0

0
0

文字

分享

0
0
0

人類消逝後,文明的成住壞空?

oeo
・2013/08/01 ・2383字 ・閱讀時間約 4 分鐘 ・SR值 535 ・七年級

文/oeo

科學影片「Life after people- Bound and Buried」的科幻品讀

「人之將亡,其言也善!」那面對整體人類的滅絕呢?會激盪出什麼智慧與福祉嗎?七月三十日,大愛電視HD台播出具有科幻色彩的系列科學紀錄片「Life after people- Bound and Buried」,筆者僥倖也有幸,經由現今(繁體)華文科幻推手葉李華博士介紹,參與節目的導讀與分享。在與節目主持人的對談中,共同認知該紀錄片的一項宗旨,在於激發人們去思考:如果哪一天,人類從地球上消失了,一天後、一週後、一年後、一千萬年後,世界會變成甚麼模樣?影片當中請到各界專家,就藝術品、建築物、動植物…諸多人類文明的各項成就的變化與毀壞進行科學推演與預測,但本質上,像這樣跨時空大膽思辨「世界會如何變化?」、「這文明發展當中有沒有什麼問題?」、「人類要怎麼走下去?」的「提問」,其實正是科幻的精神所在,也是科學的青春魂!

從人生尺度或科技發展來看,科幻和科學的關係其實有些像是「雞生蛋,蛋生雞」的問題,沒有科學,何來科幻?但非常多的科學人在成長歷程中,必然存在一部或一堆科幻作品或科幻經驗(例如夾雜科學元素的天馬行空…)將他/她引入正式的科學領域。所以真正來說,我們每個人幾乎小時候都是科幻迷甚至科幻家,問題是長大後如何維持或茁壯?

「上天給人悲劇,不是要摧毀我們,而是要人們認真看待生命!」這說法在藝術虛構與文明現實上似乎都能成立。在科學界和科幻界,「世界末日」和「人類滅絕」都算是歷久不衰的課題,科學界曾經有人組團探討世界毀壞的十大可能成因,包括氣候變化、恐怖活動、病毒流行、進化時鐘、核子戰爭、隕石撞擊、人工智慧、宇宙射線、火山爆發、黑洞吞沒,並請科學家們依照專業與個人判斷,評估它們發生的可能性與後果,就影片「Life after people- Bound and Buried」所呈現的種種跡象顯示,它所假想「人類消逝」的設定最有可能是生物性的、生態性的因素,例如上述中「病毒流行」這一項。

若從生態的角度而言,地球本來就很科幻!「所有與人類共享地球的物種當中,目前我們所知的僅佔百分之十到二十而已。」「在我們的體內,寄居生物的數量遠大於人體細胞數目,數量約為十比一。」脫去尺度與名形的框框,最能印證科幻所呈現的奇妙,其實有時候比我們熟悉的世界與生活還貼近真實!反過來說,生物多樣性世界的怪趣,其實是比一般人接觸到的科幻還要科幻!簡單說,那是幻實之間,一種「無奇不有」的體認,一種「無有不奇」的領悟。

再從科幻來談科學,在十七世紀,「科學」(science)這個字,指的是「構成方式正確」的知識(指的是必然為真的普世真理),而研究自然事物和世界因果結構的則是「自然史」和「自然哲學」。「科學家」這一詞更晚至十九世紀才被發明,直到二十世紀初期才成為慣常用詞。(謝平「科學革命」),也就是說,科學的定義與形成、科技發展的方向與範圍本身(例如服務對象)就還存在著許多可能性。而科幻大家威爾斯(今日主要以「時間機器」(The Time Machine)、「世界大戰」(The War of the Worlds)等經典科幻小說聞名於世),其實他還寫了一部頗有影響力的全球史著作「世界史綱」(Outline of History),該書出版於1901年。威爾斯在其導言中坦言,他遭遇到的難題是很少有讀者知道「普世史」是什麼。…普世史並不等於我們所習慣的民族國家歷史的總合,既比它多,又比它少,甚至,世界(world)一詞並非必然是普世的(universal),有時也可以意味著普世的對立面―地方。(柯嬌燕「書寫大歷史」)因此,當我們秉持科學精神認真探究跨∕超世界(普世)議題時,「科幻」自然而然堂皇登場,並帶給我們全新的視野。

