0

0
0

文字

分享

0
0
0

海量資料萬歲?請三思!

活躍星系核_96
・2013/05/25 ・4971字 ・閱讀時間約 10 分鐘 ・SR值 616 ・十年級

本文出處:Think Again: Big Data
作者:KATE CRAWFORD
譯者:Leonard Chien

圖片取自 https://team.inria.fr/zenith/ibc-seminar-patrick-valduriez-parallel-techniques-for-big-data-march-22-2pm/

「海量資料」是當今最流行的用語,也是科技界對世上各種棘手難題的萬用解答,意指藉由分析龐大資訊後,歸納出模式、精闢見解,並預測複雜問題的答案,聽來或許有些無趣,但無論是阻止恐怖份子終結貧窮拯救地球,海量資料支持者都深信可迎刃而解。

在《Big Data: A Revolution That Will Transform How We Live, Work, and Think》一書中,兩位作者寫道,「對於氣候變遷、根除疾病、促進良好治理與經濟發展等全球迫切問題,海量資料均可提供部分答案,為社會提供眾多好處」。

只要握有足夠數據,例如iPhone內部資料、雜貨店購物內容、網路交友檔案、全國匿名醫療紀錄,電腦運算即可拆解這些原始資料,從中挖掘出無數見解。美國歐巴馬政府亦傾力投入,於5月9日「首開先例」,公開「過往無法取用或管理的資料」,供企業家、研究人員及大眾使用。

-----廣告,請繼續往下閱讀-----

歐巴馬總統表示,「我們希望促成更多民間創新與發現,因此史上首次釋出大量美國資料,開放人們輕鬆取用,優秀企業家也已開發出眾多用途」。

可是海量資料的威力是否名實相符?在龐大電腦數據裡,是否真能揭露人類行為的秘密?《外交政策》雜誌邀請麻省理工學院「公民媒體中心」成員Kate Crawford,說明數字背後的真相。-編按

「只要資料足夠,數字自會說話。」

不可能。海量資料支持者希望我們相信,在程式碼字裡行間與巨大資料庫內,必有客觀及通用的見解,能解釋人類行為模式,包括消費情況、犯罪或恐怖主義行動、健康習慣、員工產能等,但他們卻總不願正視缺點。數字不會說話,資料不論規模大小,仍受人類設計限制,Apache Hadoop軟體架構等海量資料工具亦無法排除偏斜、落差與假設錯誤。當海量資料試圖歸納社會狀態,這些因素影響格外顯著,但我們卻常誤以為分析結果比個人意見更客觀。其實海量資料、個人觀感及體驗皆然,充滿偏見及盲點,可是許多人卻以為資料量越大就代表品質越好的資料,也以為「相關」與「因果」一樣好。

例如社群媒體常成為海量資料分析主題,其中也確實充斥大量資訊,據稱從Twitter資料裡可見,人們離家愈遠愈開心,且情緒在每週四晚上最低落。可是我們必須懂得質疑資料背後真正的涵義,例如「皮猶研究中心」指出,美國只有16%的成年網路用戶使用Twitter,亦無法如實代表社會結構,通常年紀較輕、較集中於都會區。此外,許多Twitter帳號均為自動機器人或假檔案,近期估計總數可能高達2000萬,因此討論如何從Twitter分析輿論之前,得先釐清這些反應究竟來自真人或電腦演算式。

-----廣告,請繼續往下閱讀-----

縱然各位相信絕大多數Twitter用戶均為真人,偏見依然存在,例如為分析2013年澳洲網球公開賽中,人們在社群媒體對哪些選手「看法最佳」,IBM透過「社會觀感指數」,大量分析Twitter訊息,結果由Victoria Azarenka奪冠,但許多訊息提到她時,都在批評濫用傷停時間,如此看來,很難相信IBM的演算式確能反映現實。

即便排除不良資料問題,演算式本身亦有偏見,新聞彙整網站取用你我的個人偏好與瀏覽紀錄,編排出用戶感興趣的最新消息,其中假設頻率與重要性呈正比,或個人社群最常分享的資訊,也必定與你興趣相符。演算式過濾龐大資料時,也訂定呈現世界的原則,一般用戶不會感受到這些規則,可是大大左右民眾觀點。

