0

0
0

文字

分享

0
0
0

資訊科學到底算不算是科學呢?

程式人雜誌
・2013/07/06 ・4973字 ・閱讀時間約 10 分鐘 ・SR值 551 ・八年級

文 / 陳鍾誠 (國立金門大學資工系助理教授)

前言

Computer Science 通常被翻成中文的「資訊科學」,不過更精準的翻譯應該是「電腦科學」或「計算機科學」。

但是、Computer Science 真的能算是一門「科學」嗎?

或許有些人會覺得納悶,這是甚麼怪問題阿!

-----廣告,請繼續往下閱讀-----

既然是 Computer 「Science」,當然是科學啦!

但是、Computer Science 究竟有多科學呢?

另外、Computer Science 的研究有甚麼障礙等待這些「科學家」去克服呢?

這是本文想探討的問題。

-----廣告,請繼續往下閱讀-----

哪些學問算是科學呢?

如果我說「物理」是一門科學,或者說「生物」是一門科學,那我想應該很少人會有意見, 因為「物理、化學、生物」這些領域可以說是典型的科學研究領域,如果這些不能被稱為科學的話, 那其他領域就完全無法被稱為「科學」了。

那麼、「心理學」、「社會學」、「經濟學」或「歷史學」,也算是科學嗎?

關於這點,我想就有很多人有意見了!

以上問題見仁見智,我們就不企圖在此進行爭論了。

-----廣告,請繼續往下閱讀-----

接著、我們再來看看一個比較有趣的問題,那就是所有科學都需要用到的 — 「數學」,可以算是一門科學嗎?

要談論這個問題,得讓我們先回到「工業革命」的時代!

眾所周知的是,西洋的科學文化通常會追溯到希臘三哲人的時代,然後經過了兩千年的漫長旅程,到了十五世紀 文藝復興之後,開始又復甦起來,然後更連接到「威尼斯、荷蘭、西班牙、葡萄牙」的大航海時代,接著英法等國 逐漸掌握了海權,並且在英國興起了「工業革命」之後,科學的重要性才逐漸的凸顯了出來。

所以科學和工業革命事實上是歷史上難以分開的兩個兄弟,但是、工業與科學到底有甚麼關係呢?

-----廣告,請繼續往下閱讀-----

在我大學的時代,一直對這個問題很好奇,直到有一天,我看了金觀濤《創造與反思》一書中的幾篇文章之後, 概念逐漸清晰了起來,這些文章列表如下:

  • 科學技術的整體觀
  • 近代科學技術結構的成長
  • 中國近代科學落後的原因

以下是我從這些文章中整理出來的幾個圖,讓我們用這些圖來說明「科學、實驗與工業」之間的關係。

首先讓我們聚焦在「科學與實驗之間的關係」這張圖上,我們可以看到實驗對科學的重要性,實驗可以用來 檢驗科學理論是否有誤,而科學理論則對實驗該如何進行提供了指導方向。

科學與實驗之間的關係

這種想法在 Popper (常譯為波柏或波普爾) 進化認識論當中表現得特別明顯,以下是從「波柏的進化認識論」 這篇文章中摘錄出來的一段話:

-----廣告,請繼續往下閱讀-----

針對某一特定現象作出精確預言,並且承認:符合預言的事實不能證實自己的理論,但不符合預言的事實卻能否證這一理論,這才是真正的科學,否則即是前科學或是偽科學。

換句話說,實驗可以用來否證一個理論,但是卻不能「證明」某個理論 (只能說該理論沒有被推翻)。

於是 Popper 發展出了他著名的「進化認識論」,論述那些「可以被外在事實或實驗檢驗」的的問題, 才算是科學問題,而那些無法被「實驗檢驗」的問題,就不屬於科學性的問題。

