0

0
0

文字

分享

0
0
0

資訊科學到底算不算是科學呢?

程式人雜誌
・2013/07/06 ・4973字 ・閱讀時間約 10 分鐘 ・SR值 551 ・八年級

文 / 陳鍾誠 (國立金門大學資工系助理教授)

前言

Computer Science 通常被翻成中文的「資訊科學」,不過更精準的翻譯應該是「電腦科學」或「計算機科學」。

但是、Computer Science 真的能算是一門「科學」嗎?

或許有些人會覺得納悶,這是甚麼怪問題阿!

-----廣告,請繼續往下閱讀-----

既然是 Computer 「Science」,當然是科學啦!

但是、Computer Science 究竟有多科學呢?

另外、Computer Science 的研究有甚麼障礙等待這些「科學家」去克服呢?

這是本文想探討的問題。

-----廣告,請繼續往下閱讀-----

哪些學問算是科學呢?

如果我說「物理」是一門科學,或者說「生物」是一門科學,那我想應該很少人會有意見, 因為「物理、化學、生物」這些領域可以說是典型的科學研究領域,如果這些不能被稱為科學的話, 那其他領域就完全無法被稱為「科學」了。

那麼、「心理學」、「社會學」、「經濟學」或「歷史學」,也算是科學嗎?

關於這點,我想就有很多人有意見了!

以上問題見仁見智,我們就不企圖在此進行爭論了。

-----廣告,請繼續往下閱讀-----

接著、我們再來看看一個比較有趣的問題,那就是所有科學都需要用到的 — 「數學」,可以算是一門科學嗎?

要談論這個問題,得讓我們先回到「工業革命」的時代!

眾所周知的是,西洋的科學文化通常會追溯到希臘三哲人的時代,然後經過了兩千年的漫長旅程,到了十五世紀 文藝復興之後,開始又復甦起來,然後更連接到「威尼斯、荷蘭、西班牙、葡萄牙」的大航海時代,接著英法等國 逐漸掌握了海權,並且在英國興起了「工業革命」之後,科學的重要性才逐漸的凸顯了出來。

所以科學和工業革命事實上是歷史上難以分開的兩個兄弟,但是、工業與科學到底有甚麼關係呢?

-----廣告,請繼續往下閱讀-----

在我大學的時代,一直對這個問題很好奇,直到有一天,我看了金觀濤《創造與反思》一書中的幾篇文章之後, 概念逐漸清晰了起來,這些文章列表如下:

  • 科學技術的整體觀
  • 近代科學技術結構的成長
  • 中國近代科學落後的原因

以下是我從這些文章中整理出來的幾個圖,讓我們用這些圖來說明「科學、實驗與工業」之間的關係。

首先讓我們聚焦在「科學與實驗之間的關係」這張圖上,我們可以看到實驗對科學的重要性,實驗可以用來 檢驗科學理論是否有誤,而科學理論則對實驗該如何進行提供了指導方向。

科學與實驗之間的關係

這種想法在 Popper (常譯為波柏或波普爾) 進化認識論當中表現得特別明顯,以下是從「波柏的進化認識論」 這篇文章中摘錄出來的一段話:

-----廣告,請繼續往下閱讀-----

針對某一特定現象作出精確預言,並且承認:符合預言的事實不能證實自己的理論,但不符合預言的事實卻能否證這一理論,這才是真正的科學,否則即是前科學或是偽科學。

換句話說,實驗可以用來否證一個理論,但是卻不能「證明」某個理論 (只能說該理論沒有被推翻)。

於是 Popper 發展出了他著名的「進化認識論」,論述那些「可以被外在事實或實驗檢驗」的的問題, 才算是科學問題,而那些無法被「實驗檢驗」的問題,就不屬於科學性的問題。

因此、像是宗教上面論述神是否存在、或者說「只有某些特定的人才能見證到神的存在」之類的問題,都屬於 無法被「可重複的實驗結果」所檢驗的,因此無法被稱為科學問題。

如果從這個觀點來看,「物理、化學、生物」等領域,都依賴實驗來檢驗理論,因此都屬於典型的科學領域, 但是「心理、歷史、經濟與社會」等領域,由於都與人有密切的關聯,而且很難進行「可重複的實驗」, 因此就不屬於典型科學領域的範疇。

