0

0
0

文字

分享

0
0
0

灑鹽融雪的後遺症

科景_96
・2011/02/09 ・632字 ・閱讀時間約 1 分鐘 ・SR值 508 ・六年級

8252524688_96a02cb203_b

  • Original publish date:Nov 03, 2005
  • 編輯 John C. H. Chen 報導

一項研究顯示,人們在冬天時在雪上灑鹽以加速融雪的方法可能導致地下水及河水的鹽化,而不利人們飲用,並威脅到淡水生物的生存。

在緯度較高的地區,冬季下雪幾乎是必然的情形。為了有效去除道路上的積雪,人們最常使用的方法就是在雪上灑鹽來降低雪的融點,而讓冰雪快速融化。當雪融化之後,雪水便會帶著鹽一起流入下水道,進入水循環系統中。這時這些點點滴滴的鹽分便逐漸的改變了水系統中鹽份的含量。

University of Maryland的生態學家Sujay Kaushal分析了美國馬里蘭州的Baltimore County、紐約的the Hudson River Valleynd及新罕布夏州的White Mountains這幾個地方河流的氯離子含量。他們的研究發現,在冬天的時候,這些地方的水中氯離子的含量可以高達每公升五千毫克,約相當於海水中氯離子濃度的四分之一。一般而言,如果水中的氯離子含量達到每公升250毫克的話便會對人體及其他生物造成威脅。這時,淡水已不再是淡水,不但不適合人飲用,同時也會破壞生態的平衡,影響到整個生態系。

如果不用鹽來除雪,是否有更好的方式呢?University of Colorado的湖沼學家William Lewis Jr.提出了用一種以玉米製成的除雪劑來取代鹽。不過這種方法的成本比較高,是否能為大家接受,看來仍有需驗證。

-----廣告,請繼續往下閱讀-----

原始論文
Sujay S. Kaushal, Peter M. Groffman, Gene E. Likens, Kenneth T. Belt, William P. Stack, Victoria R. Kelly, Lawrence E. Band, and Gary T. Fisher
Increased salinization of fresh water in the northeastern United States
PNAS 2005 102: 13517-13520

參考來源:

本文版權聲明與轉載授權資訊:

文章難易度
科景_96
426 篇文章 ・ 7 位粉絲
Sciscape成立於1999年4月,為一非營利的專業科學新聞網站。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
2

文字

分享

0
1
2
台灣以前下過雪嗎?平地大雪紛飛的太平盛世
艾粒安鈉
・2016/01/27 ・2159字 ・閱讀時間約 4 分鐘 ・SR值 509 ・六年級

-----廣告,請繼續往下閱讀-----

台灣最近(1月23~26日)的超級寒流不僅造成災害,農漁業損失慘重,還讓低海拔地區甚至平地雪霰紛飛,台北、新竹、嘉義氣象站更是設站以來首度下霰。大家可曾知道,在清朝的太平盛世時代,台灣平地是經常下雪的!

這場寒流的陽明山雪景。來源:Flickr/Chi-Hung Lin (CC BY-SA 2.0)
這場寒流的陽明山雪景。來源:Flickr/Chi-Hung Lin (CC BY-SA 2.0)

小冰河期

清康熙35年(1696年)出版的《台灣府志》中,雞籠積雪為台灣八景之一。雞籠在當時大部分為尚未開發的蠻荒之地,位於當時的諸羅縣,除了現今的基隆之外,也泛指台灣北部台北、淡水等地區。

根據《台陽見聞錄》:

-----廣告,請繼續往下閱讀-----

「雞籠山在基隆廳治。台地氣候,南北迥殊。北境冬寒,與內地無大異。茲山為北境盡處,山大而高,下逼巨海,名為大雞籠。至冬常有積雪,台人取以列郡治八景焉。」

因此雞籠積雪的確切地點,可能是現在的基隆山(海拔588m),或者海拔超過一千公尺的七星山、大屯山一帶,至今無確切說法。同治年間《淡水廳志》的「淡北八景」也提到「屯山積雪」,可以推知陽明山以及台北其他沿海山區,在清治時代是經常下雪、積雪的!

