Loading [MathJax]/extensions/tex2jax.js

0

0
2

文字

分享

0
0
2

研究狗狗流口水如何贏得諾貝爾獎?帕夫洛夫「古典制約」與消化系統的經典研究

hemmings
・2017/05/18 ・1892字 ・閱讀時間約 3 分鐘 ・SR值 522 ・七年級

-----廣告,請繼續往下閱讀-----

第四屆諾貝爾生理學/醫學獎,於 1904 年頒給了俄羅斯生理學家伊凡‧帕夫洛夫(Ivan Pavlov)。頒獎理由在於他消化系統上的研究工作打下了重要的生理學知識基礎,同時被廣泛轉化、應用在其他領域學科上。

劃時代研究:神經如何調控消化系統

Ivan Pavlov
Ivan Pavlov

1897年,在累積了12年研究工作成果後,帕夫洛夫發表了名為《The Work of the Digestive Glands》(消化腺功能)一書。

帕夫洛夫厚積薄發,在這一本書裡一口氣發表許多具有劃時代意義的研究結果,同時提出很多具有突破性的理論。

該書一共有十三章,涵蓋包括實驗(手術)方法、消化腺功能、消化腺的神經系統、理化刺激對消化腺的影響、食物經過消化道過程、和臨床經驗與治療結合等等, 內容豐富同時具有前瞻性。筆者在此不會一一詳述帕夫洛夫的所有實驗過程,只想針對帕夫洛夫提出的幾個我認為比較重要的觀念或方法進行概述。

-----廣告,請繼續往下閱讀-----

首先,帕夫洛夫通過對消化腺的傳入/傳出神經干預,證明了神經系統對消化系統的重要調控功能。在此之前,醫學界還無法確定神經系統對消化系統是否存在影響。其次,帕夫洛夫建立了假飼(fictitious feeding)模型:他通過外科手術成功讓狗將食物吃進嘴裡,但在食物進入胃之前,就從人造瘻管排出,並以此證明了「嘴裡的食物對胃消化液分泌也存在調控機制」。同時,他提出了所謂「精神因素所致消化腺分泌」(psychic secretion)的理論。他發現不光是食物在嘴裡會引起胃液分泌,看到、聞到食物也會,甚至同一研究人員的在場、腳步聲、談話聲等等這些過去認為「和消化系統一點關係也沒有的因素」對胃液和其他消化液分泌也都有影響。

帕夫洛夫用於研究狗唾腺分泌的儀器裝置示意圖。Image/wikimedia commons

最後,帕夫洛夫發現當他在每次餵食前發出固定某種聲音(比如鈴聲),經過一段時間以後,狗只要聽到鈴聲,消化液分泌量就會開始增加。

這一發現,成為日後古典制約(classical conditioning)理論的基礎。所謂古典制約,就是通過反覆人為干預,在原本不存在關聯的兩個事件(一為條件刺激,一為生理反應)之間建立起聯繫

對人類理論學科的震撼彈:古典制約

古典制約建立過程示意圖。Image/wikimedia commons

古典制約理論的建立,不光是對醫學界產生了重大影響,毫不誇張地說,它在整個人類社會各個不同領域、層面的理論學科中,投下了一顆震撼彈。其中又以對心理學、精神科學、教育學等等影響最大。

-----廣告,請繼續往下閱讀-----

「生物(包括人在內)可以通過人為干預被制約」的理論自此成為猶如「1+1=2」的數學公式一般紮根在所有相關學科裡,甚至成為許多政治、社會理論的基礎,也是無數小說、電影和其他形式藝術創作的靈感來源。

赫胥黎的經典名著《美麗新世界》(Brave New World)即是以極端經典制約下的人類社會作為大時代背景。

帕夫洛夫在他的著作裡還提到了許多非常重要的生理學發現,比如不同食物對消化液分泌的影響、消化液對彼此量和濃度的影響等等,實驗內容豐富而細膩。同時,我想要特別指出,其實在帕夫洛夫實驗進行的同時有許多其他研究團體也在進行類似工作,但是帕夫洛夫的實驗成果優於大部分競爭對手,因為帕夫洛夫的實驗方法很成功。他的手術技術高超,取得實驗數據(消化液量和濃度)的方法精良,建立動物模型的成功率也高。由此可見,除了有好的實驗構想以外,有可靠又實際的方法技術也同樣重要。