因此、像是宗教上面論述神是否存在、或者說「只有某些特定的人才能見證到神的存在」之類的問題,都屬於 無法被「可重複的實驗結果」所檢驗的,因此無法被稱為科學問題。

如果從這個觀點來看,「物理、化學、生物」等領域,都依賴實驗來檢驗理論,因此都屬於典型的科學領域, 但是「心理、歷史、經濟與社會」等領域,由於都與人有密切的關聯,而且很難進行「可重複的實驗」, 因此就不屬於典型科學領域的範疇。

-----廣告,請繼續往下閱讀-----

而上面所說的數學呢?由於數學並不具有「可用外在世界實驗檢驗理論」的特性,因此在 Popper 的這種想法中, 並不能算是科學性的領域。

雖然數學並不算是科學的領域,但這並不代表數學是不重要的,相反的,數學在科學上的價值是有目共睹的, 因為大部分的理論,只有在能夠表達成某種數學之後,才能夠被檢驗。舉例而言,牛頓第二運動定律 F=M×A 這條數學式,一旦被寫出來之後,物理學家門就可以去做實驗,想辦法否證這個定律,而經過千百次的檢驗之後, 力學運動大致都符合這個定律,沒有實驗能明顯的否證此一定律時,我們才能說這是一個「定律」,否則就只能稱為 「假說」而已。

透過「實驗」來驗證理論,正是「科學」與「非科學」領域之間的最大差異。

但是、科學或不科學到底有甚麼關係呢?難道科學的興起與工業革命之間有關連嗎?且讓我們再來看看以下圖形。

-----廣告,請繼續往下閱讀-----
科學與工業之間的關係

在上圖中,除了原本「理論與實驗」間的良性循環之外,又加上了「科學與工業」間的循環,這個循環解釋了 為何「工業革命與科學革命」同時發生,而且兩者個關係如此緊密的原因。

「金觀濤」在上述文章中用了很清楚的邏輯,說明了「理論與實驗」、「科學與工業」間的增強循環,是如何在 15 世紀之後發生,然後不斷增強與進步的,非常建議有興趣的讀者可以閱讀金觀濤的一系列作品。

Computer Science 究竟有多科學呢?

再度回到我們的問題上,究竟 Computer Science 到底算不算是一門科學呢?首先讓我們看看 Computer Science 到底在研究些甚麼?

根據筆者的研究經驗,我大致將 Computer Science 的研究分為三種類型,第一類著重於「執行速度」、第二類 著重於「使用空間」,第三類則著重於「正確率」的研究,第四類則是著重於「優化某種數字」的研究。

像是「演算法、計算機結構、網路通訊」等領域的研究,通常是為了讓「軟體、硬體、網路」更有效率,速度更快 而進行的研究,這類的研究是以「執行速度」為衡量標準的研究。

而像「資料結構、影像壓縮、檔案結構」等領域的研究,則是為了用更少的空間,達成相同或更好的效能,這類的 研究是屬於第二類的「使用空間」為衡量標準的研究。

然後、像是「影像辨識、語音辨識、手寫辨識、機器翻譯、自然語言」等領域,則是著眼於提升「翻譯或辨識」的 正確率。

最後、有些研究是在尋找某種更好的解答,像是「某個量化數字更好」等等,這類的研究通常稱為「最佳化」 或「優化」類的研究。

對於一、二類的研究而言,我們可以採用某種衡量方法,或者實際的去執行程式,以便檢驗究竟哪種方法較好。 而對於第四類的研究而言,那些數字是某個固定的函數,所以也可以很容易的計算出來,以檢驗方法的好壞。

但是對於第三類的研究而言,正確率往往會「與人有關」,這時候最後的檢驗標準必須用人來判斷,這類的研究 以「人工智慧」領域最多,其中有些問題是人類通常有共同答案的,像是「影像辨識、語音辨識、手寫辨識」等, 這些就比較容易有一致的檢證標準。