不少資訊工程專家正在努力解除疑慮,Ed Felten為普林斯頓大學教授,曾為美國聯邦貿易委員會首席科技專家,最近發起一項計畫,測驗各項演算式的偏見,尤其是美國政府也運用演算式評估個人,例如聯邦調查局與運輸安全局即彙整多項官方海量資料,列出航空旅客黑名單,做為飛安制度之用。

「海量資料可提高城市智慧及效能。」

仍有上限。海量資料可提供珍貴見解,協助改善城市,但也僅止於此,由於資料生成與收集過程並不均等,其中會出現「信號問題」,造成有些民眾及社區遭到漠視或代表性不足,若以海量資料處理城市規劃問題,必須仰賴官員同時瞭解資料及其侷限。

-----廣告,請繼續往下閱讀-----

例如美國波士頓的Street Bump應用程式裡,收集行經坑洞的駕駛人智慧型手機資料,能以低成本途徑收集資訊,類似應用程式也與日俱增,可是城市若完全依賴智慧型手機用戶提供資料,等於自動排除部分樣本,某些社區內智慧型手機用戶比例若較低,通常年齡層較高,經濟條件也較弱勢,因此遭到排擠。波士頓市政單位盡力想彌補潛在資料缺口,但假若官員對此警覺性較低,就可能忽略這項問題,導致資源分配不均,進一步擴大既有社會失衡現象。2012年Google的流感趨勢預測中,就曾犯下相同錯誤,嚴重高估年度流感比例,證明若依賴有瑕疵的海量資料,將大大影響公共服務與政策。

「開放政府」計畫將公部門資料張貼於網路上,如Data.gov或美國白宮「開放政府計畫」,也可能面臨相同問題,資料增加未必可改善透明度、責信等政府功能,必須搭配公眾參與機制,政府也得懂得如何詮釋資料,再運用適當資料因應。這些條件都不簡單,況且目前優秀的資料科學家也不足,各大學仍在趕緊劃定學科領域、編寫課程,希望能滿足需求。

人權團體也希望運用海量資料,瞭解各種衝突和危機,但資料與分析品質同樣令人存疑,麥克阿瑟基金會最近核准17.5萬美元的獎助金,由卡內基梅隆大學人權科學中心投入為期18個月的研究,分析海量資料數據如何改變人權運動發展,例如開發「可信度測驗」,以驗證張貼於Crisis MappersUshahidi、Facebook、YouTube等網站的人權侵害控訴真偽。該中心主任Jay D. Aronson指出,「包括學界及人權組織的消息來源,以及資料使用情況,都產生嚴重問題,有了這些新科技之後,對於通報者的人身安全是利或弊,許多時候仍不得而知」。

「海量資料對各個社會族群一視同仁。」

未必如此。海量資料號稱客觀,因為原始資料似乎能排除社會偏見,故可減少歧視少數族群的機率,讓大規模分析避免族群歧視,但海量資料之所以存在,就是為了將個人劃入族群之中,再解釋各族群行為有何異同。例如近期一篇論文才提到,在海量資料基因體研究內,科學家如何讓個人立場左右研究方向。

-----廣告,請繼續往下閱讀-----

如Alistair Croll所言,人們可能運用海量資料製造價格歧視,引起眾多公民權疑慮,在「個人化」名義下,海量資料卻可能用來針對特定社會族群,給予不一樣的待遇,法律通常禁止企業與個人出現此種歧視行為。企業購買網路廣告宣傳信用卡時,可能依據家戶所得或信貸紀錄,挑選特定目標群眾,導致他人完全無從得知該項優惠。Google甚至握有浮動設定內容價格的專利,例如你過往消費紀錄若顯示,可能花高價購買鞋子,下回在網路上打算買鞋時,搜尋結果也將傾向高價品。雇主如今也希望在人力資源方面運用海量資料,完全透過分析電腦使用習慣,評估如何提高員工生產力,而員工可能對這些資料與用途毫不知情。

