0

0
0

文字

分享

0
0
0

訓練狗狗的響片訓練,拿來訓練醫生也行!?—2019搞笑諾貝爾醫學教育獎

florinn
・2019/11/07 ・3016字 ・閱讀時間約 6 分鐘 ・SR值 470 ・五年級

-----廣告,請繼續往下閱讀-----

老師手把手教學,讓你壓力很大、擔心做錯被老師罵嗎?或許你可以試試看 2019 搞笑諾貝爾醫學教育獎的方法,改用「響片訓練 (clicker training)」來訓練,說不定效果會更好喔!

2015 年有醫學院的老師們突發奇想,把「響片訓練」這個訓練寵物的常見方法,拿來訓練學生的外科手術技巧,因為他們發現學生在實習時,常常是老師在旁邊手把手教學,讓學生很有壓力。因此他們想要試試看,不講話改用拍響片的方式告訴學生做對還是做錯,會不會就少了一些壓力,結果發現學習效果真的比較好!

響片訓練是什麼?

響片訓練原本是用來訓練各種不同的動物,最常見的是用來訓練狗狗。要用這個方法訓練,首先要讓狗狗把響片的聲音和獎勵做連結,讓牠知道只要有響片聲音,就能獲得獎勵的食物。

接著才進入訓練重點,舉例來說訓練者希望狗狗做出擊掌的動作,那就要強化擊掌和獎勵的連結。方法是在訓練過程中,只要狗狗做出擊掌的動作,訓練者就要拍一下響片,再給牠獎勵的食物。

-----廣告,請繼續往下閱讀-----

透過這樣的方式,持續很多次,牠就會知道做出這個動作,就會聽到響片聲,並且可以獲得獎勵。

用操作制約來強化行為

這個方法其實是利用「操作制約」的原理,透過不斷的練習,讓動物知道做這個行爲會有獎勵、是被期待的行為。這個方法除了狗狗之外,像是貓咪、馬、海豚和鴿子的訓練都有效。

操作制約的知名例子,就是史金納 (B. F. Skinner) 的關老鼠實驗。史金納設計了一個籠子,裡面有一個桿子,只要老鼠拉了桿子,就會有食物掉下來,獎勵牠做了這件事,老鼠一開始可能是意外拉動桿子,但久而久之,老鼠就會發現「只要拉桿子,就會掉食物」這件事,因而越來越頻繁的做出這個動作。

而這就是操作制約中「正向獎勵(又稱正增強,positive reinforcement)」的類型,當個體做出期待的行為之後,給予牠喜歡的獎勵(增強物),來提高牠未來再做出這個動作的可能性。

-----廣告,請繼續往下閱讀-----

在老鼠實驗中的例子就是,拉桿子獲得食物,強化了拉桿子的這個動作;而在訓練狗狗擊掌的例子中,就是透過響片的聲音和獎勵的食物,來強化擊掌的行為。

※更詳細了解「操作制約」,請參考泛科學的另一篇文章:《為什麼好人們能如此不求回報?原來都是操作制約在作祟!》

只要有響片聲音,就能獲得獎勵的食物。圖/freestocks.org@Pexels

響片訓練的優點:訊息明確、容易辨識

這個訓練法的優點是響片的聲音每次都一樣,對動物們來說很容易辨識。很多主人在訓練狗狗的時候,常常是用口頭鼓勵的方式,來告訴狗狗牠做對了。

但是人類的句子,對動物來說,其實訊息太複雜,從發音、音調起伏到音量,每次都會不一樣,對牠們來說要注意的資訊太多,會很難辨認到底哪些資訊才是重要的。

-----廣告,請繼續往下閱讀-----
人類的句子對動物來說要注意的資訊太多,會很難辨認到底哪些資訊才是重要的。圖/freestocks.org@Pexels

因此,響片的聲音就比人聲更適合拿來訓練動物,不過其實也不一定要拍響片,只要選擇聲音固定而且清晰明確的物品,就能讓動物們把聲音連結到獎勵,來強化牠們的行為。

把響片用在人類身上並非新鮮事

把訓練動物的響片訓練套用在人身上,不知道你會不會覺得這些醫學院老師也太ㄎㄧㄤ了,但是操作制約的訓練法,並不是 2015 年這篇研究才第一次用在人類的學習上。對於很多要求動作精細的運動員、表演者,響片訓練其實已經是他們日常的一部份,但是把響片效應用在醫師訓練,倒是還沒有人這樣試過。

2015 年這個實驗的目的,是想了解如果用響片訓練法來訓練外科醫生,究竟會不會比傳統口頭示範和糾正的方法更好。

他們找來一些一、二年級的醫學系學生和 PGY 第一年、第二年的學生,平均分組後教他們外科手術上會用到的兩種技術:綁一個可滑動鎖死的繩結 (a locking, sliding knot) 和小角度鑽洞 (a low-angle drill hole)。