在第三類的研究當中,有些問題連人類也常有不同答案的,像是「機器翻譯」的問題,同一句英文會被翻譯 成什麼樣的中文,是每個人都有不同想法的,甚至對於同一個翻譯而言,有些人覺得這樣翻很好,也有人可 能會覺得這樣翻很糟,沒有固定的標準,這種研究在客觀上就有衡量的困難。

對於「自然語言」的研究更是如此,舉例而言,在 1950 年時資訊科學領域的開山始祖』「艾倫、圖靈」(Alan Turing) 就曾經提出一個稱為「圖靈測試」 (Turing Test) 的測驗,用來檢驗「一台電腦是否具有智慧」這件事情, 其方法很容易理解,現代的讀者可以想像當有個陌生人連進來與你做 MSN 或 facebook 訊息的交談時,您必須判斷對方到底是一個真人,或者只是一支「聊天程式」,假如有個程式厲害到讓人判斷不出來,那麼這個程式就通過了 「圖靈測試」 。

在 Alan Turing 想出「圖靈測試」這個檢驗方法之後,很多人就開始想如何才能做出這樣一台有智慧的電腦, 一支有智慧的程式呢?這個問題在 1964 被 MIT 的 Joseph Weizenbaum 用一個非常投機取巧的方式,設計出了 一支稱為 Eliza 的聊天程式,不算完整的解決了「圖靈測試」這個問題。

事實上、Eliza 可以說是一支很擅長呼攏欺騙的程式,如果翻譯成中文來看,他其實幾乎都用那些 寒暄招呼語,以及模擬兩可的用語在與人對談,例如「你好嗎?」、「請繼續」…,另外、如果你談到「父母兄弟姊妹…」, 他就說「可以多和我聊聊有關你家人的事情嗎?」之類的泛用語, Eliza 甚至會利用樣式比對取出你的一些話後來回答你,例如你如果說:「我心情不好!」,Eliza 就會回答說:「為何你心情不好?」,其中的 (心情不好) 這幾個字是從你的問句中用「我 * 」的方式取出來的。

以下是筆者與自己設計的「中文 Java 版 Eliza」 聊天的一個過程。

您好,我的朋友! 有心事嗎 ? 

>> 我不開心

為何不開心?

>> 和同學吵架了

這樣喔!知道!

>> 心情很惡劣

可否多告訴ㄧ些呢?

>> 我最好的朋友罵我

你認識他多久了呢?

>> 很久了,超過十年了

如果您也想試試看與 Eliza 聊天的感覺,可以連線到筆者的下列網頁,試著與「中文網頁版的 Eliza」 聊聊天:

以下是筆者與自己寫的網頁版程式聊天的一個畫面 (不過我女朋友沒有跑掉就是了 ….)。

筆者與網頁版 Eliza 聊天的一個畫面

由於這類的問題牽涉到人類的判斷,而且研究者可以利用某些人類特性去發展出一些取巧的方法, 因此往往是最難評量的一類問題。

對於第三類問題而言,假如問題的判斷最後取決於人的,那麼其檢證標準就不太容易客觀的存在, 因為與人們的判斷有關,有時候可能會見仁見智,這種類型的研究,反倒有點像是「心理學」的研究了。

後記

經過了 30 年的程式訓練之後,筆者深深感覺「資訊科學」其實不太像「物理、化學、生物」這樣 有一個外在的世界可以用來檢驗某個程式的。相反的,「資訊科學」反倒是比較像「數學」一樣,是從某種 「公理系統」出發,這個最初公理系統就是電腦的「機器指令」,程式設計者透過「寫程式」的方式, 告訴電腦一個「推演的方法」,然後讓那個「程式」去進行某種「自動推演」,以便找出問題的解答。

當然、由於程式的寫法無窮無盡,因此每個人寫出的程式也就大不相同,這些程式背後所根據的方法也 各有差異,因此在同一個問題上,程式的表現也就有優劣之分,但是要到底哪個程式好,哪個程式不好, 則不一定有絕對的標準,因為對於兩組不同的輸入 A , B 而言,可能「程式 1」在 A 上表現比「程式 2」好, 但是「程式 1」在 B 上表現又比又比「程式 2」糟。因此最後就得有個「綜合指標」將這些程式的表現量化, 但是這種「綜合指標」必然會導致某種的不客觀或不公平,所以在很多「資訊科學」的問題上,評量是 很難客觀的。