1654年荷蘭人繪製的大台北古地圖,即淡水與雞籠一帶。來源:維基百科。
1654年荷蘭人繪製的大台北古地圖,即淡水與雞籠一帶。來源:維基百科

原來,約在16世紀至19世紀,也就是明清時代,全球氣溫明顯下降的現象,稱為小冰期或小冰河期。氣溫最低時正巧是清朝地康熙、雍正、乾隆盛世。不僅雞籠山白雪皚皚,許多史書也都記載台灣西部平地下雪。

康熙22年(1683年)十一月,《台陽聞見錄》提到「是冬,北路降大雪,寒甚」、《諸羅縣志》記載「雨雪,冰堅厚寸餘」。乾隆53年(1788年)二月,《淡水廳志》表示「大雨雪,饑,斗米千錢」,顯見寒害對農作物收成的負面影響。咸豐7年(1857年)一月,《淡水廳志》和《苗栗縣志》都有大雪的記錄。1892至1893年的冬天台灣更是嚴寒,地方史料記載不僅澎湖「奇寒」,雲林崙背「大雪,五穀、豬羊多凍死」、嘉義新港「雪下數寸,六畜凍死」,北部的新竹竹東更是「大雪連下三日,平地高丈餘」。

-----廣告,請繼續往下閱讀-----

西元元年到2000年全球氣溫變化。來源:維基百科。
西元元年到2000年全球氣溫變化,其中明顯的低溫時期即為小冰河期。來源:維基百科

馬偕博士(George Leslie Mackay)在1872至1901年旅台期間,也留下許多台北地區的天氣記錄。馬偕於日記裡也記載1893年1/17-18日,大廳裡只有華氏42度(攝氏6度),連觀音山(海拔616m)都下雪,他甚至還上觀音山裝滿兩大桶的雪,帶回平地給孩子看。1892-93年的冬天,可能是台灣有史以來最冷的一個冬天!由此可見,雖然雞籠山、大屯山積雪景色優美,但小冰河期的低溫造成糧食作物生長季縮短、產量降低,農牧業損失慘重,造成全球各地饑荒連年,死亡率上升,造成的災害不可小覷。

台灣近代降雪記錄

全球氣溫在進入20世紀後逐漸恢復正常,日治時期以及民國時期平地幾無降雪記錄,但當時的台灣氣溫依然比現代低,台北大屯山(海拔1093m)降雪依然是稀鬆平常的事情。日治時期比較可觀的記錄,包括《臺北縣志大事紀》中記載1917/1/8 「大屯山降雪為歷年來罕見,淡水線火車開賞雪加班車」、1919/3/2大屯山春雪、及1934/1/29 「天氣驟寒,七星郡大屯山降雪盈尺」。1896年2月,日本在台灣設立台北、台中、台南、恆春、澎湖五個氣象測站,台灣氣候才開始有正式的科學記錄。

台北測站在1900/2/13測得零下0.2 °C,戰後的1963/1/28測得零下0.1 °C、前一天台中最低溫更達零下0.7 °C,各地普遍結霜,但以上幾次都沒有降雪記錄。1962-63年台灣冬天在近代大概是數一數二的嚴寒,其中1963年一月的台北市,有28天達到寒流標準(最低氣溫10度以下)!但當時天氣多為乾冷,也沒有下雪。倒是1958/2/13台北氣溫低達2.6 °C,空軍氣象官李富城先生(現為氣象主播)回憶:

-----廣告,請繼續往下閱讀-----

我跟一個老長官,我們倆一起出空軍總部大門,我們倆一出,下雪了,台北市天空有飄了幾片雪,我說:「啊,下雪了。」

那天陽明山大雪紛飛,景象跟前幾天的寒流相當雷同,但當天氣象局在台北市並沒有正式降雪記錄。

現代受全球暖化以及都市熱島效應的影響,台灣氣溫節節上升,但全球暖化的後果,不僅僅是氣溫上升而已,更可能造成極端氣候頻率增加。這場讓台灣遍地下雪的超級寒流,是否表示著未來包括寒流在內的極端氣候會更加頻繁呢?是值得大家省思的一個問題。

