…等多項工業都有所連結。像Gevo這樣的公司,可以生產生質丁醇這樣的次世代生質燃料、供應化學原料,也可以回頭生產生質酒精,正是「生質精煉概念」的落實例證,這也是生質能源公司要能永續發展的長遠之道。

-----廣告,請繼續往下閱讀-----
文章難易度
生質能源趨勢 BioEnergy Today_96
20 篇文章 ・ 3 位粉絲
三個大學同學在畢業後各自步上不同的旅程,卻對於生質能源有著相同的興趣與期待,因此希望藉由寫作整理所知所學,並與全世界分享與討論。

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
E10 低碳汽油:台灣減碳新契機,為何我們應該接受?
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/17 ・3468字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與美國穀物協會合作,泛科學企劃執行。

台灣將在 2040 年禁售燃油車。但別急,現在路上開的舊有車款不會馬上報廢消失,因為舊有的車輛會繼續開到年限結束。根據計算,當禁售燃油車的那一天來臨時,還有大約 60% 的車輛是燃油車。這時,在多數交通工具還是燃油的情況下,美國、歐盟等國已經開始使用酒精燃料來減少碳排放,那麼,台灣也能做到嗎?

你聽過 E3、E10 汽油嗎?

這是指在汽油中加入酒精,E3 代表有 3% 的汽油被酒精取代,而 E10 則是 10% 的汽油換成酒精。酒精是一種抗爆震性能更好的燃料,且比化石燃料更環保,因為它可以來自生質燃料,碳排放也較低。即便算上運輸和加工的碳足跡,用玉米製造的乙醇仍比傳統汽油的碳排放低了 43%。其實,在美國、歐洲、澳洲等地,E10 或更高比例的酒精汽油早已廣泛使用,這在我們之前的影片中也有提過。

現在,台灣有 14 間加油站可以加到 E3 汽油,而中油也正積極促使相關部門開放 E10 汽油的銷售。

-----廣告,請繼續往下閱讀-----

不過,在推動這項改變之前,仍有許多民眾對酒精汽油有疑慮。大家最關心的問題是,把不是汽油的燃料放到引擎中,到底會不會對車輛引擎造成不良影響?例如會不會影響引擎運行,甚至影響里程數?
其實,換燃料確實會對引擎有影響,因為不同燃料燃燒後所產生的能量與副產物都不一樣。但別擔心,根據我們之前的討論,2011 年以後生產的所有汽車,還有大部分 1990 年代後期生產的汽機車,都能直接相容 E10 汽油。換句話說,除了少數舊車或特殊車型,約 95% 的汽機車都不需要擔心這個相容性問題。

2011 年以後生產的所有汽車,還有大部分 1990 年代後期生產的汽機車,都能直接相容 E10 汽油。圖 / 美國穀物協會提供

E10 汽油在效能上的表現,會不會受到影響?

學過化學的人都知道,燃燒其實是一種氧化反應,可以用化學式表達。也就是只要汽缸的大小是固定的,就能算出空氣中能參與氧化反應的氧氣分子有多少,進而推算出每次汽缸燃燒時,應該搭配多少的燃料。

當引擎運作時,汽缸內的氧氣分子會與燃料反應,產生動力。為了最佳化效能,引擎的噴油嘴會精準控制每次的進油量,確保空氣和燃料的比例,稱為「空燃比」。接著調整噴油嘴的設定,讓出油量符合我們的需求。

每當空氣成分改變,燃料量或燃料的種類更換時,空燃比就會產生變化。在燃料相對空氣來說比較多時,我們通常稱為「富油」;相反的,如果燃料相比空氣來的少,就稱為「貧油」。如果我們把汽油換成百分之百的酒精,因為酒精每單位體積所需要的氧氣比較少,而且熱值比較低,因此會產生貧油現象,推力感受起來自然也會比較低。

要解決這個問題,方法其實不難,只要增加燃料量即可。而巴西早已證明,使用 E100 汽油是可行的。巴西近 50 年來推動 E85、E100 燃料車輛,並展示了彈性燃料引擎的優勢。

而巴西早已證明,使用 E100 汽油是可行的。巴西近 50 年來推動 E85、E100 燃料車輛,並展示了彈性燃料引擎的優勢。圖/美國穀物協會

這類交通工具被稱為彈性燃料引擎,顧名思義,能很彈性的使用汽油、E100 酒精汽油、或是任何比例的甲醇、乙醇、汽油的混合物。彈性燃料引擎跟一般引擎最大的差別,就是內建了「燃料成分感測器」。能透過判斷燃料的種類與比例,調整噴油嘴的出油量設定以及點火正時,讓引擎的輸出動力維持在最佳狀態,確保引擎效能不受影響。

-----廣告,請繼續往下閱讀-----

所謂的點火正時,指的是火星塞點火的時機。不同的燃料,化學反應的速度與膨脹的體積不同,當然會對應不同的點火時機。

但是 E100 其實也不是純酒精?