另外、對於那些與人有關的問題,其評量必須耗費大量的人力、時間與金錢,然而即使作完評量,這樣的 評量卻又與人有關,因此很容易產生不客觀的爭議,因此這些領域也就不容易有快速的研究進展, 像是「機器翻譯」與「自然語言」等都在評量上都存有很大的障礙。

甚至、有些障礙不只存在問題本身,而是存在「資訊科學」的研究文化上。在早期、電腦架構各不相同, 執行環境難以統一的年代,資訊科學的研究最後都是化成數學符號,然後撰寫成論文的,這個文化一直 持續到網路發達的今日,資訊科學的研究者往往在發表論文的時候並沒有附上「程式與測試資料」,這讓 想要「重複進行該研究實驗」的研究者難以檢驗論文與方法的好壞,這種文化顯然阻礙了「資訊科學」 的進步速度。

我想,資訊科學領域的研究者有必要向「開放原始碼」領域的程式設計者學習,盡可能的將「程式與測試資料」 公開,讓後續的研究者得以「精準的重複該實驗」並「檢驗論文所提出的方法」,然後從「程式原始碼當中學習該方法」, 這樣才能讓「資訊科學」成為一門「可重複的實驗結果」的領域,而這也正是 波柏的進化認識論 所認為 「科學應該有的必要條件」阿!

參考文獻

轉載自程式人雜誌

-----廣告,請繼續往下閱讀-----
文章難易度
程式人雜誌
9 篇文章 ・ 1 位粉絲
程式人雜誌是一個結合「開放原始碼與公益捐款活動」的雜誌,簡稱「開放公益雜誌」。開放公益雜誌本著「讀書做善事、寫書做公益」的精神,我們非常歡迎程式人認養專欄、或者捐出您的網誌。

0

0
0

文字

分享

0
0
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3286字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

2
2

文字

分享

1
2
2
凡事都想知道「為什麼」,是踏入科學探究的第一步——《教出科學探究力》
親子天下_96
・2022/08/14 ・2566字 ・閱讀時間約 5 分鐘

在某個燠熱難耐的夏日午後,你打開電風扇,卻發現吹出來的風好像比印象中來得小。你眉頭一皺,覺得案情並不單純。就在走近電風扇的那幾步裡,好幾種可能性閃過心頭:

「會不會是按錯按鈕了?」、「會不會是扇葉太髒了?」、「會不會是轉軸黏住了?」、「會不會是⋯⋯?」這些猜想背後,都是根據你對電風扇原理的一些些認識才會做出的假設。

當你打開電風扇卻發現吹出來的風好像比印象中來得小,心中會冒出許多假設。圖/Pexels

在提出疑問和假設之後,尋找問題的答案

靠近電扇之後,你看到按鈕確實是按下了「強」。接著你切斷風扇電源,看了看扇葉,發現確實有點髒,於是把電風扇拆洗後裝回去,再按下按鈕。結果風吹起來,就如同你印象中的那麼涼了。這證實了你的第二個猜想,並且解決你所關心的問題。

上述這樣的過程,其實就是「察覺差異,提出問題」、「根據理論,連結現象」、「提出假設,進行驗證」、「預測結果」等等的探究過程。

-----廣告,請繼續往下閱讀-----

再舉個例子。

我有一天走在馬路上,看到白色分隔標線的一端閃著黃色的光。我心想:「難道馬路地上埋了一顆黃色的燈?是要作為交通警示用途嗎?」

我覺得奇怪,記得前幾天沒看到這裡有燈。接著我把視野放大,往左往右看了看周圍。發現有一台車停在遠處,車頭開啟方向燈,燈是黃色的,而且還在閃爍。然後我馬上注意到,兩者閃爍的頻率是相同的。

於是我有了新的猜想:「地上的神祕閃光,非常可能來自於汽車閃爍的方向燈的反光。」

但是柏油路面怎麼會反光呢?