參考文獻

艾粒安鈉
7 篇文章 ・ 1 位粉絲
主修有機合成。對化學、天文、幾何學、地理、氣候、統計學、語言學、心理學、社會學、音樂和烹飪都有興趣。不願一生為學術研究爆肝,而熱愛為感興趣的學科認真寫科普文章,並用創意比喻和爛梗讓大家喜歡科學。多元性別,最高心跳210,海豚音到重低音一手包辦。

0

0
0

文字

分享

0
0
0
雪花飄飄何所賜:克卜勒的雪花禮物
活躍星系核_96
・2016/01/25 ・2315字 ・閱讀時間約 4 分鐘 ・SR值 530 ・七年級

-----廣告,請繼續往下閱讀-----

文/邱韻如

 冰雪奇緣在台灣

全台各地紛紛傳出下雪的消息,大家都為這六角冰晶興奮不已,尤其是生平第一次在台灣看到雪的朋友,必定難忘這段「冰雪奇緣」。

迪士尼卡通《冰雪奇緣》的製作團隊,為了打造這部影片裡的雪花,敦聘專門研究雪花的物理學家當顧問,繪製了2千多種不同形狀的雪花。因為不同濕度與其他外在條件,都會造成雪花結晶的不同,所以沒有一個雪花結構是完全一樣的。

最早出書研究雪花形狀的科學家,是克卜勒(Johannes Kepler,1571–1630),他在1611年出版《論六角雪花》這本書,描述了雪花的六角結構,成為結晶學的先驅。

-----廣告,請繼續往下閱讀-----

圖1. 克卜勒《論六角雪花》,左圖是拉丁文版(1611),右圖是英文版(1966)
圖1. 克卜勒《論六角雪花》,左圖是拉丁文版(1611),右圖是英文版(1966)

雪花飄飄何所賜?

1611年新年,克卜勒還在魯道夫二世的宮廷擔任皇家天文學家,但是薪俸老被積欠,他的太太芭芭拉從1610年底就得了重病,不斷發燒。這時的布拉格,天寒地凍,克卜勒走在查理大橋上,正傷腦筋要如何籌措新年禮物回報他的贊助人兼好友Johannes Matthaeus Wacker von Wackenfels (1550–1619)。他仰天問上蒼,像我這樣一無所有的窮學者,能買什麼禮物啊?雪花飄在他的身上,克卜勒看著這微不足道的雪花,有了好點子。他寫了這本24頁的小書,送給贊助人當作微薄的新年禮物。這本用拉丁文撰寫的小書,題為《Strena Seu De Nive Sexangula》(翻譯成英文是A New Year’s Gift:On the Six-Cornered Snowflake)。

這裡面還有一些文字隱喻。拉丁文的nive和nix,都是指雪(snow)。巧的是,德文nix的意思是nothing。克卜勒在書一開始,就不斷的提到Nihil, Nihilo, Nihili等,這幾個字都是nothing的意思。

Cum non sim nescius, quam tu ames Nihil, non quidem ob pretii vilitatem, sed propter lascivi passeris lusum argutissimum simul et venustissimum: facile mihi est conjicere, tanto tibi gratius et acceptius fore munus, quanto id Nihilo vicinius.

Quicquid id est, quod aliqua Nihili cogitatione tibi allubescat, id et parum et parvum et vilissimum et minime durabile, hoc est pene nihil esse oportet. Qualia cum in rerum natura multa sint, est tamen inter ea delectus. Cogitabis fortasse de uno ex atomis Epicuri: verum id Nihil est. Nihil vero a me habes antea. Eamus itaque per elementa, hoc est per ea, quae sunt in unaquaque re minima.

《De Nive Sexangula》前兩段文字(拉丁文)

來自上天的禮物:禮輕情意重

對於克卜勒這樣擁有Nothing的人,所能付出的也是Nothing。天上飄下的nix啟發了他這份近似Nothing(nix)禮物的靈感,禮輕但情意重。

-----廣告,請繼續往下閱讀-----

What do astronomers and mathematicians “who have Nothing and receive Nothing” have to give, but Nothing? [2]

