Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

冬季奧運的幕後功臣-人造雪

科景_96
・2011/02/10 ・788字 ・閱讀時間約 1 分鐘 ・SR值 515 ・六年級
相關標籤: 人造雪 (2)

-----廣告,請繼續往下閱讀-----

source:Phil Roeder
source:Phil Roeder

Original publish date:Mar 08, 2006

編輯 John C. H. Chen 報導

人造雪已經成為冬季奧運中不可或缺的一部份。但是這種對人造雪的需求卻可能會對環境造成損害。

在2006年杜林冬季奧運會中,人造雪被廣泛應用在許多的競賽中,例如滑雪及滑雪板。事實上,今年杜林的雪下的比往常要薄,所以為了使比賽能夠順利進行,人造雪也可以說是必然的選擇。而人造雪的好處除了製造足夠的雪量之外,同時可以做出可以維持的較久而且狀況較好的表面。對競賽選手來說,人造雪可以使他們更容易創造新紀錄。這種人造雪的技術在許多的滑雪聖地都已經被廣泛的使用,以避免因為天氣關係雪量不夠而無法營業的情形發生。

-----廣告,請繼續往下閱讀-----

製造人造雪主要是將水從一個噴嘴中高速噴出來然後利用高壓空氣將水滴吹到空中造成起霧般的效果,然後讓這些液滴在空氣中結成雪花。成功的關鍵是要讓這些液滴在降落到地面之前就凝結起來。

現在因為地球環境暖化,所以找到好的滑雪場地已經越來越困難。舉例來說,阿爾卑斯山的雪線已經逐年上升,對滑雪愛好者來說,的確不是個好消息。但是過度依賴人造雪也是會有問題。國際保護阿爾卑斯山組織(International Commission for Protection of the Alps, CIPRA)的Michel Revaz就表示,製造人造雪要消耗水及能量。而這些人造雪所溶化的水也會對周圍的生態系造成影響。

所以Revaz提了一個可能的折衷方案。他表示像冬季奧運這種大活動,不需要為了奧運就每四年建一堆造雪機器。把這些機器回收使用應該是個可以接受的方法。

參考來源:

-----廣告,請繼續往下閱讀-----

本文版權聲明與轉載授權資訊:

-----廣告,請繼續往下閱讀-----
文章難易度
科景_96
426 篇文章 ・ 7 位粉絲
Sciscape成立於1999年4月,為一非營利的專業科學新聞網站。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
專屬你的雪天使
邱文凱
・2013/09/03 ・1878字 ・閱讀時間約 3 分鐘 ・SR值 501 ・六年級

文 / K(物理碩士)

緣起

高中曾去安寧病房照顧癌末病童,當時裡面的一個孩子對我說:「哥哥,我沒有看過雪,你能不能變出雪給我玩」因為我便去尋找、思考如何製作人造雪。

後來於日本的書籍發現了或許可以使用高分子吸水物(聚丙烯酸鈉)來製作,也是這時候發現原來可以拿來堆雪人,製作雪人出來時,的確讓孩子很開心。

當孩子向我道謝時,我心裡想著:「其實,我能做的也只有這樣而已了……」

所需材料

p1

  1. 尿布或衛生棉的內容物(高分子吸水物,請別誤食),也可至化工行購買聚丙烯酸鈉(俗稱的吸水粉)。
  2. 冰水(只是為了讓產物觸摸溫度更像真正的雪,也可使用室溫的水取代)
  3. 塑膠盆之類的盛裝容器
  4. 手扒雞手套(防止高分子吸水物沾黏於手上,若是想體驗人造雪的觸感,則可不必使用)
  5. 竹籤、串珠等裝飾用物品以及老虎鉗(剪裁竹籤用)

製作流程

1. 一開始將尿布或衛生棉內容物放在杯子(請盡量撕碎內容物,方便之後製作)

p2

2. 然後加入冰水後,會產生神奇的變化 (如下圖,為了讓圖片更清楚,所以放置到黑色杯子中)

p3

*這裡有個關鍵點:

