0

0
0

文字

分享

0
0
0

血鸚鵡-《透視.魚》

時報出版_96
・2013/09/17 ・495字 ・閱讀時間約 1 分鐘 ・SR值 574 ・九年級

124高階硬骨魚主要由正真骨魚亞組所組成。隨著演化的腳步,古代魚原本水平的胸鰭開始往上移動,並且逐漸轉為垂直;腹鰭則逐步往前,朝向原本胸鰭的位置移動。這樣的相對位置讓魚類有更強的水體控制力,可以緩慢游動、靜止不動,或是倒車。由於高階硬骨魚的胸鰭與體軸成垂直,因此行動較為緩慢的魚類,其胸鰭通常會呈現寬闊或舌片狀;反之速度較快的魚類胸鰭則會成線條狀或是鐮刀狀。

血鸚鵡

血鸚鵡

血鸚鵡是由臺灣的業者在意外中將橘色雙冠麗魚(Amphilophus citrinellus)和紫紅火口(Cichlasoma synspilum)雜交而成的人工魚種。但牠的尾鰭付之闕如,脊椎連續彎曲,與我們熟知的正常魚體並不相同。不過由於其胖胖的身軀與可愛的三角嘴讓牠們身受民眾的歡迎。而近年來血鸚鵡被更近一步的將外觀培育成愛心形的外型,來滿足魚迷的喜好。

 1379382153-7615 血鸚鵡 Bloody parrot│3公分
為人工繁殖出來的雜交魚種
且不具生殖能力

摘自《透視.魚》,時報出版

-----廣告,請繼續往下閱讀-----
文章難易度
時報出版_96
174 篇文章 ・ 38 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
1

文字

分享

0
2
1
海邊戲水要小心!一次帶你認識刺毒魚類,與被刺傷後的自救方法
自然保育季刊_96
・2022/07/20 ・4724字 ・閱讀時間約 9 分鐘

刺毒魚類是什麼?有刺的魚 ≠ 刺毒魚類

海洋是生命的發源地,其環境複雜多樣,孕育出多種多樣的海洋生物。在漫長的演化過程魚類發展出多樣適應環境的機制,包括物理性、化學性及生物性的調適,其中刺毒(venoms)屬於較為複雜的化學性防禦機制。

然而具有尖刺的魚類就等於是刺毒魚類嗎?答案是「否」的。

刺毒魚類的硬棘上附有毒腺,除了能為掠食者帶來物理性(刺傷)傷害以外,並會造成化學性(毒液)的二次傷害,毒腺所分泌的毒液會使傷口產生更為強烈的疼痛感,是一種特殊的防禦機制。

可能比你想像中多:世界上的刺毒魚類有多少?

全世界的魚類約有 30,000 多種,曾被報導過的刺毒魚類約有 2,500 多種(表 1),約占所有魚類的 8%,其主要可分為四大類,分別為:

-----廣告,請繼續往下閱讀-----

(一)軟骨魚類中的銀鮫目(Chimaeriformes)、異齒鯊科(Heterodontidae)、角鯊科(Squalidae)

(二)軟骨魚類中的燕魟亞目(Myliobatoidei)

(三)硬骨魚類中的鯰形目(Siluriformes)

(四)硬骨魚類中的鰭棘魚類(Acanthomorphs)(Smith and Wheeler 2006;邵廣昭 2021)。

-----廣告,請繼續往下閱讀-----
表 1 各類群刺毒魚類種類數量及毒刺部位。表/自然保育季刊

第一類刺毒軟骨魚類的毒刺主要分布於背鰭上,數量 1 至 2 根。

第二類魟類,現生種類約 200 多種,毒刺分布於尾柄上(Nelson et al. 2016),當其尾柄上的毒刺擊中掠食者後,毒液會經由外皮鞘(integumentary sheath)的破壞而全數釋出(Fenner 2004)。著名的電視節目主持人鱷魚先生 Steve Irwin 就是被大型魟類尾部的毒刺傷及心臟而喪命的。

黑線銀鮫(Chimaera phantasma)。箭頭標示處為其毒刺。圖/自然保育季刊

第三類鯰形目魚類,大多為淡水種類,其中有毒的種類大約為 1,500 種,毒刺分布於胸鰭及背鰭(Wright 2009),其毒刺外緣具鋸齒(圖 1A)。

鯰形目魚類在美洲具較高的多樣性,占所有種類的 60%(Nelson 2006)。臺灣產12種,淡水的種類有鈍頭鮠科(Amblycipitidae)1 種、鯰科(Siluridae)1 種、鬍鯰科(Clariidae)2 種、鱨科(Bagridae)2 種,鱨科的種類因背鰭(1 根毒刺)、胸鰭(2 根毒刺)具毒刺,故俗稱為三角姑;