大家都知道,蒸餾酒需要經過多次反覆蒸餾,為什麼不能只蒸餾一次就好呢?原因在於,酒精與水的沸點雖然不同,但它們不完全互斥,會產生交互作用。在蒸餾過程中,即使酒精的沸點較低,水仍然會在加熱的過程中,隨著酒精部分蒸發進入容器中。

事實上,當酒精濃度達到 95.63% 時,不論再怎麼蒸餾,濃度也不會再上升。這是因為當酒精濃度接近這個比例時,酒精與水的沸點非常接近,這種現象稱為「共沸」,意思是酒精和水的混合物會一起沸騰,無法再進一步蒸餾分離。

共沸現象的結果,就是為什麼市面上銷售的藥用酒精,濃度最高都是 95%,而非 100%。因為更高濃度就必須使用脫水劑等方式處理,成本會提高,或是因為有添加物而不符合藥用標準。所以當然,E100 汽油裡面,實際上使用的也是濃度 95% 的酒精,而不是 100%。

-----廣告,請繼續往下閱讀-----
E100 汽油裡面,實際上使用的也是濃度 95% 的酒精,而不是 100%。 圖 / 美國穀物協會提供

解決迷思:酒精汽油是否容易因吸收水分,而產生油水分離?

事實上,酒精和水是高度互溶的,這使得高比例的酒精在汽油中有更高的水分耐受性。簡單來說,進入油箱的水氣,會溶在酒精汽油中而不會產生油水分離。

根據美國國家可再生能源實驗室的研究,即使在高溫高濕的極端環境下,E10 酒精汽油也需要經過三個月才會出現明顯的油水分離。而三個月也是一般汽油建議最長的保存時間,因為汽油放太久就會氧化。

也就是說,酒精與水混和物的特性,不是把酒精和水的相加除以二那麼簡單,它們的交互作用更加複雜。

一篇刊登在《國際能源研究期刊》的研究指出,在可變壓縮比引擎中的實驗結果,加入酒精後,引擎的功率會逐漸升高,在 E10 酒精時為最佳比例效果。

-----廣告,請繼續往下閱讀-----

當然,實際情況和實驗室當然不能直接類比。大多數汽車和機車並未專門為酒精汽油做調整,那這樣會有多大影響呢?根據英國政府的官方結論,直接使用 E10 汽油與一般汽油相比,每公升的里程數大約會降低 1%,但在日常駕駛中,這個差異幾乎不會被察覺。實際上,載貨量和駕駛習慣對油耗的影響,遠遠大於是否使用 E10 汽油的影響。

更好的一點是,酒精其實是一種常見的工業用品,以每美國為例,在過去一年中,酒精的離岸價格實際上都比汽油還低,因此不用擔心酒精會讓油價變貴。

此外,經過調校的引擎也不必擔心推力問題。事實上,F1 賽車從 2022 年開始使用 E10 作為燃料,納斯卡賽車更早在 2011 年就採用了 E15 燃料,運行上沒有太大問題。

F1 賽車從 2022 年開始使用 E10 作為燃料,納斯卡賽車更早在 2011 年就採用了 E15 燃料,運行上沒有太大問題。圖/unsplash

最重要的是,使用 E10 燃料的好處明顯更多。由於酒精和烷類燃料的分子式不一樣,酒精分子式中多了一個氧原子,這使得燃燒過程中反應會更完全,能夠產生更多二氧化碳而非有毒的一氧化碳,同時降低一氧化氮和二氧化氮等氮氧化物的產生。