仔細一看,地上似乎有一小灘水。汽車的方向燈發出來的光,剛好通過那一小灘水的反光進到我眼睛,讓我覺得地面在發光。接著馬上一台車經過,就擋在方向燈和積水的中間。我看到的亮光馬上消失,證實我的第二個猜想是正確的。

-----廣告,請繼續往下閱讀-----
你可能會猜想:「地上的閃光,可能來自於汽車方向燈的反光。」但是柏油路面怎麼會反光呢?圖/Pexels

「哪裡怪怪的」這個念頭,會帶領我們尋找答案

像這樣的心智活動,在我們的生活中無時無刻都在進行著。只要我們發現「哪裡怪怪的」,腦袋幾乎就會立刻啟動探究的機制:

  • 廚房怎麼那麼多螞蟻?(察覺問題)
  • 是不是有食物殘渣沒有清理乾淨?(根據理論提出假設)
  • 仔細觀察一下,發現⋯⋯(得到結論)

既然這些能力是我們原本就自然會的,那又為什麼要學呢?因為我們雖然很習慣對於意料之外的事情展開探索,但是以直覺來進行思考及解決問題的方式,往往並不太科學。

抓住內心的每次疑惑,成為具有好奇心和探究心的人吧!圖/Pixabay

古人說的「地牛翻身」,其實也是一種探究的精神

古人在觀察自然現象的時候,會提出自己的解釋。例如面對地震的時候,台灣民俗的說法是「地牛翻身」,日本民俗的說法則是「棲息在地底的大鯰魚搖動身體」;至於日食在中國的傳說中是「天上的狗把太陽吃掉了」。

於是後人也會根據這些「理論」來規劃解決問題的方法。例如,綠島人認為地牛不只一隻,還會彼此打架,所以地震時要敲打金屬臉盆來分開牠們;同樣的,古時候的中國人看到日食,也會敲鑼打鼓、放鞭炮來趕走天狗。

-----廣告,請繼續往下閱讀-----

有趣的是,根據這些「理論」採取的「實驗」,還真的每一次都會成功喔!一代又一代的人反覆進行著下圖這樣的實驗,所以千年來人們始終對這些「理論」深信不疑。

如果你是一位受過基礎科學教育的公民,這時候可能就會提出質疑,認為這樣的實驗並沒有對照組。

例如下一次出現日食的時候,如果不要敲鑼、打鼓、放鞭炮,日食是不是也會結束?如果不這麼做,日食仍然會結束的話,那麼用敲鑼打鼓的方式趕走天狗的假說就會受到挑戰了。

當然,在一個深信天狗傳說的社會中,沒有人會膽敢拒絕敲鑼打鼓,不然萬一太陽真的就被吃掉而永遠消失了,這責任誰負擔得起?用這個角度來看會發現,有時候要突破傳統,其實是一件非常困難的事情。

恐懼源自於未知:想消除恐懼,需要探究未知

人對於未解的現象,往往會用隨意的想像與歸因來尋求解釋,用很直覺的方式來建立對自然現象的理解,也是人類天生的習慣。

-----廣告,請繼續往下閱讀-----

直到距今兩千六百多年前,古希臘哲學家泰利斯才撥開直覺的迷霧,主張應該拒絕再用人格化的神祇來解釋自然現象,而是要藉由理性的假說來理解和解釋自然現象。但即使西方在兩千六百多年前已經出現這樣的思想,但近代科學真正臻至蓬勃發展,還是近半個世紀內的事情。

