Pearl Barger 的姓氏是B開頭,與小艾伯特相同(小艾伯特為暱稱,在華生的研究中被寫成Albert B.)。但進一步追蹤其出生、死亡、婚姻狀況等背景資料,沒有任何證據證明 Pearl 曾經當過母親。而 Ethel Carter 雖然有一個小孩出生於1919年8月26日、她也可能認識小艾伯特,但她並不是小艾伯特的母親:因為她是黑人,而在影片中小艾伯特為高加索白人(黑人幾乎不可能生出白人,機率非常的低)。因此最可能的人選為Arvilla Merritte,她是22歲白人,根據調查她有小孩,名字未知,出生於1919年3月9日。小孩的父親是William Merritte,出生於馬里蘭州。而且這個小孩出生後因醫療問題住於約翰霍普金斯大學附設醫院 12天。但是再往下追蹤,卻發現Arvilla Merritte消失了,不知去向了。
然後從 Arvilla 的家譜可知的事,她是 Maurice Irons 的母親。而 Maurice 是 Larry 和 Gary 的父親。Larry 和 Gary至今仍居住於馬里蘭州,他們在家譜網站上留下可供聯絡的電子郵件。貝克等人(2009)試著用電子郵件與兩兄弟聯絡,並說明來意。Gary回電,確認他的祖母確實在1920年1月於 Harriet Lane Home 工作過,而且也有一個男孩出生於1919年3月9日。她將小孩取名為 Douglas Merritte(以下簡稱道格拉斯)。道格拉斯有三個特徵與小艾伯特相近:男性、高加索白人、出生日期介於3月2日至3月16日之間。
-----廣告,請繼續往下閱讀-----
追查至此,幾乎可確認道格拉斯就是小艾伯特。但最大的疑問在於,為何華生在報告中要將他化名成 Albert B.?因為在1920年代心理學家做實驗時,並不需要將受試者的本名去除(因為美國心理學會的倫理規範是1953年才建立的),也不需要將受試者的制約去除(小艾伯特即未去除制約);華生在當時也不會因為這些缺失而受到任何懲罰。
不過倫理規範還未建立,並不代表華生這一代的心理學家不關心受試者的保密原則。華生在其他實驗中,有時只寫出姓氏、有時只留下縮寫來指稱這些受試者,而 Albert 是唯一有名字的個案。華生明白隨便取個代號當然也可以,但是這樣會讓讀者與文本之間較有距離,也讓人失去溫暖的感覺。如果為了遵守保密原則,會讓社會大眾簡化心理學家的貢獻,並且失去存在感。那為何華生不乾脆直接寫出小艾伯特原來的名字呢?很有可能華生根本不知道他叫什麼名字。在當時那個年代,約翰霍普金斯大學是一個僵化的社交系統,教授根本不會跟奶媽來往,兩人很有可能並無私交。華生可能只是為了修飾他的個案報告,而用另取一個名字來稱呼。
那為何是取 Albert B. 而不是其他名字?主要的原因可能來自於華生取名的習慣,華生喜歡將小孩的名字取自欣賞的人的名字。像華生第一個孩子叫做 William,第二個孩子叫做 James,將兩個名字合起來,就是William James(知名心理學家,現在被尊稱為美國心理學之父)。而華生的母親與外祖母都是虔誠的浸信會信徒,其中有一個知名的牧師叫做 John Albert Broadus, Albert B. 的名字有可能來自於此。
Beck, H. P., Levinson, S., & Irons, G. (2009). Finding Little Albert: A Journey to John B. Watson’s Infant Laboratory. American Psychologist, 64, 605-614.
Watson, J. B., & Rayner, R. (1920). Conditioned emotional reactions. Journal of Experimental Psychology, 3, 1–14.
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。
肯德爾對米爾納在 H. M. 身上的發現相當著迷,所以他早期的研究都集中在動物腦海馬迴的電位變化,並且取得了很大的成就。但是他很快就發現,海馬迴的構造太複雜,而記憶的奧祕絕對沒辦法用海馬迴中單一神經元的電位變化來解開。他認為,記憶的生成一定跟神經細胞之間的「連結」有關,而想要找到這個關係,太複雜的腦構造反而是不利的因素,所以他就把腦筋動到了神經構造特別簡單的海洋動物——海蛞蝓的身上。肯德爾採用的是比較大型的海蛞蝓,稱為海兔(Aplysia)。