-----廣告,請繼續往下閱讀-----

最關鍵的一點,酒精與化石燃料相比,能夠更快速地幫助減碳。只要確保使用永續農法、不與糧食競爭土地的前提下,所製造的玉米乙醇,碳排量就是比化石燃料還要低。

E10 低碳汽油是填補減碳缺口的最快方案,挑戰只在接受度

英國引入 E10 後,每年減碳 75 萬噸,相當於減少 35 萬輛汽車的碳排量。而台灣呢?目前根據政策規劃,台灣 2040 年起將新售的汽機車全面電動化。依照這個目標進程,在 2025 年將達成減碳 288.6 萬噸的目標。然而,這距離運輸部門須減少 487 萬噸碳排量目標,還差 198 萬噸。

如果燃油車全面改用 E10 低碳汽油,則能減碳 202 萬噸,幾乎能完全彌補缺口。這項方案的優勢在於,E10 與一般汽油性質相近,不需更換新的引擎設計或架設特規加油站,執行門檻低。

實際上,目前推動低碳汽油最大的瓶頸,大概就是民眾對於這個新燃料的接受度了吧!如果接受度提升,購買量上升,成本也有機會進一步再下降。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

4
3

文字

分享

0
4
3
【2018 諾貝爾化學獎】化學的革命性進化:酵素定向演化
諾貝爾化學獎譯文_96
・2022/01/08 ・5782字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

化學的革命性進化

演化的力量是透過生命來顯示的。2018 年的化學諾貝爾桂冠頒給阿諾(Fances H. Arnold)、史密斯(George P. Smith)和溫特(Gregory P. Winter),表彰她/他們透過演化的控制為人類謀取了最大的福祉。運用人工定向演化(directed evolution)所製造的酵素,現在已被用來生產包括生質燃料和藥物等等的物質。抗體的演化可以透過一種噬菌體顯示(phage display)的方法來對抗自體免疫的疾病,以及在某些特定的例子中治癒轉移性癌症。

我們活在一個由強大的力量:演化,所主導的星球。在頭一批生命的種子於 37 億年前出現時,幾乎地球上的每一個裂縫都充滿了能適應身處環境的生物體:生長在光禿禿山脈的地衣、於溫泉茂盛生長的古菌、能存活於乾燥沙漠的多鱗爬蟲類以及能在黑暗深海中發光的水母。

學校裡我們在生物課學習到這些生物,但讓我們戴上一副化學家的眼鏡,並換個視角來觀察,地球上的生物之所以能夠存在,是因為演化解決了無數複雜的化學難題,所有的生物都有能力從其環境的利基取得材料和能量,並用來建立它們的組成所特有之化學創造品。魚能在極地海洋中悠遊,是歸因於其血液中的抗凍蛋白質,貽貝能攀附在岩石上,乃因它們發展出了能在水中運作的分子黏膠,而這只是眾多例子中的幾個而已。

生命化學精彩的地方在於它被設計在基因的程式碼中,並讓它能被遺傳且不斷進化。一個小小的基因隨機變化,就能改變其化學,有時這導致產生較弱的生物體,但也有可能產生一個很強壯的個體。新的化學慢慢的發展,而地球上的生命隨之變得愈來愈複雜。

這個過程現在已經演化出了三個非常複雜的人類個體,具有能掌控演化的能力,2018 年的諾貝爾化學獎之所以頒給這三位科學家,乃因為她/他們透過定向演化革新了化學以及新藥物的發展。讓我們先從酵素工程的明星:阿諾(Fances H. Arnold)開始介紹。

-----廣告,請繼續往下閱讀-----
2018 的諾貝爾化學獎得主們能控制演化,並進一步的在她/他們的實驗室中向前開拓。圖/諾貝爾化學獎專題系列

酵素──生命的化學工具中之利器

即便在 1979 年,身為一位剛取得機械與航太工程學位的新鮮人,阿諾就已經具有了一個憧憬:透過新科技的發展以謀求人類的福祉。美國已經決定在 2000 年要有 20% 的能量是來自於再生能源,而她剛好是在研究太陽能,不過這個產業的未來前景,於 1981 年的總統大選後,產生了巨大的改變,因此她將眼光改為投注於新興的 DNA(去氧核糖核酸)科技,她自述「很明顯的,對於我們每日生活上所需要的材料和化學品,可以利用改寫生命密碼的能力,來創造新的製造方法。」