正由於科學的研究和思考方法並不直覺、並不符合人類的天生習慣,所以必須透過後天的教育與訓練,才能慢慢熟練並妥善運用在生活之中。

雖然探究是我們的天性,但是具有科學素養的探究卻不是天性,無法一蹴可幾。就像科學家需要訓練有素的探究技術,才能做好自己的研究。

一般公民也需要具備科學探究的素養,來幫助自己在面對生活中諸多不熟悉的現象時,能運用一套思考和研究的方式來做判斷,特別是幫助我們更加注意到生活中不尋常的現象,能對許多直覺、缺乏事實支持的歸因有更高的警覺。

-----廣告,請繼續往下閱讀-----

正因為我們的生活離不開探究,所以更應該透過學習來提升探究品質。這正是國民教育自然課程中所應教會每個公民的事情。

——本文摘自《教出科學探究力》,2021 年 8 月,親子天下 ,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1
親子天下_96
26 篇文章 ・ 25 位粉絲
【親子天下】起源於雜誌媒體和書籍出版,進而擴大成為華文圈影響力最大的教育教養品牌,也是最值得信賴的親子社群平台:www.parenting.com.tw。我們希望,從線上(online)到實體(offline),分齡分眾供應華人地區親子家庭和學校最合身體貼的優質內容、活動、產品與服務。

1

3
3

文字

分享

1
3
3
研究資料亂到不行?你需要的是「資料管理方案」——淺談什麼是「開放科學」
研究資料寄存所 (depositar)_96
・2021/12/22 ・3081字 ・閱讀時間約 6 分鐘

什麼是「開放科學」?

大體而言,開放科學是關於「有品質、完整、平等與利益共享的科學環境」的一套構想 [1],它希望能移除知識藩籬,激發研究創意。為了達成這些核心價值,不同的科學社群衍生了不同實務作法,也造就了過往「開放科學」紛雜的內涵。

儘管如此,一般在討論「開放科學」時,仍認為其有幾個核心的關注面向,如開放近用科學成果(如論文)、開放研究資料、研究過程中使用科技工具進行開放協作等。歐盟OECD聯合國等國際組織在近年來亦紛紛制定相關政策、白皮書,並投入經費致力於開放科學的推展。

脈絡不同,資料管理方式也不同

「我知道開放科學很好,我也有滿手的資料,但是……」,在資料科學盛行的時代,幾乎所有研究者在處理資料時,都會遭遇各種「但是」的問題:但是資料很亂不知從何著手、但是不曉得要釋出哪些資料、但是沒有心力…。

在這樣的脈落下,中央研究院資訊科學研究所等 5 個單位,在今年 10 月 7 日舉辦了 2021 研究資料管理工作坊。工作坊共概分成 5 個資料管理的主題,分別涉及「生物多樣性」、「多面向資料管理」、「氣候、海洋及空氣資料」、「研究團隊經驗分享」、「個人資料管理」等面向,邀請近 20 位來自不同領域、單位的講者,分享他們在研究資料管理 (Research Data Management, RDM)上的經驗。

-----廣告,請繼續往下閱讀-----

在資料管理實務上,各研究單位因資源配置、研究領域、研究方法、研究文化等差異,所遭遇的問題及可能的解方亦各不相同。聆聽彼此經驗,了解對方解決問題的脈絡,是找尋自身合適的資料管理方式的有效途徑之一。

以本次工作坊為例,我們即觀察到,同是為了提昇資料的利用價值,有的單位選擇將資源優先配置在蒐集更多資料;有的則是積極建立、宣導資料處理的 SOP;另外也有強調個別資料集的品質控管與說明。

圖為「台灣生物多樣性網絡」在回應資料價值時,將重點放置於增加資料量的成果圖。
圖/柯智仁 - 讓資料的價值被看見能否鼓勵資料的管理與開放?