送出這份雪花禮物之後,他更加一無所有了。1611年對克卜勒來說,是難熬的一年。帕紹軍隊來到布拉格,把傳染病帶進城裡,也把支持他生計的皇帝魯道夫二世趕下台。年初,三個小孩都染上天花,最大和最小的都倖存下來,但年僅六歲的兒子Friderich卻於二月過世,大病初癒的太太也悲傷消沈,於七月過世。在戰亂中,人的生命變得微不足道,更不知道未來的希望在哪兒。1612年,魯道夫二世駕崩,42歲的克卜勒同時遭遇政治劇變、宗教緊張以及家庭悲劇,於是舉家離開布拉格,前往林茲(Linz)開展新的生活。

虎克透過他打造的顯微鏡畫出雪花

1635年,法國著名哲學家和數學家笛卡兒(René Descartes,1596~1650),用文字詳細描述了他用肉眼觀察到的雪花結構[1]。1665年,虎克(Robert Hooke,1635~1703)在《Micrographia》(顯微圖譜) 書中,描繪出他從顯微鏡中所看到的雪花。

圖2. 虎克《顯微圖譜》裡的雪花。
圖2. 虎克《顯微圖譜》裡的雪花。

雪花與砲彈的堆積

克卜勒怎會研究雪花的結構?這和他先前思考過砲彈怎麼堆有關係。也就是說,雪花的形狀研究跟堆砲彈有關!

-----廣告,請繼續往下閱讀-----

圖3. 克卜勒《論六角雪花》裡的兩個圖。
圖3. 克卜勒《論六角雪花》裡的兩個圖。

dsdsd

圖3. 克卜勒《論六角雪花》裡的兩個圖。

堆砲彈的問題起自於沃爾特·雷利爵士(Sir Walter Raleigh,1552-1618)[1]給了他的助手兼朋友哈利歐特(Thomas Harriot,1560-1621)[2]一個問題:在甲板上堆砲彈,要怎麼堆才會最節省空間呢?

哈利歐特曾在1591年出版一本關於各種堆疊問題的研究,並曾發展出某種早期的原子論來。克卜勒也研究球的各種排列,於1606年寫信給哈利歐特,並在1611年《關於六角雪花》(On the six-cornered snowflake)中再次提出堆砲彈的方式,這就是所謂的克卜勒猜想(Kepler conjecture)。

-----廣告,請繼續往下閱讀-----

克卜勒為何會對堆球有興趣?猜想可能和他研究宇宙的奧秘有關。克卜勒在1596年出版的《宇宙的奧秘》書中以『柏拉圖多面體』及以球的內接和外切5種正多面體來描述各行星與太陽距離的關係,這種數學與天文的巧合,真是巧合到令人讚嘆!

見微知著:飄飄何所似?

在台灣各地興奮大喊「下雪了」的這一天(2016年1月24日),中央氣象局在下午的新聞裡解釋說:目前各測站還沒有觀測到下雪現象,不排除是「霰」在天空結成,落地時還沒融化,才讓民眾有機會捕捉到難得畫面。氣象局特別強調:雪和霰不同,雪的結晶是六角形,通常發生在零下5度的低溫環境,重量也比較輕,但冰霰較重,也非六角形結晶,掉到地面速度較快,有時候掉到地上還會反彈,可作為民眾判斷依據。

不少民眾開始注意自己所看到的「雪」是不是「雪」。在電腦前面藉觀看好友臉書賞雪的我,看到不少好友都用相片「證明」他們看到的是六角冰晶~名副其實的「雪」。

在冰冷的此時此刻,更加佩服與感謝,四百多年前,見微知著的克卜勒送給大家的這份新年禮物。

-----廣告,請繼續往下閱讀-----

參考資料

延伸閱讀

  • [1] 沃爾特·雷利爵士(Sir Walter Raleigh,1552-1618),英國伊莉莎白時代著名的冒險家,是名廣泛閱讀文學、歷史、航海術、數學、天文學、化學、植物學等著作的知識分子。
  • [2] 托馬斯‧哈利歐特(Thomas Harriot,1560-1621)是英國數學家兼天文學家,他比伽利略更早透過望遠鏡畫月球表面,但卻少為人知,絕大多數人還是以為伽利略是第一個畫月球表面的人。(進一步參考:邱韻如(2012),伽利略不是第一個用望遠鏡窺月的人?刊登於《科學月刊》43卷10期)
活躍星系核_96
752 篇文章 ・ 126 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia