0

0
0

文字

分享

0
0
0

人類消逝後,文明的成住壞空?

oeo
・2013/08/01 ・2383字 ・閱讀時間約 4 分鐘 ・SR值 535 ・七年級

文/oeo

科學影片「Life after people- Bound and Buried」的科幻品讀

「人之將亡,其言也善!」那面對整體人類的滅絕呢?會激盪出什麼智慧與福祉嗎?七月三十日,大愛電視HD台播出具有科幻色彩的系列科學紀錄片「Life after people- Bound and Buried」,筆者僥倖也有幸,經由現今(繁體)華文科幻推手葉李華博士介紹,參與節目的導讀與分享。在與節目主持人的對談中,共同認知該紀錄片的一項宗旨,在於激發人們去思考:如果哪一天,人類從地球上消失了,一天後、一週後、一年後、一千萬年後,世界會變成甚麼模樣?影片當中請到各界專家,就藝術品、建築物、動植物…諸多人類文明的各項成就的變化與毀壞進行科學推演與預測,但本質上,像這樣跨時空大膽思辨「世界會如何變化?」、「這文明發展當中有沒有什麼問題?」、「人類要怎麼走下去?」的「提問」,其實正是科幻的精神所在,也是科學的青春魂!

從人生尺度或科技發展來看,科幻和科學的關係其實有些像是「雞生蛋,蛋生雞」的問題,沒有科學,何來科幻?但非常多的科學人在成長歷程中,必然存在一部或一堆科幻作品或科幻經驗(例如夾雜科學元素的天馬行空…)將他/她引入正式的科學領域。所以真正來說,我們每個人幾乎小時候都是科幻迷甚至科幻家,問題是長大後如何維持或茁壯?

「上天給人悲劇,不是要摧毀我們,而是要人們認真看待生命!」這說法在藝術虛構與文明現實上似乎都能成立。在科學界和科幻界,「世界末日」和「人類滅絕」都算是歷久不衰的課題,科學界曾經有人組團探討世界毀壞的十大可能成因,包括氣候變化、恐怖活動、病毒流行、進化時鐘、核子戰爭、隕石撞擊、人工智慧、宇宙射線、火山爆發、黑洞吞沒,並請科學家們依照專業與個人判斷,評估它們發生的可能性與後果,就影片「Life after people- Bound and Buried」所呈現的種種跡象顯示,它所假想「人類消逝」的設定最有可能是生物性的、生態性的因素,例如上述中「病毒流行」這一項。

若從生態的角度而言,地球本來就很科幻!「所有與人類共享地球的物種當中,目前我們所知的僅佔百分之十到二十而已。」「在我們的體內,寄居生物的數量遠大於人體細胞數目,數量約為十比一。」脫去尺度與名形的框框,最能印證科幻所呈現的奇妙,其實有時候比我們熟悉的世界與生活還貼近真實!反過來說,生物多樣性世界的怪趣,其實是比一般人接觸到的科幻還要科幻!簡單說,那是幻實之間,一種「無奇不有」的體認,一種「無有不奇」的領悟。

再從科幻來談科學,在十七世紀,「科學」(science)這個字,指的是「構成方式正確」的知識(指的是必然為真的普世真理),而研究自然事物和世界因果結構的則是「自然史」和「自然哲學」。「科學家」這一詞更晚至十九世紀才被發明,直到二十世紀初期才成為慣常用詞。(謝平「科學革命」),也就是說,科學的定義與形成、科技發展的方向與範圍本身(例如服務對象)就還存在著許多可能性。而科幻大家威爾斯(今日主要以「時間機器」(The Time Machine)、「世界大戰」(The War of the Worlds)等經典科幻小說聞名於世),其實他還寫了一部頗有影響力的全球史著作「世界史綱」(Outline of History),該書出版於1901年。威爾斯在其導言中坦言,他遭遇到的難題是很少有讀者知道「普世史」是什麼。…普世史並不等於我們所習慣的民族國家歷史的總合,既比它多,又比它少,甚至,世界(world)一詞並非必然是普世的(universal),有時也可以意味著普世的對立面―地方。(柯嬌燕「書寫大歷史」)因此,當我們秉持科學精神認真探究跨∕超世界(普世)議題時,「科幻」自然而然堂皇登場,並帶給我們全新的視野。