其他因素也可能產生歧視,例如《紐約時報》曾報導,量販店Target多年前便已開始收集消費者分析數據,如今消費紀錄相當龐大,在某些情況下,甚至可單純根據消費品項歴史,判斷該名女性顧客是否懷孕,可靠度甚至高達87%。儘管該公司代表在報導內強調,這些資料是用來改善對準媽媽的行銷策略,可是這種手段很容易用於歧視,大大影響社會平等與隱私。

英國劍橋大學最近發表一項海量資料研究,運用58000則Facebook網站的按讚紀錄,預測用戶相當敏感的個人資訊,例如性傾向、族裔、宗教與政治立場、個性、智商、幸福程度、菸毒習慣、父母婚姻狀況、年齡、性別等,記者Tom Foremski指出,「取得如此敏感的資訊後,可能遭雇主、房東、政府機關、教育機構、民間組織利用,刻意歧視與懲罰個人,且對方完全無法抵抗」。

海量資料也會影響執法,無論是華府德拉瓦州的新堡郡,警方都開始採用海量資料「預防巡邏」模型,希望有助調查懸案,甚至避免犯罪發生,可是若將警力集中在海量資料判斷出的潛在犯罪熱點,卻可能強化某些社會族群的污名,認為他們較可能犯案,也等於將區域警力落差視為常態。一名警官曾表示,雖然預防巡邏演算式刻意避免種族、性別等分類,但若隨意使用這些系統,又未察覺差別待遇可能造成的後果,將會造成「警察與社區關係惡化,欠缺程序正義、遭指控種族歧視,也威脅執法基礎」。

-----廣告,請繼續往下閱讀-----

「海量資料屬匿名,不會侵犯隱私。」

大錯特錯。許多海量資料供應者都盡其所能,希望避免個人身分曝光,但風險卻仍存在,大量手機資料或許看似匿名,但近期研究歐洲150萬手機用戶資料顯示,只要四點參考點,即可辨識95%的民眾。研究人員提到,人們往來城市路徑有其獨特性,又能以大量公開資料組推論,讓隱私「疑慮愈來愈強烈」。拜Alessandro Acquisti等學者之賜,只要交叉分析公開資料,即可預測個人社會安全碼。

可是海量資料的隱私問題,不只是一般身分辨識風險,目前醫療資料轉售給分析公司後,可能用來追蹤個人身分,許多人都在討論個人化醫學,希望藥品及其他療程能夠針對個人需求,讓治療效果如同取自個人DNA。此舉可改善療效,但基本上得辨識人體分子和基因,假若使用不當或外流,可能造成高風險。儘管RunKeeperNike+等個人健康資料收集裝置迅速增加,尚無太多海量資料實際改善醫療服務的案例。

海量資料能源計畫亦收集各種私密資訊,智慧電力網即為一例,分析龐大消費者用電量資料後,希望改善住家與企業能源配送效能,雖然前景可期,隱私風險也很高,不僅可預測能源用量及需用時間,亦包括住戶在家中動向及行為的時刻資訊,例如何時洗澡、客人何時離開、何時關燈睡覺。

這些充滿個人資訊的海量資料,自然成為駭客及洩露情報者下手的目標,「維基解密」為近期釋出海量資料的知名案例,此外,英國境外金融產業資料最近也大量曝光,顯見人們不論貧富,個人資料都可能公諸於世

-----廣告,請繼續往下閱讀-----

「海量資料是科學的未來。」

部分屬實,但仍在持續發展。海量資料確實提供科學發展的新方向,例如在發現希格斯玻子的過程中,歐洲核子研究組織CERN即運用Hadoop分散式檔案系統管理資料,可是除非我們正視及處理海量資料反映人類生活的缺陷,就可能依據錯誤假設做出重大公共政策及企業決定。

為處理此事,資料科學家開始與社會科學家合作,因為後者處理資料的經驗相當豐富,包括評估來源、資料收集方式、使用倫理等,發掘結合海量資料策略與少量資料研究的新方式,不只是需要焦點團體、A/B測試等廣告行銷策略。新混成方式能思考行為背後的成因,而不只是計算事物發生頻率,故除了資訊檢索與機器學習,也需要社會學分析及民族誌學見解。