對帕夫洛夫的研究細節有興趣的朋友,可以到以下網站找到其著作英譯版

-----廣告,請繼續往下閱讀-----

最後以一張輕鬆的漫畫作為結束:

狗狗:「看我如何控制帕夫洛夫。只要我一流口水,他就會微笑然後在他的小本子裡寫東西。」Pavlov’s Dog. Comic by Mark Stivers. @twistedsifter

當我們在制約別人的同時,自己不也正處在被制約的過程中嗎?

順帶一提:我所在的比利時魯汶大學(KU Leuven)的心理系系酒吧(faqbar,每個系都有自己的專屬酒吧供系上教職員工和學生交流),名字就是Pavlov。想要被酒精和心理學家同時制約,去那兒就對了~

參考資料:

  • Pavlov, Ivan Petrovich, and William Henry Thompson. The work of the digestive glands. Charles Griffin, 1902.(此為1902年英譯版)
  • 備註:文中圖片作者不具有版權。如有侵犯版權/著作產權之行為,請即刻與作者聯繫。
    I do not own the copyrights to the images in this article. If you believe any content appearing constitutes a copyright infringement of another party’s right, please contact me immediately to notify of this infringement.

此原文轉載自原作者部落格,原文標題《巴甫洛夫的狗:1904年第四屆諾貝爾生理學醫學獎得主Ivan Pavlov的文章回顧

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
hemmings
9 篇文章 ・ 1 位粉絲
認為科學必須從基礎紮根,相信經典必有其價值和意義。 通過介紹諾貝爾大師們的研究工作和嚴謹態度,在大眾科學的汪洋中推廣經典科學理論以及科學精神的重要性,並冀望藉此能讓讀者以一個更寬廣的角度來欣賞現代社會之包羅萬象。

0

1
0

文字

分享

0
1
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
【成語科學】望梅止渴:梅子真的可以解渴嗎?竟然跟巴夫洛夫的制約實驗有關!
張之傑_96
・2023/06/09 ・1110字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

當某人以不現實的想法來安慰自己,我們就可以說他「望梅止渴」。讓我們造個句:

我想到埃及看金字塔,可是沒錢、沒時間,只能以圖片望梅止渴。

望梅止渴和畫餅充饑的意思差不多,都是在心理上安慰自己。

為什麼望梅可以止渴?梅子很酸,當有人說到梅子的時候,就會流出口水,因而暫時不覺得渴了。這個成語出自南朝劉義慶的《世說新語》:曹操行軍途中,士兵們乾渴難耐,曹操就騙士兵們說,前面有片梅林,梅子都熟了,又酸又甜,士兵不禁流出口水,趕了一段路,雖沒看到梅林,卻找到水源。

當有人說到梅子的時候,就會流出口水,因而暫時不覺得渴了。圖/envatoelements

巴夫洛夫的制約實驗

其實望梅止渴是有科學根據的。在心理學上,將學習分為幾大類,其中一類就是制約反應,亦即動物經過訓練後,會產生一定的「聯想」,因而產生一定的行為。最有名的例子就是巴夫洛夫的制約實驗

-----廣告,請繼續往下閱讀-----

巴夫洛夫每次餵狗的時候,就搖鈴鐺,久而久之,即使只搖鈴、不餵狗,狗也會流口水。巴氏稱第二刺激──鈴聲,為制約刺激,對制約刺激所產生的反應,即制約反應

巴夫洛夫是俄國人,生理學家,1904 年榮獲諾貝爾生理醫學獎。他在 20 世紀初所做的一系列制約實驗,為學習研究奠定生理學基礎,在科學史上具有泰山北斗般地位。

再來看看曹操的望梅止渴。曹操精於權謀,深知心理。梅子是酸的,吃梅子的時候,舌頭上的味蕾受到刺激,經神經傳導到腦,再由腦發出命令,促使唾液腺分泌唾液。經過若干次經驗後,一聽說梅子,立即引起酸的「聯想」。換句話說,梅子可以和「酸」一樣,引起流口水的反應。

早了 1400 年的發現?