-----廣告,請繼續往下閱讀-----

海水的種類有鰻鯰科(Plotosidae)1 種,及海鯰科(Ariidae)5 種,兩者的俗稱分別為沙毛及成仔丁,毒刺的位置與鱨科一致。

圖 1 刺毒魚類毒刺形態之一。圖/自然保育季刊

A. 線紋鰻鯰(Plotosus lineatus)胸鰭硬棘。 B. 瞻星魚(Uranoscopus sp.)匙骨上的棘。C. 褐臭肚魚(Siganus fuscescens)背鰭硬棘。 D. 托爾逆鈎鰺(Scomberoides tol)背鰭硬棘。縮寫:gr,groove 溝槽。

第四類鰭棘魚類,由六個類群所組成,分別為蟾魚目(Batrachoidiformes)、鮋亞目(Scorpaenoidei)、刺尾魚亞目(Acanthuroidei)、䲁亞目(Blennioidei)、逆溝鰺亞科(Scomeroidinae)及鱷亞目(Trachinoidei),雖然僅有 585 至 650 種,但相對於前面的三個大類群,毒刺的形態則顯得更為多樣化,毒腺可發現於牙齒、主鰓蓋骨(opercle)、匙骨(cleithrum) (圖 1B)、背鰭、腹鰭和臀鰭多個部位(Smith and Wheeler 2006)。

圖 2 刺毒魚類毒刺形態之二。圖/自然保育季刊

A. 中華鬼鮋(Inimicus sinensis )背鰭硬棘。 B. 魔鬼簑鮋(Pterois volitans )背鰭硬棘。C. 眉鬚鱗頭鮋(Sebastapistes strongia)背鰭硬棘。 D. 眉鬚鱗頭鮋頭部的棘。縮寫:gr, groove 溝槽;vg, venom gland 毒腺。

雙斑櫛齒刺尾鯛(Ctenochaetus binotatus)。圖/自然保育季刊

臺語有云:「一魟、二虎、三沙毛」

在海岸活動頻繁的臺灣,亦不乏關於刺毒魚類的諺語:一魟、二虎、三沙毛、四斑五、五象耳、六倒吊,或者是四臭肚、五變身苦;四變身苦、五成仔丁。

不管何種版本,「魟、虎、沙毛」均是刺毒危險程度的前三名。

線紋刺尾鯛(Acanthurus lineatus)。圖/自然保育季刊
線紋鰻鯰(Plotosus lineatus)。箭頭標示處為其毒刺。圖/自然保育季刊

諺語中的,是泛指所有尾部具有毒刺結構的燕魟亞目魚類,身體呈圓盤形,大部分種類尾巴為細長的鞭狀,依不同種類尾部毒刺的數量可達 2 根或以上,大部分漁民在捕獲後,均會把尾部的毒刺去除。多數的魟類為底棲性魚類,部分種類更具潛藏於沙中的習性,因此在沙灘嬉水遊玩時,須多加注意腳下情況以免誤踩而被其刺傷。

-----廣告,請繼續往下閱讀-----

沙毛指的是線紋鰻鯰(Plotosus lineatus),廣泛分布於臺灣沿海並常被釣獲,其體表光滑無鱗不易被抓住,故處理時須多加注意以免被刺傷;其幼魚常成聚集成群,被稱為鯰球。

黑帶稀棘䲁(Meiacanthus grammiste)。其毒腺位於下頜兩顆大型犬齒中。圖/自然保育季刊

二虎:多樣性豐富的刺毒魚類大家族

虎魚泛指臺灣產鮋亞目(Scorpaenoidei)的種類,其英文俗名有 scorpionfishes、stonefishes 、 waspfishes 等,有關 scorpionfishes 名稱的由來,或許命名者對其毒刺如蝎子螫到的觸感有著很深刻的體會。

除了虎魚這俗名外,石狗公、石頭魚亦為牠們常見的中文俗稱,因其偽裝(camouflage,一些種類會利用特化的皮瓣偽裝成礁石及表面的生物)或保護色,致使體態、體色與棲地環境極為相似而得名。