不是科幻喜歡任意無謂地放大或縮小人類在世界中的位格,而是人類引以自豪也普遍認為是文明智慧結晶的現代科技發展,常常會造成生態失衡的現象,就科學探究而言,個體的謙卑謹慎重要,整體的開明包容更重要。我們總是容易關注於看到的、知道的,而忽略了那些沒看到、不知道的重要性。真實世界上,「由動物建造的最大構造卻非人類的傑作,隨便瀏覽一下網頁上地球的衛星圖,大家都會同意,從太空看地球時唯一看得見的生命指標是珊瑚礁(除了煙霧廢棄和綠色植物區域以外),澳洲大堡礁長約一千英里,大概在一萬英里遠肉眼即可見,珊瑚礁驚人之處在於它的動物建築師極為渺小:珊瑚蟲直徑不及三公分,矗立在自立建造的鈣質平台上,我們認為塑膠和石油的來源多半來自古代珊瑚礁,因此這些小小動物建築師死去多時的遺骸成就了我們的現代生活。」(「動物是天才建築師」),「而在1950年到2000年的半個世紀中,世界人口從25億變成61億,增加到2.4倍,同時,全球GDP、石油消耗量、發電容量、小麥的年產量也分別增加到8.1倍、7.3倍、21倍、4.1倍,自有人類以來消耗的各種資源,超過八成集中消費在這個時代,結果讓我們的物質生活遠較歷史上的任何一個時代都要富足,都要方便。但是相反的,因為過度消耗地球資源,排出超過地球自淨力的有害物質,使地球資源枯竭,環境破壞更加嚴重。」(綠色復甦時代)

「物種滅絕本身是極為自然的事情,在生存競爭的場所,隨時都有物種落敗。從生命在地球上誕生,已有百分之九十九的物種滅絕,平均每年都有兩、三種自然而然地消失。這種情形已經持續了幾百萬年,然而這幾年發生的情況卻相當可怕,嚴重時,僅僅一年之內就有一千種動植物滅絕。這是很不尋常的,超過一般生物滅絕的比率。」(未來種子)總而言之,世界上,生物之間生生相息,而且自然生態的設計原本並沒有「垃圾」這回事!科學的學門之間與人類文明發展「原本」應當也是如此!?

在影片導讀分享中,我們還討論了一些科幻作品的旨趣與文明保存的問題,當中一段提到立體畫派大師畢卡索說過:「藝術就是揭示真實的謊言。我就是在畫真實,超越眼見的真實。」我相信,科幻就好像科學的立體派!科學年代,科學樂觀主義者應該增長一些慈悲(無緣大慈,同體大悲),而這與「想像力」的提昇有關。科技悲觀者應該多懷抱一股希望,在科學科幻中找到個人與文明的智慧與樂趣,願原力與你同在!

完整導讀影片:

「地球證詞」臉書專頁

文章難易度
oeo
24 篇文章 ・ 1 位粉絲
森林學研究所畢業 曾任台大創發社幹部(臉書社團 "創發社CAIV" 召集人 ) 某屆倪匡科幻獎得主 從事教育工作 科學科幻 自然生態 文藝創意 一切"豐富生命"的愛好者...


0

0
0

文字

分享

0
0
0

【2021諾貝爾化學獎】化學史的革命性進展:簡單又環保的「不對稱有機催化」

諾貝爾化學獎譯文_96
・2021/10/27 ・5691字 ・閱讀時間約 11 分鐘

本文轉載自諾貝爾化學獎專題系列,原文為《【2021諾貝爾化學獎】他們的工具帶給了建構分子的革命性發展

  • 譯者/曹一允|美國德州農工大學 Karen Wooley 教授指導下取得博士,現於日本萊雅公司進行研究。
  • 譯者/蔡蘊明|台大化學系名譽教授

他們的工具帶給了建構分子的革命性發展

化學家可以透過連接許多小的化學塊材來創造新分子,但控制這些看不見的物質,以所需的方式結合是很困難的。班傑明 • 李斯特(Benjamin List)和大衛 • 麥克米蘭(David MacMillan)獲得了 2021 年諾貝爾化學獎的桂冠,以表彰他們開發了一種新而巧妙的工具來建構分子:有機催化。它的用途包括研發新的藥物,以及使得化學更為環保。

許多行業和研究領域都須依賴化學家建構新功能分子的能力,那些可以是任何在太陽能電池中捕獲光或將能量儲存在電池中的物質,也可以是製造輕便跑鞋或抑制疾病在身體內進展的分子。