不是科幻喜歡任意無謂地放大或縮小人類在世界中的位格,而是人類引以自豪也普遍認為是文明智慧結晶的現代科技發展,常常會造成生態失衡的現象,就科學探究而言,個體的謙卑謹慎重要,整體的開明包容更重要。我們總是容易關注於看到的、知道的,而忽略了那些沒看到、不知道的重要性。真實世界上,「由動物建造的最大構造卻非人類的傑作,隨便瀏覽一下網頁上地球的衛星圖,大家都會同意,從太空看地球時唯一看得見的生命指標是珊瑚礁(除了煙霧廢棄和綠色植物區域以外),澳洲大堡礁長約一千英里,大概在一萬英里遠肉眼即可見,珊瑚礁驚人之處在於它的動物建築師極為渺小:珊瑚蟲直徑不及三公分,矗立在自立建造的鈣質平台上,我們認為塑膠和石油的來源多半來自古代珊瑚礁,因此這些小小動物建築師死去多時的遺骸成就了我們的現代生活。」(「動物是天才建築師」),「而在1950年到2000年的半個世紀中,世界人口從25億變成61億,增加到2.4倍,同時,全球GDP、石油消耗量、發電容量、小麥的年產量也分別增加到8.1倍、7.3倍、21倍、4.1倍,自有人類以來消耗的各種資源,超過八成集中消費在這個時代,結果讓我們的物質生活遠較歷史上的任何一個時代都要富足,都要方便。但是相反的,因為過度消耗地球資源,排出超過地球自淨力的有害物質,使地球資源枯竭,環境破壞更加嚴重。」(綠色復甦時代)

「物種滅絕本身是極為自然的事情,在生存競爭的場所,隨時都有物種落敗。從生命在地球上誕生,已有百分之九十九的物種滅絕,平均每年都有兩、三種自然而然地消失。這種情形已經持續了幾百萬年,然而這幾年發生的情況卻相當可怕,嚴重時,僅僅一年之內就有一千種動植物滅絕。這是很不尋常的,超過一般生物滅絕的比率。」(未來種子)總而言之,世界上,生物之間生生相息,而且自然生態的設計原本並沒有「垃圾」這回事!科學的學門之間與人類文明發展「原本」應當也是如此!?

在影片導讀分享中,我們還討論了一些科幻作品的旨趣與文明保存的問題,當中一段提到立體畫派大師畢卡索說過:「藝術就是揭示真實的謊言。我就是在畫真實,超越眼見的真實。」我相信,科幻就好像科學的立體派!科學年代,科學樂觀主義者應該增長一些慈悲(無緣大慈,同體大悲),而這與「想像力」的提昇有關。科技悲觀者應該多懷抱一股希望,在科學科幻中找到個人與文明的智慧與樂趣,願原力與你同在!

完整導讀影片:

「地球證詞」臉書專頁

文章難易度
oeo
24 篇文章 ・ 1 位粉絲
森林學研究所畢業 曾任台大創發社幹部(臉書社團 "創發社CAIV" 召集人 ) 某屆倪匡科幻獎得主 從事教育工作 科學科幻 自然生態 文藝創意 一切"豐富生命"的愛好者...

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!防疫新解方:長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2874字 ・閱讀時間約 5 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022年歐盟、英、法、澳等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示針對台灣主流病毒株 BA.5 及 BA.2.75 具保護力。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
倍拉維
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
161 篇文章 ・ 270 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
2

文字

分享

0
1
2
人為開墾造成海洋酸化、雨林消失,第六次大滅絕正在上演!——《丈量人類世》
商周出版_96
・2022/10/12 ・2765字 ・閱讀時間約 5 分鐘

第六次大滅絕?

人類引以自傲的科技文明迎來了新的人類世,卻疏忽了人類也正在製造大自然中第六次,也是第一次非自然原因的生物多樣性快速消失!