該類群是著名且危險的刺毒魚類,毒刺十分發達(圖 2),雖然鮋亞目魚類的頭部具有不少的棘(圖 2D),但具毒腺的部位僅為背鰭、腹鰭及臀鰭之硬棘(圖 2A-C) (Nelson et al. 2016),為海洋刺毒魚類的最大宗(Low et al. 1993;Church and Hodgson 2002;Vetrano et al. 2002;Fenner 2004),臺灣大約有 42 屬 100種(邵廣昭 2021)。

-----廣告,請繼續往下閱讀-----

多數種類為底棲性魚類,棲息於沿海岩礁地形,行動緩慢並常靜止於礁石上,即使靠近之亦不動如山,其體色與環境十分相似不易被察覺,因此在潮間帶或岩礁海岸活動時,稍一不慎則有可能誤踩而遭其刺傷。目前被刺傷的個案僅國外有報導,被刺傷者大部分為漁業從事人員(Haddad et al. 2003),臺灣雖暫無相關學術文章報導,但大部分地區的海洋活動亦相對頻繁,相信有不少被刺傷的個案。

金圓鱗鮋(Parascorpaena aurita)。鮋科魚類多具備良好的偽裝能力,其體色與周遭環境融為一體。圖/自然保育季刊

鮋亞目魚類毒素均為蛋白質(Kiriake et al. 2013),結構並不穩定,遇熱後因蛋白質變性而失去毒性(伍漢霖 2006),亦有研究顯示斑點鮋(Scorpaena guttata)的毒素在 50°C 的條件下處理,短期內即失去活性(Schaeffer et al. 1971),表示魚肉在加熱煮熟後可食用。

俗稱獅子魚(Lionfish, Turkeyfish)的危險刺毒魚類亦同屬於鮋亞目家族的成員(簑鮋類 Pteroini),但與石狗公、石頭魚的不同之處在於其十分花枝招展的外觀,平常毫不躲藏、並徐徐地遊弋於礁石間。

因其華麗的外觀而常見於觀賞魚市場,亦因此經由水族觀賞魚途徑被棄養放生(Hamner et al. 2007;Betancur et al. 2011;Johnson et al. 2016),魔鬼簑鮋(Pterois volitans)自 1980 年起現踪於佛羅里達(Florida) (Freshwater et al. 2009),延長及發達的毒刺使其在當地幾乎沒有天敵,並逐漸擴張遍布整個大西洋西岸形成穩定的族群(Betancur et al. 2011;Ferreira et al. 2015;Johnson et al. 2016),而其驚人的食量對當地魚類族群造成極大的威脅,與另一種獅子魚—斑鰭簑鮋(P. miles)為知名的入侵物種。

-----廣告,請繼續往下閱讀-----
毒擬鮋(Scorpaenopsis diabolus)。具備良好偽裝能力的鮋科魚類之一,喜靜止於礁石上伺機捕食路過之獵物。圖/自然保育季刊

毒刺的部位、結構及釋出毒液的機制

刺毒魚類的毒刺結構可發現於胸鰭、腹鰭、背鰭、臀鰭、尾柄、牙齒、主鰓蓋骨、肩帶上的匙骨等部位。大部分毒刺均由硬棘(spine)、溝槽(groove)及毒腺(venom gland)所組成。刺毒魚類這類用毒動物不同於河魨,其毒素由自體產生(河魨毒素由食物累積於體內),經毒腺分泌,藉由硬棘導引或注射到防禦對象身上(Bulaj et al. 2003;Fenner 2004;Smith and Wheeler 2006)。

毒腺附著於硬棘上,硬棘具溝槽。毒液的釋放是一種被動形式,並不能主動發射,當毒腺受壓迫時,毒液釋出並沿著溝槽導流至防禦對象的傷口上。被刺後傷口附近立刻產生劇烈疼痛感,隨後延伸擴散,會伴隨噁心、嘔吐、呼吸困難等症狀(伍漢霖 2006)。疼痛感可持續數小時之久,過敏體質者更會休克、甚至死亡。

波氏擬鮋(Scorpaenopsis possi)。具備良好偽裝能力的鮋科魚類之一,體表具備海藻狀之皮瓣。圖/自然保育季刊

如何預防刺傷,刺傷後應該如何處理?