用傳統方式製造藥物、塑膠和其它化學品需要強力的溶劑、重金屬和腐蝕性的酸,她的想法是捨棄這些方法而改用生命的化學工具:酵素,它們催化在地球生物體中發生的化學反應,如果她能掌握設計新酵素的方法,就可從根本改造化學。

人的思考是有限的

最初就如同在 1980 年代末期的許多其他學者一般,阿諾企圖使用推理的策略來重塑酵素,讓它們具有新的性質。然而酵素是極端複雜的分子,它們是由 20 種不同的結構單元──胺基酸──以幾乎無限種可能的組合方式結合而成的,一個單一的酵素分子可以包含數千個胺基酸,它們連結成長鏈的型態,進一步摺疊成三維的立體結構,用來催化特定化學反應的局部結構,是建立在整體結構的內部。

運用邏輯推導來決定如何將這一個精密的構造重新調整,以賦予其新的功能,即便是運用現在的知識以及電腦能力來看,亦是非常困難的。在 1990 年代初期,謙卑的折服在大自然的優越能力之下,阿諾決定放棄上述她所謂「有些傲慢」的策略,取而代之,她獲取的靈感來自於使用大自然優化化學的方法:演化。

-----廣告,請繼續往下閱讀-----

阿諾開始操弄演化

有好些年,她試圖改變一個稱為「枯草桿菌蛋白酶」的酵素,讓它不是在水溶液中催化化學反應,而能在一個有機溶劑:二甲基甲醯胺(簡稱 DMF)中運作。此時她刻意在酵素的基因密碼中製造隨機的變化──突變──然後將這些突變的基因引入細菌中,並產出數千種不同變體的枯草桿菌蛋白酶。

在這之後的挑戰是如何從如此眾多的變體中,找出在該有機溶劑中運作效率最高的那些酵素。在演化學中,我們說的是適者生存;在定向演化學中,這個階段稱為「選汰」。

阿諾利用枯草桿菌蛋白酶能切割一種牛奶蛋白質──酪蛋白──的能力,在一個 35% DMF 水溶液中,先選汰出切割酪蛋白最有效率的枯草桿菌蛋白酶變體,接著在這個變體中進行下一輪的隨機突變,得到另一個在 DMF 中運作效率更高的變體。

於第三代的枯草桿菌蛋白酶中,她找到了一個變體,其在 DMF 中的運作效率比原始的酵素要高 256 倍。這個酵素的變體總共含有十個不同位置的突變,最終造成的優異效果是沒有人能夠事先預測的。

-----廣告,請繼續往下閱讀-----

透過這些實驗,阿諾展示了若要掌控新酵素的研發,僅憑藉人的推理能力,將遠遜於讓機率以及定向(人為)選汰來運作的力量。這是我們現在所見證的革命性發展之第一步,也是最具決定性的一步。

接下來的另一重要步伐,是由一位荷蘭研究人員及發明家史坦姆(Willem P. C. Stemmer)所邁出的,但他已於 2013 年過世。他引進了另一個酵素定向選汰的維度:試管中的交配。

定向選汰背後的運作原理:在數個定向選汰的輪迴之後,一個酵素可能增加數千倍的效率。圖/諾貝爾化學獎專題系列

交配──為了更穩定的演化

一個自然演化的先決條件是不同個體的基因可透過交配或授粉的方式混合,有用的性質可藉此結合,而得到更強壯的生物體,在此同時,較不具功能的基因突變,將於代代相傳的過程中消失。

史坦姆運用的是交配的試管對等法:DNA 改組(DNA shuffling)。在 1994 年,他將基因的不同版本切割成小片段,然後透過 DNA 科技的工具,將這些片段重新組合成一個完整的基因,就好像是原始基因的一個馬賽克版本。

-----廣告,請繼續往下閱讀-----

透過好幾輪的 DNA 改組,史坦姆將一個酵素改變成比原始版本更有效率。這顯示利用基因的交配──研究人員稱之為「重組」──可達成更有效率的酵素演化。

新酵素製出永續生質燃料

那些 DNA 科技的工具自 1990 年代初期開始不斷的優化,用於定向演化的方法亦倍數成長。阿諾在這些發展中一直具有領先的優勢;現在她的實驗室所產出的酵素能催化的化學反應,甚至於根本不存於大自然中,而能製造出全新的材料,她裁製出的一些酵素也成為製造不同物質(例如藥物)的重要工具。化學反應不但可被加速,且減少不要的副產物。在某些例子中,可以去除透過傳統方法須使用的重金屬,大幅減少對環境的衝擊。