目前地球上約有 1,000 萬到 1,400 萬的物種,其消失速率大約是自然背景滅絕速率的 100-1,000 倍。

大量快速消失的物種

物種在正常時期的滅絕發生率稱為「背景滅絕率」,這是很不容易估計的工作,必須結合所有的化石資料庫,並且要做長期的追蹤。

每個生物族群的背景滅絕率都不一樣,通常是以每年 100 萬物種當中有多少物種滅絕來表示。以哺乳類為例,大約每年 100 萬物種會發生 0.25 次的滅絕事件。換句話說,世界上大約有 5,500 種哺乳類,背景滅絕率預期每七百年會有一種哺乳類消失,一個人的一生應該很難注意到這種改變。

但是現在有約 28% 的瀕危物種,在 21 世紀結束前,包括全世界的大型哺乳類可能都會面臨危急存亡之秋,這樣的數字不可謂不高。

寇伯特(Elizabeth Kollbert, 1961-)在她 2014 年出版的《第六次大滅絕:不自然的歷史》一書中強調:「如果第六次的滅絕事件發生,極可能是人類造成的。」最可能的因素,還是人類殖民式的生活剝奪、侵犯了其他物種的生存棲息地所致。

伊莉莎白.寇伯特。圖/Wikipedia

海洋酸化

寇伯特的書中記錄了許多生物、生態、地質、考古學家第一手的研究結果。以那不勒斯附近火山口周遭海域的調查為例,顯示藤壺、貽貝、珊瑚藻、顆石藻、龍骨蟲、多種珊瑚、海螺、魁蛤、海綿、鯛魚、海膽等都在減少或消失。尤其是海水酸度達 7.8 的海域,69 種動物、51 種植物中約有 1/3 都不見了。

海洋酸化(ocean acidification)是二氧化碳濃度快速上升的直接結果,人類大量燃燒煤與石油,無疑是將自然蘊藏的碳快速釋放到地表環境中的主因。專家指出:二戰後的二氧化碳排放速率是空前的加速上升。當今人類世的暖化作用,比起上一個更新世每一個冰期後的暖化,起碼快了超過一個數量級。地球已經有上千萬年沒有人類世這麼熱,可能連演化都忘了如何選擇能夠耐熱的基因。如果耐熱的 DNA 已經消失,生命已經不復保有這樣的特質,那對人類世就是真正的噩耗。

海水的 pH 值 7.8 或許是海洋生態的酸度臨界點,超過此臨界點,3/4 的消失物種會是鈣化生物。海洋酸化會嚴重地改變海水及其中的生態,譬如微生物族群的組成;獲得關鍵養分的方便程度;光線穿透海水的透光度影響海藻的生態;當然也影響光合作用;聲音傳播的情形將使得海洋更嘈雜;溶解性的金屬化合物也會改變;鈣化生物如海星、海膽、蛤蜊、牡蠣、藤壺、珊瑚等會因為缺鈣而大受影響,尤其是造礁珊瑚的白化現象——珊瑚蟲集體死亡,會使得依靠珊瑚生存的生物多樣性大幅下降。而珊瑚一旦消失,海中生態系必然崩解。

1700 年代到 1990 年代,人類排放的二氧化碳對世界各地海水 pH 的影響。圖/Wikipedia

珊瑚是人類以外也會建造龐大「公共工程」的生命體,例如綿延超過 2,600 公里的大堡礁, 最厚的地方有 150 公尺,這種規模即使是人類最大的工程都望塵莫及。珊瑚礁可能支持了數百萬種海中生命共同生存或賴以捕食的環境,是海洋「撒哈拉沙漠裡的雨林」。這樣的依存關係也許已經存續了許多個地質世代,卻可能在這個世紀慘遭大幅損毀。