科技公司很早就明白,社會科學家能協助解釋消費者與產品互動的方式,例如PARC就曾聘請知名人類學家Lucy Suchman,資訊工程、統計、社會科學等領域未來將更密切合作,不僅是為測試彼此研究所得,也要以更嚴謹的態度提出各種問題。

每天各方都收集關於你我的大量資料,包括Facebook點擊習慣、衛星定位資料、醫療處方、Netflix影片觀賞紀錄等,我們必須盡早決定可託付資料的對象及用途。資料永遠不可能中立,也很難匿名,但我們可運用各項專業領域,以察覺種種偏見、落差與假設,進而面對有關隱私及公平性的新挑戰。

-----廣告,請繼續往下閱讀-----

 

本文原發表於譯者部落格「我書

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 129 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

3
0

文字

分享

1
3
0
數據塑造生活與社會,讓人既放心但又不安?——《 AI 世代與我們的未來》
聯經出版_96
・2022/12/28 ・2760字 ・閱讀時間約 5 分鐘

數位世界已經改變了我們日常生活的體驗,一個人從早到晚都會接受到大量數據,受益於大量數據,也貢獻大量數據。這些數據龐大的程度,和消化資訊的方式已經太過繁多,人類心智根本無法處理。

與數位科技建立夥伴關係

所以人會本能地或潛意識地倚賴軟體來處理、組織、篩選出必要或有用的資訊,也就是根據用戶過去的偏好或目前的流行,來挑選要瀏覽的新項目、要看的電影、要播放的音樂。自動策劃的體驗很輕鬆容易,又能讓人滿足,人們只會在沒有自動化服務,例如閱讀別人臉書塗鴉牆上的貼文,或是用別人的網飛帳號看電影時,才會注意到這服務的存在。

有人工智慧協助的網路平臺加速整合,並加深了個人與數位科技間的連結。人工智慧經過設計和訓練,能直覺地解決人類的問題、掌握人類的目標,原本只有人類心智才能管理的各種選擇,現在能由網路平臺來引導、詮釋和記錄(儘管效率比較差)。

日常生活中很少察覺到對自動策劃的依賴。圖/Pexels

網路平臺收集資訊和體驗來完成這些任務,任何一個人的大腦在壽命期限內都不可能容納如此大量的資訊和體驗,所以網路平臺能產出看起來非常恰當的答案和建議。例如,採購員不管再怎麼投入工作,在挑選冬季長靴的時候,也不可能從全國成千上萬的類似商品、近期天氣預測、季節因素、回顧過去的搜尋記錄、調查物流模式之後,才決定最佳的採購項目,但人工智慧可以完整評估上述所有因素。

-----廣告,請繼續往下閱讀-----

因此,由人工智慧驅動的網路平臺經常和我們每個人互動,但我們在歷史上從未和其他產品、服務或機器這樣互動過。當我們個人在和人工智慧互動的時候,人工智慧會適應個人用戶的偏好(網際網路瀏覽記錄、搜尋記錄、旅遊史、收入水準、社交連結),開始形成一種隱形的夥伴關係。

個人用戶逐漸依賴這樣的平臺來完成一串功能,但這些功能過去可能由郵政、百貨公司,或是接待禮賓、懺悔自白的人和朋友,或是企業、政府或其他人類一起來完成。

網路平臺和用戶之間是既親密又遠距的聯繫。圖/Envato Elements

個人、網路平臺和平臺用戶之間的關係,是一種親密關係與遠距聯繫的新穎組合。人工智慧網路平臺審查大量的用戶數據,其中大部分是個人數據(如位置、聯絡資訊、朋友圈、同事圈、金融與健康資訊);網路會把人工智慧當成嚮導,或讓人工智慧來安排個人化體驗。

人工智慧如此精準、正確,是因為人工智慧有能力可以根據數億段類似的關係,以及上兆次空間(用戶群的地理範圍)與時間(集合了過去的使用)的互動來回顧和反應。網路平臺用戶與人工智慧形成了緊密的互動,並互相學習。