我們也發現,有關資料即時利用的需求,時常不在研究團隊最初的預期中,且需求亦可能來自團隊內部或外部。而為了回應需求,有的研究單位選擇投入心力在軟硬體上,打造自動化流程,以應付外部大量的資料索取要求;有的研究單位,則優先建立單位內部的即時資料分享環境,再適度滿足外部需求。

以上各種應對方式間的差異,多半是因各單位在處理同一問題時,身處不同的脈絡所致。

-----廣告,請繼續往下閱讀-----

逐漸上軌道的研究工具:資料管理方案

在本次工作坊中,亦有關於「資料管理方案」(Data Management Plan, DMP)的場次。DMP 是一份描述研究資料如何被蒐集、使用、管理、保存、分享等歷程的文件。通常是在研究開始前撰寫,在研究中隨時修正,藉此研究者能更有效地管理資料。

近年來,DMP 已逐漸成為計畫申請者被要求檢附的文件。目前在網路上也能找到各式的 DMP 範本,協助研究者撰寫 DMP。例如研究資料寄存所(depositar)翻譯的 Science Europe 研究資料管理指南,就提供了一份 DMP 的範本。

在工作坊中,科技部永續學門指出,資料管理是開放科學的一部分,因此永續學門自 2020 年 8 月開始推動資料管理方案試辦計畫,透過經費補助的方式,鼓勵整合型計畫提出 DMP。本次工作坊亦有兩個參與試辦計畫的研究團隊,分享他們在撰寫及執行 DMP 的歷程。在研究資料管理概論這個場次,亦仔細介紹了 DMP 可能包含的內容。

科技部永續學門自 2020 年 8 月開始試辦資料管理方案。
圖/李明旭 - 永續學門DMP試辦計畫

但鑒於 DMP 在國際上逐漸成為「要求」,亦不乏質疑認為,撰寫 DMP 可能僅是加重研究者行政負擔;對此,一份 2021 年 4 月有關歐盟推行 DMP 的實證研究指出,超過 80% 的研究者認為 DMP 對他們的研究有幫助,這或可有效緩解相關的疑慮。

-----廣告,請繼續往下閱讀-----
超過八成的研究者認為 DMP 帶來了比行政負擔更多的正面效益。
圖/Open Research Europe

研究資料管理與開放科學

2021 研究資料管理工作坊的簡報及錄影,已在 11 月中悉數公開在工作坊網站。而工作坊後不久,在 2021 年 11 月底,我們見到聯合國教科文組織(UNESCO)通過了一份開放科學建議書(UNESCO Recommendation on Open Science)。這份文件共獲得 193 個與會國支持。UNESCO 表示,與會國們的共同支持,使向來意義紛雜的「開放科學」首次取得了全球性的定義。

聯合國教科文組織於 2021 年 11 月底通過的開放科學建議書。圖/UNESCO

UNESCO 針對開放科學的定義與說明很長(參見建議書第 7 頁至第 16 頁),我們無意在最後的篇幅中細說。但很清楚的一點是,「開放研究資料」(open research data)是構成 UNESCO「開放科學」定義的一部分。

身為國際社群的一員,台灣有許多的跨國研究計畫,過去兩年的防疫,亦受益於國際的開放研究資料許多(如使用 GISAID 資料庫進行研究)。

國內研究社群與開放研究資料或開放科學的國際標準接軌,既是必須,亦是互惠,而研究資料管理將是達成此目標不可免的基本功。在「開放科學」取得重大國際進展的此時,再次回顧本次工作坊的內容,應是一件更饒富意義的事。

-----廣告,請繼續往下閱讀-----
開放科學建議書:開放科學的定義 – 包含「開放研究資料」。
圖/ UNESCO

註釋:

  1. Why the world needs to embrace open science? https://www.weforum.org/agenda/2021/10/why-open-science-is-the-cornerstone-of-sustainable-development/

參考文獻:

-----廣告,請繼續往下閱讀-----
所有討論 1
研究資料寄存所 (depositar)_96
2 篇文章 ・ 2 位粉絲
研究資料寄存所 (depositar) 是由研究人員建立的線上資料儲存庫。所有人都能使用這個平台,自由地儲存、尋找、再次使用研究資料。