然而,如果我們將大自然建造化學物質的能力,與我們自己的能力進行比較,那我們就好像是長期的被困在石器時代一般。大自然的進化產生了令人難以置信的特殊工具,酵素(或稱酶),用於建構賦予生命形態的各種形狀、顏色和功能的分子複合物。最初,當化學家分離出這些化學傑作後,他們只能以崇敬的眼光看著。在他們自己的分子建構工具箱中的錘子和鑿子,顯得愚鈍和不可靠,所以當他們企圖複製大自然的產品時,往往最終會產生許多不需要的副產物。

精細化學的新工具

化學家添加到工具箱中的每一個新工具,都漸漸地提高了他們建構分子的精確度。緩慢但確實地,化學已經由用在石頭上的鑿子發展出許多精細的技藝。這對人類實在大有助益,而其中一些工具已經獲得諾貝爾化學獎的肯定。

獲得 2021 年諾貝爾化學獎的發現,已經將分子的建構拉到一個全新的水平。它不僅使化學更為環保,而且更容易製造不對稱分子。在化學分子的構築過程中,經常會出現一種狀況,就是可以形成兩種分子 —— 就像我們的手一樣 —— 是彼此的鏡像。尤其是在製造藥品時,化學家經常希望只得到這兩個鏡像中的一個,但卻很難找到有效的方法來做到這一點。李斯特和麥克米蘭為此研發出的概念 —— 不對稱有機催化 —— 既簡單又出色。實際上很多人都很納悶,為什麼我們沒有早點想到它。

真的,為什麼呢?這不是一個容易回答的問題,但在我們嘗試之前,需要快速地回顧一下歷史,我們將會定義「催化」(catalysis)和「催化劑」(catalyst)這兩個術語,並為 2021 年的化學諾貝爾獎奠定理解的基礎。

許多分子有兩種異構物存在,其中一種是另一種的鏡像,它們經常對身體產生完全不同的影響。例如,一種版本的檸檬烯分子具有檸檬香味,而其鏡像則聞起來像橘子。圖/諾貝爾獎官網

催化劑加速化學反應

在十九世紀,當化學家開始探索不同化學物質相互反應的方式時,他們有了一些奇怪的發現。例如,如果他們將銀放入含有過氧化氫(H2O2)的燒杯中,過氧化氫會突然開始分解成水(H2O) 和氧氣(O2)。但是促發這個過程的銀,似乎完全不會受到反應的影響。類似的,從發芽的穀物中獲得的一種物質,則可以將澱粉分解成葡萄糖。

1835 年,著名的瑞典化學家貝吉里斯(Jacob Berzelius)開始注意到其中的規律。在皇家瑞典科學院年度報告中,敘述物理和化學的最新進展時,他寫到了一種可以"產生化學活性"的新"力"。他列舉了幾個例子,其中只要有某一種物質的存在,就可讓化學反應發生,並指出這種現像似乎比以前認知的要普遍得多。他認為這種物質具有一種「催化力」,並稱這種現象為「催化作用」。

催化劑產生塑膠、香水和美味的食物

自貝吉里斯時代以來,大量的汗水流過了化學家的吸管,他們已經發現許多種催化劑,可以分解分子或將它們連接在一起。多虧了這些催化劑,他們現在可以開發出我們日常生活中使用的數千種不同的物質,例如藥品、塑膠、香水和食品調味劑。事實是,估計有世界 GDP 總量的 35%,在某種程度上涉及化學催化。

原則上,西元 2000 年之前發現的所有催化劑都屬於以下兩類之一:它們若不是金屬那就是酵素。金屬通常是極好的催化劑,因為它們具有特殊的能力,能在化學反應過程中暫時容納電子或將它們提供給其它分子。這有助於鬆開分子中原子間的鍵結,因此使得尋常時候很強的鍵結可以被打破,形成新的鍵結。

然而,一些金屬催化劑的問題是它們對氧氣和水非常敏感。因此,要使這些試劑正常運作,它們需要一個無氧和無濕氣的環境,而這在大規模的產業界很難實現。此外,許多金屬催化劑都是重金屬,可能對環境有害。

生命的催化劑以驚人的精確度運作

第二種形式的催化劑屬於一些稱為酵素(或酶)的蛋白質。所有的生物都具有數以千計的不同酵素,來驅動生命所必需的化學反應。其中有許多酵素是不對稱催化方面的專家,原則上,總是只生成兩個可能的鏡像中的一個。它們也並肩工作;當一個酵素完成反應時,另一個就會接管。通過這種方式,它們能以驚人的準確度建構複雜的分子,例如膽固醇、葉綠素或稱為番木虌鹼(strychnine)的毒素,它是我們知道的分子中最複雜的物質之一(我們將回到這一點)。