-----廣告,請繼續往下閱讀-----

而上面所說的數學呢?由於數學並不具有「可用外在世界實驗檢驗理論」的特性,因此在 Popper 的這種想法中, 並不能算是科學性的領域。

雖然數學並不算是科學的領域,但這並不代表數學是不重要的,相反的,數學在科學上的價值是有目共睹的, 因為大部分的理論,只有在能夠表達成某種數學之後,才能夠被檢驗。舉例而言,牛頓第二運動定律 F=M×A 這條數學式,一旦被寫出來之後,物理學家門就可以去做實驗,想辦法否證這個定律,而經過千百次的檢驗之後, 力學運動大致都符合這個定律,沒有實驗能明顯的否證此一定律時,我們才能說這是一個「定律」,否則就只能稱為 「假說」而已。

透過「實驗」來驗證理論,正是「科學」與「非科學」領域之間的最大差異。

但是、科學或不科學到底有甚麼關係呢?難道科學的興起與工業革命之間有關連嗎?且讓我們再來看看以下圖形。

-----廣告,請繼續往下閱讀-----
科學與工業之間的關係

在上圖中,除了原本「理論與實驗」間的良性循環之外,又加上了「科學與工業」間的循環,這個循環解釋了 為何「工業革命與科學革命」同時發生,而且兩者個關係如此緊密的原因。

「金觀濤」在上述文章中用了很清楚的邏輯,說明了「理論與實驗」、「科學與工業」間的增強循環,是如何在 15 世紀之後發生,然後不斷增強與進步的,非常建議有興趣的讀者可以閱讀金觀濤的一系列作品。

Computer Science 究竟有多科學呢?

再度回到我們的問題上,究竟 Computer Science 到底算不算是一門科學呢?首先讓我們看看 Computer Science 到底在研究些甚麼?

根據筆者的研究經驗,我大致將 Computer Science 的研究分為三種類型,第一類著重於「執行速度」、第二類 著重於「使用空間」,第三類則著重於「正確率」的研究,第四類則是著重於「優化某種數字」的研究。

像是「演算法、計算機結構、網路通訊」等領域的研究,通常是為了讓「軟體、硬體、網路」更有效率,速度更快 而進行的研究,這類的研究是以「執行速度」為衡量標準的研究。

而像「資料結構、影像壓縮、檔案結構」等領域的研究,則是為了用更少的空間,達成相同或更好的效能,這類的 研究是屬於第二類的「使用空間」為衡量標準的研究。

然後、像是「影像辨識、語音辨識、手寫辨識、機器翻譯、自然語言」等領域,則是著眼於提升「翻譯或辨識」的 正確率。

最後、有些研究是在尋找某種更好的解答,像是「某個量化數字更好」等等,這類的研究通常稱為「最佳化」 或「優化」類的研究。

對於一、二類的研究而言,我們可以採用某種衡量方法,或者實際的去執行程式,以便檢驗究竟哪種方法較好。 而對於第四類的研究而言,那些數字是某個固定的函數,所以也可以很容易的計算出來,以檢驗方法的好壞。

但是對於第三類的研究而言,正確率往往會「與人有關」,這時候最後的檢驗標準必須用人來判斷,這類的研究 以「人工智慧」領域最多,其中有些問題是人類通常有共同答案的,像是「影像辨識、語音辨識、手寫辨識」等, 這些就比較容易有一致的檢證標準。

在第三類的研究當中,有些問題連人類也常有不同答案的,像是「機器翻譯」的問題,同一句英文會被翻譯 成什麼樣的中文,是每個人都有不同想法的,甚至對於同一個翻譯而言,有些人覺得這樣翻很好,也有人可 能會覺得這樣翻很糟,沒有固定的標準,這種研究在客觀上就有衡量的困難。