-----廣告,請繼續往下閱讀-----

網路平臺的人工智慧使用邏輯,在很多方面對人類來說都難以理解。例如,運用人工智慧的網路平臺在評估圖片、貼文或搜尋時,人類可能無法明確地理解人工智慧會在特定情境下如何運作。谷歌的工程師知道他們的搜尋功能若有人工智慧,就會有清楚的搜尋結果;若沒有人工智慧,搜尋結果就不會那麼清楚,但工程師沒辦法解釋為什麼某些結果的排序比較高。

要評鑑人工智慧的優劣,看的是結果實用不實用,不是看過程。這代表我們的輕重緩急已經和早期不一樣了,以前每個機械的步驟或思考的過程都會由人類來體驗(想法、對話、管理流程),或讓人類可以暫停、檢查、重複。

人工智慧陪伴現代人的生活

例如,在許多工業化地區,旅行的過程已經不需要「找方向」了。以前這過程需要人力,要先打電話給我們要拜訪的對象,查看紙本地圖,然後常常在加油站或便利商店停下來,確認我們的方向對不對。現在,透過手機應用程式,旅行的過程可以更有效率。

透過導航,為旅途帶來不少便利。圖/Pexels

這些應用程式不但可以根據他們「所知」的交通記錄來評估可能的路線與每條路線所花費的時間,還可以考量到當天的交通事故、可能造成延誤的特殊狀況(駕駛過程中的延誤)和其他跡象(其他用戶的搜尋),來避免和別人走同一條路。

-----廣告,請繼續往下閱讀-----

從看地圖到線上導航,這轉變如此方便,很少人會停下來想想這種變化有多大的革命性意義,又會帶來什麼後果。個人用戶、社會與網路平臺和營運商建立了新關係,並信任網路平臺與演算法可以產生準確的結果,獲得了便利,成為數據集的一部分,而這數據集又在持續進化(至少會在大家使用應用程式的時候追蹤個人的位置)。

在某種意義上,使用這種服務的人並不是獨自駕駛,而是系統的一部分。在系統內,人類和機器智慧一起協作,引導一群人透過各自的路線聚集在一起。

持續陪伴型的人工智慧會愈來愈普及,醫療保健、物流、零售、金融、通訊、媒體、運輸和娛樂等產業持續發展,我們的日常生活體驗透過網路平臺一直在變化。

網路平台協助我們完成各種事項。圖/Pexels

當用戶找人工智慧網路平臺來協助他們完成任務的時候,因為網路平臺可以收集、提煉資訊,所以用戶得到了益處,上個世代完全沒有這種經驗。這種平臺追求新穎模式的規模、力量、功能,讓個人用戶獲得前所未有的便利和能力;同時,這些用戶進入一種前所未有的人機對話中。

-----廣告,請繼續往下閱讀-----

運用人工智慧的網路平臺有能力可以用我們無法清楚理解,甚至無法明確定義或表示的方式來形塑人類的活動,這裡有一個很重要的問題:這種人工智慧的目標功能是什麼?由誰設計?在哪些監管參數範圍裡?

類似問題的答案會繼續塑造未來的生活與未來的社會:誰在操作?誰在定義這些流程的限制?這些人對於社會規範和制度會有什麼影響?有人可以存取人工智慧的感知嗎?有的話,這人是誰?

如果沒有人類可以完全理解或查看數據,或檢視每個步驟,也就是說假設人類的角色只負責設計、監控和設定人工智慧的參數,那麼對人工智慧的限制應該要讓我們放心?還是讓我們不安?還是既放心又不安?

——本文摘自《 AI 世代與我們的未來:人工智慧如何改變生活,甚至是世界?》,2022 年 12 月,聯經出版公司,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 1
聯經出版_96
27 篇文章 ・ 20 位粉絲
聯經出版公司創立於1974年5月4日,是一個綜合性的出版公司,為聯合報系關係企業之一。 三十多年來已經累積了近六千餘種圖書, 範圍包括人文、社會科學、科技以及小說、藝術、傳記、商業、工具書、保健、旅遊、兒童讀物等。