-----廣告,請繼續往下閱讀-----

繩結教學:響片組學習時間長但精確度高

在可滑動鎖死繩結的部分,實驗組的教學方式,是把綁繩結的步驟拆分成 6 個精確而容易檢驗的小步驟,而且是否符合每個步驟都有各自判定標準。

綁繩節的步驟。圖/Levy et al., 2016 Fig. 1A–E

老師先一次把所有的步驟邊示範邊講解完後,再換學生實際操作,這時老師就不會講話了,只要學生精確做出符合判定標準的動作,老師就會拍一下響片,這個綁繩結拍響片的過程總共要重複做 5 次。

在控制組的部分,老師會先口頭解釋繩結的打法,然後學生會拿到一張繩結步驟圖,然後在老師在旁邊打一個繩結,但這時老師不會去糾正學生的任何動作。

為了要了解這兩種教學方法所需要的時間差多少,研究者會記錄下每個學生「從開始綁繩結到打出第一個繩結」所花的時間。接著讓學生們到旁邊自己練習 15 分鐘,在這段時間老師不會給建議,研究者估計這個時間大概可以讓他們練習 100 個以上的結。

-----廣告,請繼續往下閱讀-----

練習完之後,再來就是測驗時間。兩組的每個學生都要打 10 個結,然後評分方式是完成動作所花的時間,以及繩結的精準度(完成 6 個步驟的精確要求,記錄有多少人精確達到要求)兩項。

結果發現,學習過程所花費的時間(示範後綁的第一個繩結),實驗組(響片提示)需要的時間比較長,而控制組的時間比較短。

但是經過 15 分鐘的練習後,打 10 個繩結所花的時間,兩組學生沒有顯著差異,平均都是約 95 秒可以完成,也就是說經過練習之後,熟練度並沒有差別。但操作的精確度,響片提示實驗組的精確度比較高(12 人成功/全組共 12 人),而控制組較低(4 人成功/全組共 11 人)。

操作的精確度,響片提示實驗組的精確度比較高,而控制組較低。圖/geudki@Pixabay

鑽洞教學:響片法的動作精確度較高

第二個是模擬外科手術中,需要的鑽洞技巧。這個技巧是要在 PVC 塑膠管上,與切面夾 45° 角鑽入管中。實驗方法也是一樣,分成一組使用響片訓練的實驗組,另一組是使用傳統教法的控制組。

-----廣告,請繼續往下閱讀-----

實驗組的教法也是一樣,把鑽洞分解成 6 個精確而容易檢驗的步驟,而且每個步驟也有判定標準,在示範完之後,換學生操作,老師用響片來告訴他動作是否正確,之後再給他們 10 分鐘的練習時間。而控制組,指導者會示範兩次操作方式,同時口頭解說,之後同樣會有 10 分鐘練習。

最後的結果是,實驗組和控制組的學生鑽 10 個孔所花的時間,沒有顯著差異,分別是 193 ± 26 秒和 146 ± 63 秒。而學生操作這個動作的準確度,用響片教學的實驗組同學操作準確度比較高,平均每個人會鑽出 9 個符合標準的孔,但控制組就差很多了,平均只有 1.1 個孔符合標準。

看來用響片訓練對於「需要動手操作」的動作,會是一種滿有效的方法,雖然訓練過程所花的時間比較長一些,但是最後學生的操作精確度很高。

不過,研究者也說這個方法雖然看起來很好用,但是要在學校裡用這個方法還有點困難,一方面不知道其他的動作是不是也有同樣效果;另一方面,會這套教法的老師不多,因此還要先教會老師怎麼教學生,而搭配的教材也需要一起調整,是個滿大的工程。但他們會繼續努力的開發適用響片訓練的教學法。

-----廣告,請繼續往下閱讀-----

但不管怎麼樣,響片訓練倒是值得期待,未來會被應用到更多不同操作技巧的教學上,讓學生更不用因為怕被老師罵而學不好了!

參考資料:

  1. 響片訓練—維基百科
  2. 操作制約—超普通心理學
  3. 泛科學:為什麼好人們能如此不求回報?原來都是操作制約在作祟!
  4. Levy, I. M., Pryor, K. W., & McKeon, T. R. (2016). Is teaching simple surgical skills using an operant learning program more effective than teaching by demonstration?. Clinical Orthopaedics and Related Research, 474(4), 945-955.
文章難易度
florinn
8 篇文章 ・ 4 位粉絲
曾任泛科學實習編輯,是個從學術象牙塔逃離的化學系、化學所學生。比起做實驗,更喜歡分享科學故事、聽科學趣聞,寫科普文的目的就是希望能和大家一起領略科學的力與美。

0

1
0

文字

分享

0
1
0
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

2
0

文字

分享

1
2
0
【2023 年搞笑諾貝爾化學與地質獎】舔石頭以外,猛獁象竟是海龜湯?
寒波_96
・2023/10/20 ・2211字 ・閱讀時間約 4 分鐘

搞笑諾貝爾獎每年都是新的開始,2023 年也不例外。今年「第 33 次第一屆搞笑諾貝爾獎」頒發十個獎項,「化學與地質獎」以看似獵奇的舔石頭博取不少眼球,不過得主揚.扎拉謝維奇( Jan Zalasiewicz)的文章中,其實還提到另一件知名的歷史公案。