-----廣告,請繼續往下閱讀-----

如果是使用市售的尿布或衛生棉製作,再加水之後,必須盡量清除內含的棉絮成分,只保留其中的高分子吸水物

p4

拿起來會像如此的凝膠物質(高分子吸水物)

p5

3. 之後再把人造雪從杯中倒出,會呈現像筒仔米糕的樣子(如下圖),這樣比較好塑型

p6

4.將他塑形,先捏出大小兩顆圓球,作為雪人身體與頭部 (請穿戴手扒雞手套)

-----廣告,請繼續往下閱讀-----

p7

5.最後以竹籤、串珠等物品裝飾雪人,即大功告成

p8

製作完後,把手扒雞手套取下翻面,手套外沾到的人造雪便會被包在手套中,手上便不會沾黏到人造雪

原理

在尿布或衛生棉中的高分子吸水物通常是吸水力超強的聚丙烯酸鈉(可以吸收質量比200到300倍的水分),乾燥時是白色粉末,放進水中會像海綿般吸水,成為凝膠聚合物。

主要是因為結構中的鈉含量很高,使水分子經由滲透作用進入聚合物中。反過來若把鹽灑在凝膠上,使聚合物外部的鈉濃度更高,就可以逆轉,讓水從凝膠流出。

-----廣告,請繼續往下閱讀-----

P.S.一開始製作雪人時,也曾仿效「撒鹽空中差可擬,未若柳絮因風起」,結果差強人意XD

下落速度超快的撒鹽空中差可擬XDD

後來想到曾聽過羅馬帝國的皇帝尼祿命令人從高山上取雪,加上水果和牛奶,製作成原始的冰淇淋,所以我開始嘗試製作無糖的冰淇淋來模仿雪的外觀與觸感(即使沒加糖,但因為有牛奶的成分,所以在塑型時手會黏黏的……)。

失敗了幾次以後,我開始分析古人說的撒鹽、柳絮還有我做的冰淇淋,到底是想表現雪的何種性質?撒鹽、柳絮應該是想表現雪的外觀、飄落,而冰淇淋是想模仿外觀、觸感,綜合以上的想法,如果要做出人造雪,必須做到外觀(白色)、觸感(柔軟、可塑、冰涼)。

-----廣告,請繼續往下閱讀-----

查詢資料跟實驗的過程中發現高吸水樹脂吸水後會呈現顆粒狀,一粒粒的小樹脂加冰水膨脹,塑型後的質地和觸感摸起來很接近真實的雪,因為雪本身便是由小小的冰顆粒物構成。

而最近也使用手機顯微鏡來觀察聚丙烯醯銨(人造雪人原料聚丙烯酸鈉的近親)觀察吸水前後的狀態,同樣放大倍率下,吸水後體積增加不少,也意外地發現微觀世界下的聚丙烯醯銨,竟是如此的美!!!10255553_10201336537649996_4408258660115502247_n-horz

吸水實況影片

後來有位讀者剛好看到了這篇文章,他也正好是醫院志工,並將這雪人分享給在病房中的孩子們,而雪天使也就這樣傳遞了出去。

-----廣告,請繼續往下閱讀-----

螢幕快照 2015-05-24 下午1.30.47

生活應用

嬰兒紙尿布、女性衛生用品、膨脹玩具(恐龍蛋)、水晶寶寶、魔晶土、人造雪……等,都含有這類成分。

P.S. 筆者於製作時發現,一些較便宜的衛生棉中,聚丙烯酸鈉的含量頗少(幾乎都是棉絮),吸水性不佳,且不利於製作人造雪人。還記得當時為了找雪人的材料,買了個品牌的衛生棉來嘗試,結帳時被店員跟顧客被奇怪的眼光注視著… 不過為了病童的願望,只能豁出去了 XD

作者:K,物理碩士。相信著 “以人化物” 器物再美,缺乏人的溫度,終將不完美 而若多一分人性的溫暖,便能包容原先器物的小缺陷 這是設計科學小物的初衷 希望這些東西能充滿著溫暖,無論是手心的亦或是內心的。

-----廣告,請繼續往下閱讀-----
邱文凱
9 篇文章 ・ 0 位粉絲
相信著 "以人化物" 器物再美,缺乏人的溫度,終將不完美 而若多一分人性的溫暖,便能包容原先器物的小缺陷 這是設計科學小物的初衷 希望這些東西能充滿著溫暖,無論是手心的亦或是內心的