大氣科學家考戴拉(Ken Caldeira)是「海洋酸化」一詞的創始人,他認為未來幾個世紀的海洋酸化程度,可能造成超過數億年的影響程度。

實驗還顯示:生活在北極,看起來像是長了翅膀的海螺,以及對海水酸度非常敏感的翼足類海蝴蝶也會瀕臨危機。海蝴蝶是鯡魚、鮭魚、鯨等的重要食物,海水變酸,食物鏈必然受影響。而鈣化生物如笠貝的殼,甚至會出現破洞。此外,1/3 的造礁珊瑚、1/3 的淡水軟體動物、1/3 的鯊魚及魟魚都將消失。而某些增加的物種,譬如超微浮游生物,它們會消耗掉更多養分,使食物鏈上層的生物大受影響,進而使生態結構崩壞。

熱帶雨林的消失

除了海洋外, 嚴重影響生物性下降的原因還有熱帶「雨」「林」的減少。低緯度的雨林是地表生物多樣性最豐富的地方,而亞馬遜雨林因為過度開墾,興起了「破碎森林生物動態研究計畫」(Biological Dynamics of Forest Fragments Project)。這是世界上規模最大、時間最長的實驗之一。

亞馬遜雨林。圖/Wikipedia

從1970 年代巴西政府開始鼓勵農牧業,就規定亞馬遜區必須維持至少一半的森林維持原狀。洛夫喬伊(Tom Lovejoy)就試圖說服農場主人讓科學家決定哪些樹要留下來。在巴西政府的同意下,許多方塊形的「森林群島」就成為森林保留區,裡面有許多生態研究正在進行蒐集物種數量的變化。

依統計數字來看,地球上沒有冰的 1 億 3 千萬平方公里的陸地,已經開發墾殖了 7 千萬平方公里。真正杳無人跡的「荒地」只有沙漠、西伯利亞、加拿大北部和亞馬遜河流域,總面積只有 3 千萬平方公里,這還沒有考慮到許多人為管線穿越、切割這些「荒地」區域的影響。

「破碎森林生物動態研究計畫」發現:破碎森林的生物多樣性隨著時間不斷下降,儘管叢林的多樣性豐富,但是局部地區滅絕可能演變成區域滅絕,最後成為全球性滅絕。亞馬遜的土地墾伐影響到大氣環流,破壞雨林,不僅造成「林」的消失,也可能導致「雨」的消失。

生物多樣性之父威爾森(E. O. Wilson)和昆蟲學家厄文(Terry Erwin)都曾經估算過,破碎森林中昆蟲的當代滅絕率,可能比自然背景滅絕率高出了 1 萬倍!這個數字令人難以置信,當然統計的結果可能沒有考慮到滅絕發生所需要的時間,昆蟲的滅絕率也可能不同於其他生物的滅絕率。

科學家在全球的研究結果發現,對環境最敏感的兩棲類和昆蟲,如蛙類與蜜蜂,幾乎都在快速消失中。兩棲類在 3 億 7 千萬年前,就從海中率先登陸征服了陸地,生命力十分強悍,但如今兩棲綱可能是世界上瀕臨滅絕危機最嚴重的動物。據估計,兩棲類的滅絕率可能比背景滅絕率高出了 45,000 倍。

此外,很多其他族群的消失減損情形也頗驚人,受到影響的物種包括植物、動物的哺乳類、鳥類、爬蟲類、魚類、無脊椎動物等。1/4 的哺乳類、1/5 的爬蟲類、以及 1/6 的鳥類,也正無奈地踏上人類世的滅絕之路。這些不僅發生在森林中、深海中,更發生在我們居住的城市或後院。

——本文摘自《丈量人類世:從宇宙大霹靂到人類文明的科學世界觀》,2022 年 9 月,商周出版,未經同意請勿轉載。

商周出版_96
110 篇文章 ・ 343 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

1

5
2

文字

分享

1
5
2
低調卻又無所不在:你我身邊熟悉的陌生人,臺灣森林裡的「野生釀酒酵母菌」
研之有物│中央研究院_96
・2022/07/11 ・6154字 ・閱讀時間約 12 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/寒波、簡克志
  • 美術設計/蔡宛潔