對於「自然語言」的研究更是如此,舉例而言,在 1950 年時資訊科學領域的開山始祖』「艾倫、圖靈」(Alan Turing) 就曾經提出一個稱為「圖靈測試」 (Turing Test) 的測驗,用來檢驗「一台電腦是否具有智慧」這件事情, 其方法很容易理解,現代的讀者可以想像當有個陌生人連進來與你做 MSN 或 facebook 訊息的交談時,您必須判斷對方到底是一個真人,或者只是一支「聊天程式」,假如有個程式厲害到讓人判斷不出來,那麼這個程式就通過了 「圖靈測試」 。

在 Alan Turing 想出「圖靈測試」這個檢驗方法之後,很多人就開始想如何才能做出這樣一台有智慧的電腦, 一支有智慧的程式呢?這個問題在 1964 被 MIT 的 Joseph Weizenbaum 用一個非常投機取巧的方式,設計出了 一支稱為 Eliza 的聊天程式,不算完整的解決了「圖靈測試」這個問題。

事實上、Eliza 可以說是一支很擅長呼攏欺騙的程式,如果翻譯成中文來看,他其實幾乎都用那些 寒暄招呼語,以及模擬兩可的用語在與人對談,例如「你好嗎?」、「請繼續」…,另外、如果你談到「父母兄弟姊妹…」, 他就說「可以多和我聊聊有關你家人的事情嗎?」之類的泛用語, Eliza 甚至會利用樣式比對取出你的一些話後來回答你,例如你如果說:「我心情不好!」,Eliza 就會回答說:「為何你心情不好?」,其中的 (心情不好) 這幾個字是從你的問句中用「我 * 」的方式取出來的。

以下是筆者與自己設計的「中文 Java 版 Eliza」 聊天的一個過程。

您好,我的朋友! 有心事嗎 ? 

>> 我不開心

為何不開心?

>> 和同學吵架了

這樣喔!知道!

>> 心情很惡劣

可否多告訴ㄧ些呢?

>> 我最好的朋友罵我

你認識他多久了呢?

>> 很久了,超過十年了

如果您也想試試看與 Eliza 聊天的感覺,可以連線到筆者的下列網頁,試著與「中文網頁版的 Eliza」 聊聊天:

以下是筆者與自己寫的網頁版程式聊天的一個畫面 (不過我女朋友沒有跑掉就是了 ….)。

筆者與網頁版 Eliza 聊天的一個畫面

由於這類的問題牽涉到人類的判斷,而且研究者可以利用某些人類特性去發展出一些取巧的方法, 因此往往是最難評量的一類問題。

對於第三類問題而言,假如問題的判斷最後取決於人的,那麼其檢證標準就不太容易客觀的存在, 因為與人們的判斷有關,有時候可能會見仁見智,這種類型的研究,反倒有點像是「心理學」的研究了。

後記

經過了 30 年的程式訓練之後,筆者深深感覺「資訊科學」其實不太像「物理、化學、生物」這樣 有一個外在的世界可以用來檢驗某個程式的。相反的,「資訊科學」反倒是比較像「數學」一樣,是從某種 「公理系統」出發,這個最初公理系統就是電腦的「機器指令」,程式設計者透過「寫程式」的方式, 告訴電腦一個「推演的方法」,然後讓那個「程式」去進行某種「自動推演」,以便找出問題的解答。

當然、由於程式的寫法無窮無盡,因此每個人寫出的程式也就大不相同,這些程式背後所根據的方法也 各有差異,因此在同一個問題上,程式的表現也就有優劣之分,但是要到底哪個程式好,哪個程式不好, 則不一定有絕對的標準,因為對於兩組不同的輸入 A , B 而言,可能「程式 1」在 A 上表現比「程式 2」好, 但是「程式 1」在 B 上表現又比又比「程式 2」糟。因此最後就得有個「綜合指標」將這些程式的表現量化, 但是這種「綜合指標」必然會導致某種的不客觀或不公平,所以在很多「資訊科學」的問題上,評量是 很難客觀的。

另外、對於那些與人有關的問題,其評量必須耗費大量的人力、時間與金錢,然而即使作完評量,這樣的 評量卻又與人有關,因此很容易產生不客觀的爭議,因此這些領域也就不容易有快速的研究進展, 像是「機器翻譯」與「自然語言」等都在評量上都存有很大的障礙。