1951 年晚宴真相,竟然是海龜湯?!圖/americanoceans

1951 年晚宴真相,竟然是海龜湯?!圖/americanoceans

文學史上用味覺帶出情節,最知名的案例之一是普魯斯特的小說《追憶似水年華》開頭,由瑪德蓮的味道切入,接著進入意識的海洋游泳。扎拉謝維奇的文章開頭,也從品嚐岩石的味道切入,自由切換不同的題材。

地質學家為什麼要舔石頭?《舌頭、石頭,迸出新滋味?科學家為什麼要舔石頭?——2023 搞笑諾貝爾獎》一文有精簡介紹。最主要的理由是,缺乏現代儀器之際,舌頭可謂方便的化學感應器,能提供有用的資訊。

當然,即使有了現代儀器,舌頭還是很方便的工具。

處於意識流科學史中,扎拉謝維奇的文章從舌頭感應器,十分合理地切換到一場宴會。那場 1951 年的晚宴中,據說提供猛獁象肉製作的餐點。

這場晚宴由美國的「探險俱樂部(The Explorers Club)」舉行,主辦方宣稱當天有道菜,來自已經滅絕的動物大地懶(Megatherium)。但是幾天後有報紙披露,宴會中的奇珍異獸不是大地懶,而是來自阿留申群島,25 萬年久遠的猛獁象!

1951 年保存至今的晚餐。圖/取自 參考資料3

奇妙的是,當天的餐點竟然有少量樣本被保留至今。當時沒有參加的豪威斯(Paul Griswold Howes)寫信要到一份樣本,一直保存到他去世為止。後來樣本輾轉來到耶魯大學的皮博迪自然史博物館(Yale Peabody Museum)。

那一餐到底是大地懶,還是猛獁象呢?2014 年,耶魯大學的研究生葛拉斯(Jessica Glass)等人成功由樣本中取得 DNA,結果在 2016 年發表。比對之下相當明顯,答案是綠蠵龜。

現今綠蠵龜是保育類動物,合法的狀況下沒有機會吃到。然而 1951 年那個時候,綠蠵龜尚未面臨滅團威脅,仍然是普遍的食材。

區區綠蠵龜製成的海龜湯,當然無法彰顯晚宴的尊絕不凡。不過俱樂部宣稱的大地懶,怎麼又會變成猛獁象?

最可疑的是當天在場的俱樂部成員尼可斯(Herbert Bishop Nichols),他也是基督科學箴言報(The Christian Science Monitor)的科學編輯。可考的記錄中,他第一個對外提出相關描述,後來被視為吃猛獁象的證據。

海龜湯的幾位相關人猿。(A) 據說將食材從北極帶回的極區探險家 Father Bernard Rosecrans Hubbard。(B) 極區探險家 George Francis Kosco。(C) 晚宴主辦人 Wendell Phillips Dodge。(D) 保存樣本的 Paul Griswold Howes。圖/取自 參考資料3

如果真的是那道菜的材料,那麼狀況就是:俱樂部用綠蠵龜做菜,宣稱是大地懶,報紙以訛傳訛寫成猛獁象。

「吃猛獁象」之類的傳聞,雖然不是嚴謹的科學,卻因為有噱頭而容易引人注目。作為沒多少負面影響的玩笑,也沒有人想要特別澄清。使得這類事件的真相,往往不了了之。

儘管沒有特別獲得搞笑諾貝爾獎關注,對於這道海龜湯的追根究底,倒是相當符合搞笑諾貝爾獎的精神。

海龜湯以後,扎拉謝維奇的文章意識又跳躍到另一種已經滅團的生物:貨幣蟲(Nummulites)。許多古生物,當初也是其他古生物的食物。儘管擁有堅硬的外殼保護,貨幣蟲這種生物依然有機會成為美食。

1912 年的時候,英國古生物學家庫克派崔克(Randolph Kirkpatrick)提出一個觀點:地球有一段時間存在非常大量的貨幣蟲,後來它們變成稱為「貨幣球(Nummulosphere)」的地層,是地殼岩石的源頭。

看起來很搞笑,可是庫克派崔克是認真的。所以他即使生在現代,應該也沒有獲得搞笑諾貝爾獎的機會。

2023 年搞笑諾貝爾獎頒獎典禮影片(化學與地質獎從 10:18 開始):

延伸閱讀

參考資料

  1. The 33rd First Annual Ig Nobel Prizes
  2. Eating fossils
  3. Was Frozen Mammoth or Giant Ground Sloth Served for Dinner at The Explorers Club?
  4. Mammoth meat was never served at 1950s New York dinner, says researcher

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 1
寒波_96
193 篇文章 ・ 1079 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。