事情的發展更回歸了原位,阿諾又重新回頭開始研究再生能源的製造。她的研究小組研發出一些酵素,能將簡單的糖轉化成異丁醇,那是一種高能量物質,可用於製造生質燃料和較永續的塑膠。一個長程目標是製造出的燃料能讓運輸業更為環境友善,另類燃料──用阿諾的蛋白質所製造的──能用在車輛或飛機上。以這樣的方式,她的酵素促成了一個更永續的世界。

至於 2018 年諾貝爾化學獎所表彰的另一份工作,則是將定向演化導向了製藥,所產出的藥物能中和毒素,或對抗自體免疫疾病的進展,甚至在某些病例中治癒轉移的癌症。這是由一個能感染細菌的小小病毒所扮演的重要角色,而這個方法被稱為「噬菌體顯示」(phage display)。

-----廣告,請繼續往下閱讀-----

史密斯運用噬菌體

經常發生的情況是,科學走了一條無法預測的路徑。在 1980 年代的上半期,當史密斯開始使用噬菌體──能感染細菌的病毒──主要是期望它們能用在基因選殖。此時 DNA 科技仍未成熟,而人類基因體仍是一塊未開發的土地,研究人員知道製造身體所需蛋白質的所有基因都存於其中,但是想要指認某一個蛋白質的基因,就好像在大海中撈針一樣困難。

不論如何,對能找到那個基因的科學家而言,將具有極大的益處。運用當時最新的基因學工具,基因可以插入細菌中──靠著一點運氣──該細菌能製造出大量想要研究的蛋白質,這整個程序被稱為基因選殖。而史密斯的想法是,尋找基因的研究人員可以透過一個巧妙的方式,運用噬菌體來做到。

噬菌體:一個蛋白質與其未知基因的連結

噬菌體本質上具有很簡單的構造,它含有一小段的基因物質,封裝在一個由保護蛋白質形成的鞘膜中。當複製時,會將它們的基因物質注入細菌中,綁架細菌的代謝系統,接著利用細菌製造出噬菌體基因物質的拷貝,以及形成保護鞘膜需要的蛋白質,由此產生新的噬菌體。

史密斯的盤算是研究人員應可運用噬菌體的簡單構造,找出一個已知蛋白質的未知基因。在此時,已經有一些大型的分子庫存在,其內含有許多各種未知基因的片段,他的構想是這些未知基因的片段,可與形成噬菌體鞘膜的一個蛋白質基因融合,當新的噬菌體製造出來時,這個未知基因對應的蛋白質,就會出現在這個噬菌體的表面,與形成鞘膜的一個蛋白質結合在一起。

-----廣告,請繼續往下閱讀-----
史密斯發展出噬菌體顯示法,用於尋找已知蛋白的基因。圖/諾貝爾化學獎專題系列

抗體可釣出正確的蛋白質

這個做法會導致生成一個噬菌體的混合物,各帶有許多不同的蛋白質於其表面。史密斯推論在下一個階段,研究者應能利用抗體,將帶有各種已知蛋白質的噬菌體,自這碗湯液中釣出。抗體是一些具有導向飛彈功能的蛋白質;它們能從數萬種蛋白質中,以高度的精準度,辨識並束縛住一個特定蛋白質。利用一個已知蛋白質的抗體,如果研究者能逮住一個自這碗湯液中釣出的東西,就可以順帶釣出這個蛋白質對應的未知基因。

這是一個漂亮的構想,而史密斯於 1985 年證實那是可行的,他製造出了一個噬菌體,其表面攜帶了一個蛋白質的部份胜肽,運用一個抗體,成功的將這一個他製造的噬菌體,由含有許多不同噬菌體的湯液中釣出。

透過這個實驗,史密斯建立了現在被稱為「噬菌體顯示法」的基石。此法的精彩處在於它的簡便,它的長處則是將噬菌體當成一個蛋白質與它的基因之連結。不過此法卻在基因複製的領域之外,取得其最主要的突破性進展;在另外一方面,於 1990 年左右,幾組研究人員開始運用噬菌體顯示法,來發展新的生物分子。其中一個採用此技術的人就是溫特(Gregory P. Winter)。感謝他的研究,使得噬菌體顯示法現在帶給人類更大的福祉,要瞭解其原因,我們需要對抗體進一步的認識。