由於酶是如此有效的催化劑,1990 年代的研究人員試圖開發新的酵素變體,以驅動人類所需的化學反應。一個致力於此領域的,是總部設在美國加利福尼亞州南部的斯克里普斯(Scripps)研究所中,由已故的巴爾巴斯三世(Carlos F. Barbas III)所領導的研究小組。李斯特在巴爾巴斯的研究小組中獲得了博士後研究員的職位,此時一個絕妙的想法誕生了,從而導致今年諾貝爾化學獎其中的一項發現。

李斯特跨出了盒外來思考

李斯特在研究催化抗體(catalytic antibodies)。通常情況下,抗體會附著在外來病毒或我們體內的細菌之上,但斯克里普斯的研究人員重新設計了它們,使得它們反而可以驅動化學反應。

在研究催化抗體期間,李斯特開始思考酵素實際上是如何的運作。它們通常是由數百個胺基酸所構成的巨大分子,除了這些胺基酸,很大一部分的酵素也含有能幫助驅動化學反應的金屬。但是 —— 這就是重點 —— 許多酵素在沒有金屬幫助的情況下,也能催化化學反應。此外,反應只是由酶中的一個或幾個單獨的胺基酸所驅動的。李斯特跳脫出盒外所問的問題是:胺基酸是否必須是酶的一部分才能催化一個化學反應?或者一個單獨的胺基酸或其它類似的簡單分子,是否也可以達成同樣的工作?

產生具有革命性的結果

他知道 1970 年代初就有人研究過,用一種名為脯胺酸的胺基酸作為催化劑 —— 但那是 25 多年前的事了。當然,如果脯胺酸真的是一種有效的催化劑,當然有人會繼續研究它吧。

這或多或少是李斯特的想法;他認為沒有人繼續研究這一現像的原因,是發現效果不是特別好。 在沒有任何真正的期待下,他測試了脯胺酸是否可以催化一種「醛醇反應」(aldol reaction),將其中來自兩個不同分子的碳原子結合在一起。這只是一個簡單的嘗試,但令人驚訝的是,它立即奏效。

李斯特確定了自己的未來

通過他的實驗,李斯特不僅證明了脯胺酸是一種有效的催化劑,而且還認為這種胺基酸可以驅動不對稱催化反應。在兩個可能的鏡像產物中,其中的一個比另一個更易生成。

與之前測試脯胺酸作為催化劑的研究人員不同,李斯特了解它可能具有的巨大潛力。與金屬和酵素相比,脯胺酸是一個化學家夢幻的工具。它是一種非常簡單、廉價且環保的分子。當他在 2000 年 2 月發表他的發現時,李斯特將使用有機分子進行的不對稱催化,描述為一個具有很多機會的新穎概念:"這些催化劑的設計和篩選是我們未來的目標之一"。

不過他並不孤單,在加利福尼亞北部的一個實驗室裡,麥克米蘭也在朝著同樣的目標努力。

麥克米蘭將敏感的金屬拋諸腦後

兩年前,麥克米蘭剛從哈佛搬到加州大學伯克萊分校。他在哈佛曾致力於改善使用金屬的不對稱催化反應,那是一個受到許多研究人員關注的領域,但麥克米蘭注意到,為何研究人員開發的催化劑在工業界卻很少使用?他開始思考原因,並認為那是因為敏感的金屬使用起來很困難,而且太貴了。一些金屬催化劑所要求的無氧無濕氣的條件,在實驗室中運作相對簡單,但要在這種條件下進行大規模工業製造是很複雜的。

他的結論是,如果要讓他正在開發的化學工具有用,他需要一個新的思維。所以,當他搬到伯克萊時,他把金屬拋在腦後。

開發了一種型式更簡單的催化劑

取而代之,麥克米蘭開始設計簡單的有機分子 —— 就像金屬一樣 —— 可以暫時提供或容納電子。在這裡,我們需要定義什麼是「有機分子」 —— 簡而言之,那是建構所有生物的分子。他們擁有一個穩定的碳原子骨架,各種活性化學基團可附著在這個碳骨架上,它們通常含有氧、氮、硫或磷。

因此,有機分子是由簡單而常見的元素組成,但是,取決於它們是如何組合在一起的,它們可以具有複雜的性質。麥克米蘭的化學知識使得他認為,若要用有機分子來催化他感興趣的反應,它需要能夠形成一個「亞胺離子」(iminium ion),這個離子包含了一個氮原子,而且對電子具有天生的親和力。