刺毒魚類並不會主動利用毒刺進行攻擊,因此進行海岸活動或沿海作業時,應注意隨時週遭環境並穿戴相關保護措施(如手套、涉水鞋等)避免身體裸露、降低被刺傷的機會;若在必要情況下須接觸具尖刺且種類不明的魚類時,應避免徒手直接捕捉並藉由工具謹慎處理之。

刺毒魚類另一個對人類造成危害的地方,在於其造成的傷口可能會因為細菌感染而產生二次傷害,嚴重者會導致局部組織壞死、敗血症,甚至感染創傷弧菌(Vibrio vulnificus),而創傷弧菌感染後惡化快速,其所引致的併發症通常具較高的死亡率。

-----廣告,請繼續往下閱讀-----
輻紋簑鮋(Pterois radiata)。獅子魚在遭遇威脅時,胸鰭及背鰭會展開,並以腹部朝著礁石、背部朝外的方式抵禦掠食者。圖/自然保育季刊

刺毒魚類的毒性依種類及釋放量而有所不同,而毒素主要為蛋白質,其結構不穩定,易受熱、酸鹼所破壞而失去毒性。遭刺傷後應盡快移除毒刺,在適當的條件下擠出毒液,使用熱、酸、鹼條件處理傷口,破壞毒素的活性,並做好傷口的清潔及消毒的工作,防止細菌的感染。

刺毒魚類所造成的傷害反應因人而異,經過現場初步處理後,應盡早送醫處理。

野外活動時要注意

刺毒魚類約占所有魚類的 8%。牠們形態多樣,彼此並非姐妹群關係,亦即起源於多個祖先,換言之,刺毒機制是多次獨立演化出來的,刺毒魚類一共可分為四個大類群,軟骨魚和硬骨魚各占兩大類,包括軟骨魚中的:(一)銀鮫目、異齒鯊科、角鯊科,(二)燕魟亞目;以及硬骨魚類中的(三)鯰形目,(四)鰭棘魚類。毒刺結構可發現於多個部位,如胸鰭、腹鰭、背鰭、臀鰭、尾柄、牙齒、主鰓蓋骨、肩帶上的匙骨等。

因為臺灣為海島地形,海岸線曲折漫長,周邊海域均有刺毒魚類的分布,民眾於海域進行經濟或休閒活動時均有機會接觸到刺毒魚類。雖然刺毒多為被動的防禦機制,並不是主動攻擊的手段,但部分刺毒魚類具備十分良好的偽裝能力,在靜止的狀態下難以被察覺,因此在野外活動時應隨時注意周遭環境是否存在刺毒魚類,並穿戴相關防護衣物、鞋子,避免誤觸而受傷,增加海域活動的安全性。

若不幸被刺毒魚類刺傷,在現場進行緊急處理後,應盡早求醫,以策安全。

斑馬短鰭簑鮋(Dendrochirus zebra)。胸鰭內側顏色鮮艷,具警戒作用。圖/自然保育季刊
-----廣告,請繼續往下閱讀-----
自然保育季刊_96
15 篇文章 ・ 14 位粉絲
自然保育季刊為推廣性刊物,以推廣自然教育為宗旨,收錄相關之資源調查研究、保育政策、經營管理及生態教育等成果,希望傳達自然科普知識並和大家一起關注自然!

0

0
0

文字

分享

0
0
0
血鸚鵡-《透視.魚》
時報出版_96
・2013/09/17 ・495字 ・閱讀時間約 1 分鐘 ・SR值 574 ・九年級

124高階硬骨魚主要由正真骨魚亞組所組成。隨著演化的腳步,古代魚原本水平的胸鰭開始往上移動,並且逐漸轉為垂直;腹鰭則逐步往前,朝向原本胸鰭的位置移動。這樣的相對位置讓魚類有更強的水體控制力,可以緩慢游動、靜止不動,或是倒車。由於高階硬骨魚的胸鰭與體軸成垂直,因此行動較為緩慢的魚類,其胸鰭通常會呈現寬闊或舌片狀;反之速度較快的魚類胸鰭則會成線條狀或是鐮刀狀。

血鸚鵡

血鸚鵡

血鸚鵡是由臺灣的業者在意外中將橘色雙冠麗魚(Amphilophus citrinellus)和紫紅火口(Cichlasoma synspilum)雜交而成的人工魚種。但牠的尾鰭付之闕如,脊椎連續彎曲,與我們熟知的正常魚體並不相同。不過由於其胖胖的身軀與可愛的三角嘴讓牠們身受民眾的歡迎。而近年來血鸚鵡被更近一步的將外觀培育成愛心形的外型,來滿足魚迷的喜好。

 1379382153-7615 血鸚鵡 Bloody parrot│3公分
為人工繁殖出來的雜交魚種
且不具生殖能力

摘自《透視.魚》,時報出版

-----廣告,請繼續往下閱讀-----
文章難易度
時報出版_96
174 篇文章 ・ 38 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。