抗體可遏阻疾病的進展

人類的淋巴系統能產生數十萬種不同抗體的細胞。在這一個發展完善的體系中,這些細胞通過檢驗,不會攻擊任何屬於身體之各種型態的分子,不過這龐大的種類能確保總是會有抗體,能附著在感染我們的病毒或細菌之上,一旦抗體附著在上面,就會傳送訊號給強悍的免疫細胞,趕來消滅入侵者。

-----廣告,請繼續往下閱讀-----

因為抗體具有高度的選擇性,在數萬種分子中,只會附著在一個特定分子上,因此研究人員很早就希望設計抗體,能遏阻各種疾病在體內的進展,扮演藥物般的功能。最初為取得這些醫療用的抗體,是將各種藥物的標的物,例如癌細胞的蛋白質,注入老鼠體內。不過在 1980 年越來越清楚地知道此法是有侷限的;某些物質對老鼠是有毒的,但也有一些不會產生任何的抗體。更進一步發現這樣取得之抗體,會被病人的免疫系統視為異物,而被攻擊,導致這些老鼠抗體被破壞,為病人帶來副作用。

由於這個障礙,促使溫特開始研究史密斯的噬菌體顯示法可能具有的潛力。他想要避免使用老鼠,改成發展基於人類抗體的藥物,因為它們可以被我們的免疫系統所容忍。

溫特將抗體置於噬菌體的表面

抗體是具有 Y 字形的分子;靠著每隻手臂的遠端附著在外來物質之上。溫特將此部分的基因訊息,與噬菌體鞘膜的一個蛋白質基因融合,於 1990 年他成功的證實此法,讓抗體的結合部位出現在噬菌體的表面。他所用的抗體是設計來與一個稱為 phOx 的小分子結合,當溫特用 phOx 作為一種分子釣魚鈎,他成功的從一含有四百萬個其它噬菌體的湯液中,釣出那個含有抗體在其表面的噬菌體。

在這之後,溫特展示了他能將噬菌體顯示法運用於抗體的定向演化。他製造了一個噬菌體庫,其內包括數十億不同的抗體表現在噬菌體的表面,從這個庫藏中,他釣出了一些可與不同蛋白質標的結合的抗體,接著他隨機突變這第一代的抗體菌株,進而創造出一個新的噬菌體庫,從中找到與標的物具有更強結合力的抗體。例如在 1994 年,他用此法發展出了一些抗體,能以非常高的專一性與癌細胞結合。

運用噬菌體顯示法來進行抗體定向演化的原理。此法可用於製造新藥。圖/諾貝爾化學獎專題系列

世界上第一個基於人類抗體的藥物

基於抗體的噬菌體顯示法,溫特與他的研究同仁創立了一家公司,在 1990 年代發展出一個完全基於人類抗體的藥物: adalimumab,此抗體能中和一個稱為 TNF-alpha 的蛋白質,該蛋白質驅動許多自體免疫疾病的發炎反應。於 2002 年此藥物被核准醫治風濕性關節炎,現在亦用於治療不同型態的牛皮癬和發炎性腸疾。

藥物 adalimumab 的成功,刺激了製藥業的重要發展,而噬菌體顯示法已被用來製造包括癌症在內的各種疾病抗體。其中有一個抗體能讓體內的殺手細胞釋出,以攻擊腫瘤細胞,使腫瘤生長遲緩下來。在某些例子中,那些產生轉移的癌症病患甚至也能被治癒,成為癌症醫療的歷史性突破。另一個抗體藥物被核准用於中和造成炭疽病的細菌毒物,另一種藥物能減緩稱為狼瘡的自體免疫疾病;還有更多的抗體現在正在進行臨床實驗,用來對抗阿茲海默症等疾病。

一個化學新時代的開始

由 2018 年的諾貝爾化學獎得主們所開發的方法,現在正以跨國際的方式發展,來提升一個更為永續的化學產業,產出新的材料,製造永續的生質燃料,減輕疾病挽回生命。酵素的定向演化和抗體的噬菌體顯示法,讓阿諾、史密斯和溫特帶給人類最大的福祉,並為化學的革命性變化立下基石。

延伸閱讀

-----廣告,請繼續往下閱讀-----
諾貝爾化學獎譯文_96
15 篇文章 ・ 23 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列