臺灣「野生釀酒酵母」的多樣性研究

釀酒酵母,一種被人類廣泛利用的微生物,釀酒、做麵包都會用到,此外也被大量用於科學研究。可以說不論在食品或學術上,釀酒酵母早已進入你我的生活。然而,釀酒酵母除了人類常用菌株(strain)是來自原有已知的幾個馴化譜系(domesticated lineage)之外,其實還有非常多野生譜系不為人知。中央研究院「研之有物」專訪院內生物多樣性研究中心蔡怡陞副研究員,他與研究團隊尋覓臺灣野生的釀酒酵母,意外發現臺灣島的面積雖然相比之下較小,野生釀酒酵母的遺傳多樣性卻是世界最高!論文已於 2022 年 3 月 31 日發表於《基因組研究》(Genome Research)。

不管釀酒還是做麵包,都不可或缺的釀酒酵母

釀酒酵母的學名叫作 Saccharomyces cerevisiae(簡稱 S. cerevisiae),它在釀酒或烘焙等食品業中最具代表性,也是最常見的模式生物之一。釀酒酵母作為單細胞真核生物的代表,大量用於學術研究,蔡怡陞團隊的成果即是一例。

至於釀酒酵母的產業應用,例如常見的愛爾(Ale)與拉格(Lager)啤酒來說,前者發酵溫度在 20℃ 左右,菌株就是上述的 S. cerevisiae,味道較濃郁;後者的特色是低溫發酵 10℃ 左右,菌株是人類特別選殖的雜交品系(註 1),味道較清爽。

常溫發酵的愛爾啤酒較濃郁、顏色深,低溫發酵的拉格啤酒較清淡、顏色淺。圖/Pexels

有趣的是,世界各地的人、歷史與文化也許有別,愛酒的心卻都一樣,歐洲培育出發酵啤酒的品系,日本也獨立馴化獲得釀造清酒的酵母菌。

除了釀酒之外,製作麵包也需要釀酒酵母,故 S. cerevisiae 也稱作麵包酵母。仰賴小規模手工業的古時候,麵包師都有自己的獨家酵母,師傅教徒弟時,傳承的不只技術,也包括酵母麵團。

邁入近代社會以後,各行各業都走向標準化,釀酒酵母也不例外。如今不同麵包師大都使用同一種量產酵母。

釀酒酵母不只用於釀酒,烘焙業也常拿來讓麵團發酵,做出好吃的麵包。圖/Unsplash

啤酒與麵包這些案例鮮活地說明,釀酒酵母深受人類影響,這也是大部分酵母菌演化研究關注的主題。

然而蔡怡陞實驗室則不同,他關心的對象是處於人類影響以外、還沒有被馴化的野生釀酒酵母們。這些野生釀酒酵母們和食品業常用的菌株是同一物種(species),學名都是 S. cerevisiae,但是為不同菌株(strain)。

由於釀酒酵母的產業運用和微觀機制探討已經相當成熟,但是人們對於釀酒酵母在生態中的角色依然所知有限,以前人們甚至懷疑過,真的有野生的釀酒酵母嗎?後來才知道不但有,而且多樣性還不小,與人類密切接觸的只是少數幾款。

那麼,蔡怡陞團隊是如何找出低調的臺灣野生釀酒酵母呢?

看不到卻無所不在:臺灣野生釀酒酵母的探尋之旅

蔡怡陞過去就對酵母菌相當有興趣,因為這是他在倫敦帝國學院就讀博士班的起家主題!當時他研究的是釀酒酵母最近的親戚 Saccharomyces paradoxus

回到中研院後,他決定在臺灣再度開啟野生釀酒酵母的研究,與博士生李佳燁、助理劉育菁、柳韋安等人多年奮鬥後,有了出乎意料的發現!如今回首 6 年來的探索過程,並不容易。

要研究野生的釀酒酵母,第一步當然是去野外採集,可是人的眼睛看不見酵母菌,所以沒辦法用視覺辨識直接採樣,要把樣本帶回實驗室,初步處理後浸入培養液,等待兩個星期才能得知結果:釀酒酵母是否存在。

實驗室使用特製培養液,有利於釀酒酵母生長,不利其他微生物。理想上,即使釀酒酵母原本的存在感很低,也能在培養液中放大。

因為酵母菌肉眼不可見,研究團隊需在廣大森林中採樣,並將處理後的樣本浸入培養液長達兩週,之後嘗試分離微生物並鑑定,才能確認是否成功採集到釀酒酵母。圖/研之有物(酵母菌圖源/蔡怡陞提供、腦海工作室製圖)

假如等待一段時間後,培養液長不出酵母菌, 也許是一開始就真的沒有,但是有沒有可能是因為採樣和培養時有缺失,害得酵母菌長不出來?或是釀酒酵母確實存在,卻由於數量太少而無法見到?