巴夫洛夫的「搖鈴流涎」實驗,看起來沒什麼,但經過歸納、演繹,卻開創出一整套學問。歸納、演繹正是科學精神(或方法)。科學和非科學的分別,就是會不會從簡單的事象,推演出有系統的理論。

-----廣告,請繼續往下閱讀-----

曹操是 2 世紀的人,如確有「望梅止渴」的事,就要比巴夫洛夫早上 1700 餘年;即使是劉義慶杜撰的,也比巴夫洛夫早上 1400 餘年。可惜曹操的望梅止渴是用來騙人的,並沒歸納出什麼理論,和巴夫洛夫的實驗不能相提並論。

在歷史上,類似望梅止渴的事例甚多,唐代張鷟的《朝野僉載》有段記載特別有趣:有位孝子母親死了,每次痛哭,都有鳥群飛過來,地方官員以為孝感動天,就報告皇帝表揚。後來才知道,孝子每次哭的時候,都會在地上撒些食物,鳥兒爭著來吃,經過多次「訓練」,鳥兒只要聽到哭聲就飛過來了。

-----廣告,請繼續往下閱讀-----
張之傑_96
103 篇文章 ・ 224 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。

0

18
2

文字

分享

0
18
2
新的記憶是如何形成的?從海兔的記憶訓練中獲得的啟示——《大腦不思議》
方寸文創_96
・2023/02/21 ・2185字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/汪漢澄
  • 繪者/宋明憲

針對記憶的動物實驗,在猶太裔的美國醫師暨神經科學家艾瑞克.肯德爾[註1]的手中,獲得了非凡成果。

艾瑞克.肯德爾(Eric Richard Kandel,1929‒),猶太裔美國醫師暨神經科學家,2000 年獲諾貝爾獎。圖/方寸文創出版《大腦不思議

肯德爾在童年時,因為猶太人的身分,其家庭遭到納粹警察迫害,造成他一輩子的創傷記憶。他認為自己對記憶的本質之所以會產生這麼強烈的研究興趣,正起源於在維也納這段童年的心理創傷。他尤其經常省思,為什麼像德國人這樣在音樂、藝術等各方面都非常優秀的民族,卻可以對其他民族做出如此凶殘的暴行?

尋求這個答案的強烈欲望,就驅使他走上了精神醫學與腦研究的道路長達一輩子。

尋找實驗對象

肯德爾對米爾納在 H. M. 身上的發現相當著迷,所以他早期的研究都集中在動物腦海馬迴的電位變化,並且取得了很大的成就。但是他很快就發現,海馬迴的構造太複雜,而記憶的奧祕絕對沒辦法用海馬迴中單一神經元的電位變化來解開。他認為,記憶的生成一定跟神經細胞之間的「連結」有關,而想要找到這個關係,太複雜的腦構造反而是不利的因素,所以他就把腦筋動到了神經構造特別簡單的海洋動物——海蛞蝓的身上。肯德爾採用的是比較大型的海蛞蝓,稱為海兔(Aplysia)

海蛞蝓是肯德爾的完美實驗動物,因為牠的中樞神經系統非常簡單,只有兩萬個左右的神經元,並且每一個神經元的尺寸都很大,連同它們彼此之間的連結方式,在顯微鏡下都可以看得清清楚楚。最妙的是,雖然神經系統構造簡單,海蛞蝓卻仍然可以經由訓練學習,產生新的記憶。

-----廣告,請繼續往下閱讀-----

習慣化、敏感化與古典制約 為海蛞蝓訓練

肯德爾對海蛞蝓的訓練分成三種:

  1. 輕觸海蛞蝓的虹吸管。這個無害的刺激,一開始會讓海蛞蝓的鰓產生敏感而劇烈收縮,然而在反覆幾次刺激後,海蛞蝓「學」到了這個刺激是無害的,它的收縮反應就變得越來越小,這叫作「習慣化」(habituation)
  2. 用電極刺激海蛞蝓的尾部。這種不舒服的刺激,也會讓海蛞蝓的鰓收縮,在反覆幾次刺激後,海蛞蝓「學」到了這個刺激是有害的,它的收縮反應就變得越來越大,這叫作「敏感化」(sensitization)
  3. 同時輕觸海蛞蝓的虹吸管並且用電極刺激海蛞蝓的尾部。它的鰓當然會因此劇烈收縮,在反覆幾次刺激後,停止電極刺激尾部,只輕觸牠的虹吸管,結果這個原本無害的刺激,卻讓海蛞蝓「聯想」到了尾部的刺激,從而產生了一樣劇烈的收縮,這叫作「古典制約」(classical conditioning)——類似鼎鼎大名的巴夫洛夫[註]對狗所做的實驗發現。

新記憶的形成

海蛞蝓在受過這三種訓練之後,產生了之前並不存在的新行為,這顯示訓練確實形成新記憶。有趣的是,這種記憶生成後的持續時間,跟訓練時所受到的刺激強度與次數相關:比較低強度、少次數的刺激,只能產生數分鐘的短期記憶;而比較高強度、多次數的反覆刺激,則可以製造出長達數週的長期記憶——讓人聯想到這跟人類的短期與長期記憶的形成方式很類似。

肯德爾與其團隊對海蛞蝓學習和記憶的研究,最重要的是發現了短期記憶和長期記憶的發生地點,都是在海蛞蝓的鰓收縮反射路徑中的神經元突觸,也就是神經元與神經元之間互相接觸,藉著神經傳導物質來傳遞訊息的所在。進一步研究發現,「習慣化」的產生,是由於突觸的神經電位漸減;而「敏感化」與「古典制約」的發生,則是由於突觸的神經電位增加。至於較強和較久的刺激所形成的長期記憶,就遠不只電位變化那麼簡單。較強和較久的刺激,會影響神經元的細胞核合成新的蛋白質,導致突觸的形狀和功能發生改變,也就是所謂的「突觸可塑性」(synaptic plasticity)

為記憶研究創造基石

肯德爾的研究,首度在神經細胞與分子的層面,為神祕的記憶功能提供了生理的解釋。他從六○年代就開始進行這方面的研究,此後孜孜不倦,一直延伸到更高等的動物。他的成果成為此後腦科學家對動物甚至人類進行記憶研究的基石,也因此肯德爾在二○○○年獲得了諾貝爾獎。

-----廣告,請繼續往下閱讀-----

二十世紀後半以至於二十一世紀初,科學家對記憶的研究就是奠基在以下兩個認知基礎上來進行:

  • 記憶的印跡是物理上的,而非「形而上」的。
  • 記憶的印跡可以在腦中看到。

結論說起來輕鬆,其實卻是花了人類幾千年的時間才終於踏上這條正確的研究道路。

註解

  1. 艾瑞克.肯德爾(Eric Richard Kandel,1929‒):猶太裔美國醫師暨神經科學家,2000 年獲諾貝爾獎。
  2. 伊凡.巴夫洛夫(Ivan Petrovich Pavlov,1849‒1936):俄羅斯帝國生理學家、心理學家、醫師,以研究古典制約知名,1904 年獲諾貝爾獎。

——本書摘自《大腦不思議》,2022 年 12 月,方寸文創出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
方寸文創_96
3 篇文章 ・ 7 位粉絲
「文章千古事,得失寸心知。」方寸文創滿足知識渴求,解答人生困惑,迎合視覺賞玩,構築閱讀經驗的真善美,力求讓閱讀有益,讓閱讀有趣!