甚至、有些障礙不只存在問題本身,而是存在「資訊科學」的研究文化上。在早期、電腦架構各不相同, 執行環境難以統一的年代,資訊科學的研究最後都是化成數學符號,然後撰寫成論文的,這個文化一直 持續到網路發達的今日,資訊科學的研究者往往在發表論文的時候並沒有附上「程式與測試資料」,這讓 想要「重複進行該研究實驗」的研究者難以檢驗論文與方法的好壞,這種文化顯然阻礙了「資訊科學」 的進步速度。

我想,資訊科學領域的研究者有必要向「開放原始碼」領域的程式設計者學習,盡可能的將「程式與測試資料」 公開,讓後續的研究者得以「精準的重複該實驗」並「檢驗論文所提出的方法」,然後從「程式原始碼當中學習該方法」, 這樣才能讓「資訊科學」成為一門「可重複的實驗結果」的領域,而這也正是 波柏的進化認識論 所認為 「科學應該有的必要條件」阿!

參考文獻

轉載自程式人雜誌

-----廣告,請繼續往下閱讀-----
文章難易度
程式人雜誌
9 篇文章 ・ 1 位粉絲
程式人雜誌是一個結合「開放原始碼與公益捐款活動」的雜誌,簡稱「開放公益雜誌」。開放公益雜誌本著「讀書做善事、寫書做公益」的精神,我們非常歡迎程式人認養專欄、或者捐出您的網誌。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

2
2

文字

分享

1
2
2
凡事都想知道「為什麼」,是踏入科學探究的第一步——《教出科學探究力》
親子天下_96
・2022/08/14 ・2566字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

在某個燠熱難耐的夏日午後,你打開電風扇,卻發現吹出來的風好像比印象中來得小。你眉頭一皺,覺得案情並不單純。就在走近電風扇的那幾步裡,好幾種可能性閃過心頭:

「會不會是按錯按鈕了?」、「會不會是扇葉太髒了?」、「會不會是轉軸黏住了?」、「會不會是⋯⋯?」這些猜想背後,都是根據你對電風扇原理的一些些認識才會做出的假設。

當你打開電風扇卻發現吹出來的風好像比印象中來得小,心中會冒出許多假設。圖/Pexels

在提出疑問和假設之後,尋找問題的答案

靠近電扇之後,你看到按鈕確實是按下了「強」。接著你切斷風扇電源,看了看扇葉,發現確實有點髒,於是把電風扇拆洗後裝回去,再按下按鈕。結果風吹起來,就如同你印象中的那麼涼了。這證實了你的第二個猜想,並且解決你所關心的問題。

上述這樣的過程,其實就是「察覺差異,提出問題」、「根據理論,連結現象」、「提出假設,進行驗證」、「預測結果」等等的探究過程。

-----廣告,請繼續往下閱讀-----

再舉個例子。

我有一天走在馬路上,看到白色分隔標線的一端閃著黃色的光。我心想:「難道馬路地上埋了一顆黃色的燈?是要作為交通警示用途嗎?」

我覺得奇怪,記得前幾天沒看到這裡有燈。接著我把視野放大,往左往右看了看周圍。發現有一台車停在遠處,車頭開啟方向燈,燈是黃色的,而且還在閃爍。然後我馬上注意到,兩者閃爍的頻率是相同的。

於是我有了新的猜想:「地上的神祕閃光,非常可能來自於汽車閃爍的方向燈的反光。」

但是柏油路面怎麼會反光呢?

仔細一看,地上似乎有一小灘水。汽車的方向燈發出來的光,剛好通過那一小灘水的反光進到我眼睛,讓我覺得地面在發光。接著馬上一台車經過,就擋在方向燈和積水的中間。我看到的亮光馬上消失,證實我的第二個猜想是正確的。

-----廣告,請繼續往下閱讀-----
你可能會猜想:「地上的閃光,可能來自於汽車方向燈的反光。」但是柏油路面怎麼會反光呢?圖/Pexels

「哪裡怪怪的」這個念頭,會帶領我們尋找答案

像這樣的心智活動,在我們的生活中無時無刻都在進行著。只要我們發現「哪裡怪怪的」,腦袋幾乎就會立刻啟動探究的機制:

  • 廚房怎麼那麼多螞蟻?(察覺問題)
  • 是不是有食物殘渣沒有清理乾淨?(根據理論提出假設)
  • 仔細觀察一下,發現⋯⋯(得到結論)

既然這些能力是我們原本就自然會的,那又為什麼要學呢?因為我們雖然很習慣對於意料之外的事情展開探索,但是以直覺來進行思考及解決問題的方式,往往並不太科學。

抓住內心的每次疑惑,成為具有好奇心和探究心的人吧!圖/Pixabay

古人說的「地牛翻身」,其實也是一種探究的精神

古人在觀察自然現象的時候,會提出自己的解釋。例如面對地震的時候,台灣民俗的說法是「地牛翻身」,日本民俗的說法則是「棲息在地底的大鯰魚搖動身體」;至於日食在中國的傳說中是「天上的狗把太陽吃掉了」。

於是後人也會根據這些「理論」來規劃解決問題的方法。例如,綠島人認為地牛不只一隻,還會彼此打架,所以地震時要敲打金屬臉盆來分開牠們;同樣的,古時候的中國人看到日食,也會敲鑼打鼓、放鞭炮來趕走天狗。

-----廣告,請繼續往下閱讀-----

有趣的是,根據這些「理論」採取的「實驗」,還真的每一次都會成功喔!一代又一代的人反覆進行著下圖這樣的實驗,所以千年來人們始終對這些「理論」深信不疑。

如果你是一位受過基礎科學教育的公民,這時候可能就會提出質疑,認為這樣的實驗並沒有對照組。

例如下一次出現日食的時候,如果不要敲鑼、打鼓、放鞭炮,日食是不是也會結束?如果不這麼做,日食仍然會結束的話,那麼用敲鑼打鼓的方式趕走天狗的假說就會受到挑戰了。

當然,在一個深信天狗傳說的社會中,沒有人會膽敢拒絕敲鑼打鼓,不然萬一太陽真的就被吃掉而永遠消失了,這責任誰負擔得起?用這個角度來看會發現,有時候要突破傳統,其實是一件非常困難的事情。

恐懼源自於未知:想消除恐懼,需要探究未知

人對於未解的現象,往往會用隨意的想像與歸因來尋求解釋,用很直覺的方式來建立對自然現象的理解,也是人類天生的習慣。

-----廣告,請繼續往下閱讀-----

直到距今兩千六百多年前,古希臘哲學家泰利斯才撥開直覺的迷霧,主張應該拒絕再用人格化的神祇來解釋自然現象,而是要藉由理性的假說來理解和解釋自然現象。但即使西方在兩千六百多年前已經出現這樣的思想,但近代科學真正臻至蓬勃發展,還是近半個世紀內的事情。

正由於科學的研究和思考方法並不直覺、並不符合人類的天生習慣,所以必須透過後天的教育與訓練,才能慢慢熟練並妥善運用在生活之中。

雖然探究是我們的天性,但是具有科學素養的探究卻不是天性,無法一蹴可幾。就像科學家需要訓練有素的探究技術,才能做好自己的研究。

一般公民也需要具備科學探究的素養,來幫助自己在面對生活中諸多不熟悉的現象時,能運用一套思考和研究的方式來做判斷,特別是幫助我們更加注意到生活中不尋常的現象,能對許多直覺、缺乏事實支持的歸因有更高的警覺。

-----廣告,請繼續往下閱讀-----

正因為我們的生活離不開探究,所以更應該透過學習來提升探究品質。這正是國民教育自然課程中所應教會每個公民的事情。

——本文摘自《教出科學探究力》,2021 年 8 月,親子天下 ,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1
親子天下_96
26 篇文章 ・ 25 位粉絲
【親子天下】起源於雜誌媒體和書籍出版,進而擴大成為華文圈影響力最大的教育教養品牌,也是最值得信賴的親子社群平台:www.parenting.com.tw。我們希望,從線上(online)到實體(offline),分齡分眾供應華人地區親子家庭和學校最合身體貼的優質內容、活動、產品與服務。