蔡怡陞回憶,開始這項計畫的第一年,幾乎一無所獲。根據歐洲與美洲的研究經驗,野生釀酒酵母常常於橡樹表面生長,橡樹屬於殼斗科植物,所以一開始多半以市區外圍森林,如殼斗科的樹皮為目標,卻不斷失敗。

後來往更廣的範圍採樣,並與生多中心研究人員鍾國芳黃仁磐等實驗室合作,這才克服難關,順利從多種植物的果實、樹葉、樹幹、地面、甚至是地衣等來源獲得酵母菌,並且訝異地得知,釀酒酵母在臺灣的森林其實非常普遍。

蔡怡陞歸納出的模式是:臺灣野外森林中,釀酒酵母普遍存在,但是比例非常低,可謂低調卻無所不在。

釀酒酵母在顯微鏡下的照片。釀酒酵母有人類馴化過的菌株,也有野生譜系。野生的釀酒酵母在自然界中普遍存在,但是比例相當低。
圖/Wikimedia

如何歸納出以上結論呢?這要利用如今基因體學的新工具:總體基因體學(metagenomic)。原理是取得環境樣本後,直接定序其中所有 DNA 片段,或是所有物種都有的擴增子(amplicon),再與資料庫對照;如此一來,便能估計目標佔整體的比例,蔡怡陞團隊就是去估算釀酒酵母佔其生長環境中的比例。

從環境採樣培養出釀酒酵母以後,由中研院定序核心實驗室的呂美曄,回頭定序該樣本的擴增子,接著由蔡怡陞實驗室的林渝非分析。野外採集的樣本中,絕大部分是細菌,通常高達至少 99% 之多;剩下多半為真菌(和原生生物等等),其中只有極低比例是釀酒酵母,最多也只佔 0.012%。因此同樣是細菌、真菌等微生物,釀酒酵母的存在感是低於 1% 中的 0.012% 以下,換句話說,不超過百萬分之 12!

透過總體基因體學的分析,能夠量化釀酒酵母在天然環境下的存在感。蔡怡陞也強調培養液很重要,否則無法讓低調的酵母菌現形。抓到目標後就能分離酵母菌,培育建立新的菌株,並且經由團隊成員李昕翰、柯惠棉的定序、組裝獲得完整的基因組。藉此獲得一百多個臺灣各地的菌株及其遺傳訊息,用於進一步研究。

蔡怡陞實驗室中,放入培養液和樣本的 6 支試管。培養液相當重要,負責讓低調但無處不在的釀酒酵母現身。圖/研之有物

釀酒酵母的多樣性,臺灣竟然世界最複雜?

要了解蔡怡陞實驗室新論文的意義,必須先認識別人過去的研究。

2018 年就有研究者從世界各地收集超過一千個釀酒酵母品系,探討親緣關係。分析發現野生釀酒酵母們彼此的變化差異還不小,東亞的中國為最多變之處;將所有酵母菌擺在一起畫演化樹,中國採集到的品系能歸類到不同譜系(lineages),包括與同類最早分家,差異最大的譜系。

演化樹是一種建構親緣關係的工具,所有樣本中,兩個樣本假如有最近的共同祖先,通常遺傳上的差異也會愈少,便會被歸類到一塊;這一批和其次相近的另一批樣本們,又會被歸類到一群,就這樣一直向前回溯(見下圖),形成看似樹狀的關係。而這棵樹上愈早分離的譜系,也就代表差異愈大,愈早和其他樣本分家。

演化樹與地理關係的示意圖,通常有兩種情況,左邊表示不同地點(A,B,C,D)採集的樣本,在演化樹上有明確先後次序,可推論出如何在地理上傳播;右圖表示不同地點(A,B,C,D)採集的樣本,在演化樹上無明確先後次序,傳播路徑交織在一起。圖/研之有物

中國採集的釀酒酵母們,不但有些被歸類到較晚分家的不同群,幾個樣本更自成一群,形成最早分出的演化樹枝。這些證據有力地支持:中國是釀酒酵母的起源地。然而,案情並不單純!