他選擇了幾種具有正確特性的有機分子,然後測試了它們驅動狄耳士-阿德爾(Diels-Alder)反應的能力,化學家用這個反應來建構碳原子環。正如他所期盼並相信的那樣,它們運作得非常出色。其中的一些有機分子,在不對稱催化方面的表現也很突出。在兩個可能的鏡像產物中,其中一個佔了 90% 以上。

麥克米蘭創造了有機催化一詞

當麥克米蘭準備發表他的結果時,他意識到自己發現的催化概念需要一個名字。事實上,研究人員雖早已成功地使用有機小分子催化化學反應,但這些都是個別單獨的例子,沒有人意識到這種方法可以被推廣。

 麥克米蘭希望找到一個術語來描述這個新方法,如此一來其他研究人員就能夠理解,尚有更多有機催化劑仍未被發現。他的選擇是「有機催化」(organocatalysis)。

於 2000 年 1 月,就在李斯特發表他的發現之前,麥克米蘭送出了他在科學期刊上發表的原稿。文章中的引言寫著:

"在此,我們介紹了一種新的有機催化策略,而我們預計這個新策略將適用於一系列的不對稱轉化。"

有機催化應用的蓬勃發展

李斯特和麥克米蘭各自獨立地發現了一個全新的催化概念。從 2000 年至今此領域的發展幾乎可以比擬為淘金熱,其中李斯特和麥克米蘭保持著領先地位。他們設計了大量廉價且穩定的有機催化劑,可用於驅動各式各樣的化學反應。

有機催化劑不僅一般由簡單分子組成,在某些情況下 —— 就像自然界的酵素一樣 —— 它們可以在輸送帶上工作。以前,在化學生產過程中,需要對每個中間產物進行分離和純化,否則副產物的量會太多,這導致了在化學合成的每個步驟中都會有一些物質損失。

有機催化劑的寬容度則比較高,因為相對而言,合成過程中的幾個步驟可以連續進行,這稱為串級反應(cascade reaction),可以減少許多化學合成中的浪費。

番木虌鹼的合成效率提高了 7,000 倍

一個有機催化使分子建構更有效率的例子,是合成天然且極其複雜的番木虌鹼分子。許多人會從謀殺案件小說女王阿加莎・克莉絲蒂(Agatha Christie)的書中認出番木虌鹼。然而,對於化學家來說,番木虌鹼的合成就像一個魔術方塊:一個步驟越少越好的挑戰。

在 1952 年首次合成出番木虌鹼時,需要經過 29 種不同的化學反應步驟,只有 0.0009% 的起始物被轉換成產物,剩下的都浪費掉了。

到了 2011 年,研究人員能夠使用有機催化和串級反應,在僅僅 12 個步驟中建構番木虌鹼分子,生產過程的效率提高了 7,000 倍。

有機催化在藥物生產中最為重要

有機催化對經常需要不對稱催化的藥物研究產生了重大影響。在化學家可以進行不對稱催化之前,許多藥物分子都含有兩個鏡像的異構物。其中一個是有活性的,而另一個可能有時會產生不良的影響。一個災難性的例子是 1960 年代的沙利多邁(thalidomide)醜聞,沙利多邁藥物分子的一個鏡像,導致數千個發育中的人類胚胎產生嚴重畸形。

使用有機催化,研究人員現在可以相對簡單地製造大量不同的不對稱分子。例如,他們能以人工方式來合成具有治療潛力的物質,否則就只能從稀有植物或深海生物中,分離出微量的相同分子進行研究。

在製藥公司,這種方法還用於簡化已知藥物的生產。這方面的例子包括用於治療焦慮和抑鬱的帕羅西汀(paroxetine),以及用於治療呼吸道感染的抗病毒藥物克流感(oseltamivir)。

簡單的構想往往是最難設想的

我們可以很簡單地舉出數千個如何使用有機催化的例子 —— 但為什麼沒有人更早提出這種簡單、綠色且廉價的非對稱催化概念?這個問題有很多答案,其中一個是簡單的構想往往是最難設想的。我們的觀點被這個世界應該運作的模式,先入為主且強烈地遮蔽了,例如只有金屬或酵素才能驅動化學反應的想法。李斯特和麥克米蘭成功地打破了這些先入為主的想法,找到了困擾化學家數十年問題的巧妙解方。因此,有機催化劑才能夠 —— 在此時此刻 —— 為人類帶來莫大的裨益。

參考資料

諾貝爾化學獎譯文_96
952 篇文章 ・ 245 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策