將臺灣的一百多個菌株擺進演化樹,驚奇的事發生了!臺灣存在的釀酒酵母們,竟然也被歸類進各大譜系,並有新的譜系,這表示臺灣的釀酒酵母多樣性,和中國一樣高。而且還有一款進入之前於中國採集到,與同類最早分家的那一群。

驚奇之處在於,擺在全世界的尺度下看,臺灣只是一個很小的島,地處東亞大陸邊緣。中國面積龐大,釀酒酵母具備全世界最高的多樣性並不意外,也被認為很可能是發源地;可是小小的臺灣,竟然也存在一樣高的複雜度。

簡化過的野生釀酒酵母演化樹示意圖,蔡怡陞團隊採集到的臺灣野生釀酒酵母譜系中,發現有一款和先前中國採集樣本都是最早分家的一群(黃框處),地理傳播也交織在一起。這表示臺灣的釀酒酵母多樣性,和中國一樣高,兩者皆為世界第一。圖/研之有物(資料來源/蔡怡陞)

有沒有可能臺灣多變的品系,並非起源自當地,而是被人類無意間帶來的呢?應該不可能,因為根據遺傳差異估計,那些野生譜系們分家後衍生的年代,都早於人類在附近活動的時間;由此可以推論,目前的分佈狀況,非常可能是自然傳播的結果(或許是隨著殼斗科森林)。

所以我們可以說,臺灣是釀酒酵母最初的起源地嗎?不行。符合已知證據,比較合理的解釋是,釀酒酵母於東亞發跡,所以在東亞地區的遺傳多樣性也最高;而臺灣也包含於此一交流範圍之內,從最早的始祖開始,從古至今逐漸分家的釀酒酵母們,可能陸續,或是在同一段交流時期進入臺灣,一直低調默默生存到現在,仍保持原鄉的面貌。

然而,好的研究不只要知道有多少已知,更要知道還有多少未知。蔡怡陞提醒我們,目前研究有個盲區:東南亞地區的取樣仍十分有限。根據已知的樣本,最早與同類分家的酵母菌,它們的後裔位於中國和臺灣,故推論東亞地區是起源地。

可是取樣匱乏的東南亞,會不會住著更早分家前輩的後裔呢?這是目前無法回答的問題。

野生釀酒酵母在中國與臺灣的實際採樣分布,發現臺灣譜系的數量是全世界同尺度地區中最高的。其中 TW1 和 CHN-IX 皆為最早分家的一群,證明了台灣是發跡地之一。小小的臺灣卻擁有如此高的多樣性,就是讓人驚奇之處。圖/研之有物(資料來源/蔡怡陞)
釀酒酵母實際的演化樹,這是從樹狀圖捲曲起來的另一種表達形式,其中 TW1 和 CHN-IX 皆為野生樣本,且是最早分家的一群。圖/研之有物(資料來源/蔡怡陞)

你我所不知道的小世界,野生釀酒酵母的生殖、生態學

總之根據現有的資訊,臺灣釀酒酵母的多樣性在同樣尺度下比較確實為世界最高

大量取樣下還能觀察到,距離非常近的採集地點,竟然同時住著遺傳上差異很大,不同譜系的菌株(甚至在同一棵樹!)。相比之下,中國酵母的多樣性也高,但是分佈並不密集,相近的地理範圍內通常存在遺傳上類似的菌株。

不同研究的手法不同,這會不會是中國研究者採集較為稀疏,取樣方式導致的偏誤呢?蔡怡陞表示,的確無法排除前述可能性;但是他反而認為過去的採集方式,說不定都忽略了微生物近距離的分佈與多樣性,所以更需要反思過往認知微生物的生物地理關係。

不過他也認為中國的釀酒酵母確實住的比較分散;因此差異大的品系住在附近這回事,搞不好真的是臺灣特色,至少是率先在臺灣觀察到。

了調查臺灣野生釀酒酵母的多樣性,蔡怡陞團隊也發現野生的釀酒酵母大部分是採取無性生殖,不同品系之間雖然會有遺傳交流,但是相當有限。圖/研之有物

另一件有趣的發現是遺傳交流。釀酒酵母是單細胞真核生物,實驗室環境下可以無性生殖,自己複製自己;也可以隨時切換成有性生殖,和同類一起生寶寶。利用菌株間的遺傳差異,可以預測自然界的釀酒酵母,大部分時候採行無性生殖(這是蔡怡陞博士班時期努力的主題!)。

既然臺灣存在許多遺傳有別的野生品系,有時候又住的很近,它們之間會遺傳交流嗎?

比對基因組得知,會,不過不常見,大約每幾百到幾萬次無性生殖才有 1 次有性生殖。這證實蔡怡陞對酵母菌生殖的推論,替釀酒酵母生態學新添一分認識。

讓學術研究結合產業應用,找到野生釀酒酵母之後

有趣歸有趣,但是研究臺灣野生釀酒酵母有什麼意義呢?

從學術上來說,蔡怡陞指出,臺灣生態系複雜,本次透過基因體學手法得到量化證據,支持釀酒酵母這種微生物,在臺灣的多樣性很高。這項在臺灣採樣的本土研究,也大幅增進全世界對釀酒酵母的認識,並可更進一步開始探討釀酒酵母在自然界所扮演的角色。

從產業上來說,在蔡怡陞團隊的辛苦調查與記錄之後,未來我們是否可以期待廠商用臺灣在地的野生釀酒酵母做啤酒呢?

釀酒酵母是與人類互動最密切的微生物之一,但是人們對野生的釀酒酵母了解卻很有限,可謂無比熟悉的陌生人。蔡怡陞採集到眾多野生的菌株品系,不論學術研究或產業應用,都可能有進一步發展。

目前實驗室正在把這些菌株「帶」回實驗室,開始量化相關的表現型(phenotypes)。等到時機成熟,他歡迎各界合作,一起探索臺灣自然資源的潛力。

蔡怡陞與實驗室團隊合影,前排由左往右為:李佳燁、柯惠棉;後排由左往右為:蕭禎、劉育菁、蔡怡陞、林渝非。這次論文中公開的眾多野生釀酒酵母菌株,不論學術研究或產業應用,都有相當的發展潛力。圖/研之有物

註解

  1. 拉格啤酒採用的菌株是 Saccharomyces pastorianus,為 S. cerevisiae 及 S. eubayanus 兩者雜交而成。

參考資料

  1. 蔡怡陞(2017)。〈多樣性決定味覺豐富度,釀酒酵母的「萬年傳統全新感受」〉,《環境資訊中心》。
  2. Lee, T. J., Liu, Y.-C., Liu, W.-A., et al. (2022). Extensive sampling of Saccharomyces cerevisiae in Taiwan reveals ecology and evolution of predomesticated lineages. Genome Research.
  3. Peter, J., De Chiara, M., Friedrich, A. et al. (2018). Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature, 556, 339–344.
  4. Duan, S. F., Han, P. J., Wang, Q. M. et al. (2018). The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. Nat Commun, 9, 2690.
  5. White, C., & Zainasheff, J. (2010). Yeast: The Practical Guide to Beer Fermentation. Brewers Publications.
  6. Tsai, I. J., Bensasson, D., Burt, A., & Koufopanou, V. (2008). Population genomics of the wild yeast Saccharomyces paradoxus: Quantifying the life cycle. PNAS, 105(12), 4957–4962.

所有討論 1
研之有物│中央研究院_96
255 篇文章 ・ 2355 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook