0

1
0

文字

分享

0
1
0

看不見的背叛

海苔熊
・2013/05/09 ・3540字 ・閱讀時間約 7 分鐘 ・SR值 530 ・七年級

「我真不敢相信他會背叛我!我這麼信任他,把很多事情都告訴他,我一度以為我們可以就這樣一直順順地走下去──直到我在她家的陽台,看到他內褲的那天……」<1>

這個現象幾乎天天上演,但遭逢的人總是次次驚訝。我們總是很難相信,最信任的人,卻傷害自己最深。不過,研究背叛多年的Jennifer Freyd與Pamela Birrell或許會告訴你,你想反了──正因為你信任他,他才有「資格」背叛你。

我老闆在許多次的演講中都提到一個很重要的概念:當你選擇投入一段關係,就要同時承擔被傷害的風險。也就是說,能傾聽你的人,也能崩壞你

在自我揭露(Self Disclosure)以後[1],對方也開始願意分享他的秘密,於是兩人的距離逐漸拉近──換句話說,親密關係的一部分就是背負著彼此的秘密,承擔著彼此的傷痛。一般而言,安全感比較低的人秘密比較多[2],但如果他們願意跟他人分享這些秘密,表示他們信任這段關係──雖然信任,不見得每次都能帶來新幸福。

-----廣告,請繼續往下閱讀-----

我卻得到你,安慰的背叛

「他的炮友Line給我的時候,我幾乎一整天都沒辦法工作。我不知道她是怎麼知道我手機的,我只知道我心臟很痛。於是我打給他,他說他跟她只是玩玩,然後說了好多他真正愛的是我blabla之類的。在一番折騰之後,我竟然選擇相信他!我很生氣,對自己生氣,我不解,為什麼自己這麼傻?事實不是很明顯了嗎,他有小三,而我一直被蒙在鼓裡,為什麼我還要相信他?」

Jennifer Freyd與Pamela Birrell會跟你說,不是你傻,而是你無法離開他。他們發現,許多人無法正視親密愛人的背叛,是因為那些人對他們來說「很重要」。一個鮮明的真相之所以無法被觸及,並不是因為你沒有「看見」它,而是你要「承認」他需要花很大的勇氣──甚至,在這個承認之後,你可能會失去更多東西

「我已經快要四十歲了,我在這段關係裡面幾乎付出了全部:事業、青春、性、還有很多很多。他說,我們可以一起擁有一個美好的家庭,可是最後都成了笑柄。」他說,話語中帶著一點寂寞。

根據Rusbult的投資理論(investment model) [3],當我們在一段關係中投入越多,會越難離開這段關係──儘管你在這段關係裡並不快樂。你可能會開始考量離開他的代價(cost):朋友會不會笑我?孩子怎麼辦?他會不會報復我?

-----廣告,請繼續往下閱讀-----

看不見,是因為想維持現狀

當你知道這段關係對你很重要,也清楚任何的反抗與面對很可能讓你的關係終止,你就會選擇「眼不見為淨」,用看不見取代看見,用逃避代替解決,Jennifer Freyd與Pamela Birrell將這種現象稱之為「盲視背叛」(betrayal blindness)。

心理學上研究盲視的現象有很多,最有名的是「改變視盲」(change blindness)。典型的實驗是這樣做的,研究者跟路人問路,中途有搬家工人搬一個大門經過他們之間,打斷了他們的談話,研究者趁機替換問路的人,但是有50%的人沒有發現問路者換人了(按此看90秒科學影片)。也就是說,這些路人把大部分的注意力都放在地圖上,而忽略了問路者是誰。

相較於改變視盲,盲視背叛涉及更多「動機」的部分。你忽視、忘記、對他的偷吃沒有印象,是因為你知道,如果你「承認」,將要「承擔」更多負面的風險:爭吵、分手、或離婚。這些後果對你來說實在是不可承受,所以你的大腦幫你一起「忘記」它。換句話說,這段關係對你來說實在是太重要了,所以你的視而不見通常只為了一件事情:維持現狀。他繼續在下班後問你今天過得怎麼樣、談談小孩與教養、聊聊公司學校發生的事、忽視彼此岌岌可危的感情。沒有面對,就沒有分開,就是最典型的盲視背叛心理。

自我欺騙的安全感

「當你真正被火燒過之後,你會發現自己的記憶不太管用了。好像是上輩子發生的事情似的……我幾乎都記不得了。」他說,望著前方殞落的夕陽。他其實是一個記憶力好到很誇張的人,甚至可以記得前兩天晚上關掉電視之前的最後一則廣告、兩週前吃的早餐是三明治還是大肉包,可是每當聊到他跟她結婚、再離婚之間的記憶,「我們可以不要聊這個嗎?」、「不知道」、「忘記了」、「都過去了」等字詞,就如雨後春筍ㄧ般湧現。我不禁納悶:他真的不記得嗎?

-----廣告,請繼續往下閱讀-----

或許,在意識層次他真的忘了。Jennifer Freyd與Pamela Birrell在《背叛:最不能觸碰的真相》一書的第八章引用了非常多的研究,不約而同地指出一個穩定的現象:經歷家暴、性侵、背叛、不當對待的人,在長大之後會發展出較多的解離傾向(dissociative),他們在許多認知實驗中,會忘記許多與負面、創傷、情緒有關的訊息[4]──藉由這種方式,他們在不安全的環境裡,獲得一部分自我欺騙的安全感。

研究者推測,這些高度解離者可能因為長期「隔離」那些背叛記憶,選擇性注意力(selective attention)[5]受損了,無法全心專注在一件事情上面,不過仍然保有不錯的分散注意力(divided attention)[6]<2>──這使他們可以在捉姦在床時只記得床單顏色,不記得發生了什麼事情、在被父親凌虐時只記得地板上的玩具,不記得父親的表情。

如果我能看得見,生命也許完全不同

「當你真正了解他們所面臨的過去是多麼不堪,他的親人與愛人是如何地背叛,你就會清楚,一個人選擇一種病態的生活方式,是因為他們無力做其他的選擇。那些創傷將他們摧殘到到能量耗竭,能好好活到今天已經很不容易了。」一位資深輔導員跟我說,語氣裡透露出一種同理和無奈。

適應是一種偉大的能力,有些人因為它,對壓榨與背叛視而不見、把虐待與侵害當作過眼雲煙,可是他們過得並不快樂。Jennifer Freyd與Pamela Birrell指出,唯有透過知情、表達、訴說等歷程,透過陪伴與穩定的安全感,才能真正面對那些過去的難堪<3>。或許你會覺得這樣的結尾很官腔,但「出來面對」從來不是一句口號或一個動作,而是一個過程。

-----廣告,請繼續往下閱讀-----

我們總是活在各種反覆、矛盾與迴圈中,說好要減肥又半途而廢、說好不再為他掉淚卻又重複傷悲、說好要早睡卻又摸魚到深夜,就算意識到這些缺陷,還是很難面對、很難改變──何況是那些將背叛隔絕在意識之外的人?

 

[註解]

  1. 關於出軌的原因與現象,可以參考《走出出軌》一文
  2. 關於注意力與意識可見此投影片
  3. 敘事治療是個可以嘗試的方式,也有研究指出這樣的方法有助於走出創傷[7, 8]。雖然有些人可能會說,這些研究都只是訪談的歸納與質性的梳理,又沒有統計數據。不過我想說,很多時候數據是有限的,但個案的傷痛是多變而複雜的,有時候這類研究的細膩,反而能反應更真實的現象。
  4. 文中的統計數字與性別差異,均只描述平均值。尚須注意個別差異。
    為顧及隱私與行文順暢顧,文中所有個案與故事均已經當事人同意改編重新繕寫並經模糊化處理,無可供指認之虞。
  5. 照片引自這裡
  6. Ricky說我應該嘗試看看1800字內把事情交代清楚,結果我還是失敗了囧
  7. 歡迎對愛情研究有興趣的你,一起參與這份「已讀」研究,備有精美贈品噢。

[參考文獻與延伸閱讀]

  1. Sprecher, S. and S.S. Hendrick, Self-disclosure in intimate relationships: Associations with individual and relationship characteristics over time. Journal of Social and Clinical Psychology, 2004. 23(6): p. 857-877.
  2. Vrij, A., et al., Perceived advantages and disadvantages of secrets disclosure. Personality and Individual Differences, 2003. 35(3): p. 593-602.
  3. Rusbult, C.E., Commitment and satisfaction in romantic associations: a test of the investment model. Journal of Experimental Social Psychology, 1980. 16(2): p. 172-186.
  4. DePrince, A.P. and J.J. Freyd, Forgetting trauma stimuli. Psychological Science, 2004. 15(7): p. 488-492.
  5. Freyd, J.J., et al., Cognitive environments and dissociative tendencies: Performance on the standard stroop task for high versus low dissociators. Applied Cognitive Psychology, 1998. 12: p. S91-S103.
  6. DePrince, A.P. and J.J. Freyd, Dissociative Tendencies, Attention, and Memory. Psychological Science, 1999. 10(5): p. 449-452.
  7. 林杏足等, 性侵害倖存者的敘事治療歷程分析-以安置機構少女爲例. 亞洲家庭暴力與性侵害期刊, 2009. 5(2): p. 281-304.
  8. 彭信揚, 以敘事治療在網路諮商中陪伴故事主人重寫生命藍圖. 中華輔導與諮商學報, 2009(26): p. 203-237.

文章難易度
海苔熊
70 篇文章 ・ 470 位粉絲
在多次受傷之後,我們數度懷疑自己是否失去了愛人的能力,殊不知我們真正失去的,是重新認識與接納自己的勇氣。 經歷了幾段感情,念了一些書籍,發現了解與頓悟總在分手後,希望藉由這個平台分享一些自己的想法與閱讀心得整理,幫助(?)一些跟我一樣曾經或正在感情世界迷網的夥伴,用更健康的觀點看待愛情,學著從喜歡自己開始,到敏感於周遭的重要他人,最後能用自己的雙手溫暖世界。 研究領域主要在親密關係,包括愛情風格相似性,遠距離戀愛的可能性,與不安全依戀者在網誌或書寫中所透露出的訊息。 P.s.照片中是我的設計師好友Joy et Joséphine

0

1
2

文字

分享

0
1
2
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 54 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
賭博與愛情公式:用數學擬定你的擇偶策略——《數盲、詐騙與偽科學》
大牌出版.出版大牌_96
・2024/01/06 ・2486字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

理解期望值,有助於分析賭場裡的大部分賭局,以及美國中西部和英國的嘉年華會中,常有人玩、但一般人比較不熟悉的賭法:骰子擲好運(chuck-a-luck)。

招攬人來玩「骰子擲好運」的說詞極具說服力:你從 1 到 6 挑一個號碼,莊家一次擲三顆骰子,如果三個骰子都擲出你挑的號碼,莊家付你 3 美元。要是三個骰子裡出現兩個你挑的號碼,莊家付你 2 美元。

假如三個骰子裡只出現一個你挑的號碼,莊家付你 1 美元。如果你挑的號碼一個也沒有出現,那你要付莊家 1 美元。賽局用三個不同的骰子,你有三次機會贏,而且,有時候你還不只贏 1 美元,最多也不過輸 1 美元。

我們可以套用名主持人瓊安.李維絲(Joan Rivers)的名言(按:她的名言是:「我們能聊一聊嗎?」),問一句:「我們能算一算嗎?」(如果你寧願不算,可以跳過這一節。)不管你選哪個號碼,贏的機率顯然都一樣。不過,為了讓計算更明確易懂,假設你永遠都選 4。骰子是獨立的,三個骰子都出現 4 點的機率是 1/6×1/6×1/6=1/216,你約有 1/216 的機率會贏得 3 美元。

-----廣告,請繼續往下閱讀-----

僅有兩個骰子出現 4 點的機率,會難算一點。但你可以使用第 1 章提到的二項機率分布,我會在這裡再導一遍。三個骰子中出現兩個 4,有三種彼此互斥的情況:X44、4X4 或 44X,其中 X 代表任何非 4 的點數。而第一種的機率是 5/6×1/6×1/6=5/216,第二種和第三種的結果也是這樣。三者相加,可得出三個骰子裡出現兩個 4 點的機率為 15/216,你有這樣的機率會贏得 2 美元。

圖/envato

同樣的,要算出三個骰子裡只出現一個 4 點的機率,也是要將事件分解成三種互斥的情況。得出 4XX 的機率為 1/6×5/6×5/6=25/216,得到 X4X 和 XX4 的機率亦同,三者相加,得出 75/216。這是三個骰子裡僅出現一個 4 點的機率,因此也是你贏得 1 美元的機率。

要計算擲三個骰子都沒有出現 4 點的機率,我們只要算出剩下的機率是多少即可。算法是用 1(或是100%)減去(1/216 +15/216 + 75/216),得出的答案是 125/216。所以,平均而言,你每玩 216 次骰子擲好運,就有 125 次要輸 1 美元。

這樣一來,就可以算出你贏的期望值($3×1/216)+($2×15/216)+($1×75/216)+(–$1×125/216)=$(–17/216)=–$0.08。平均來說,你每玩一次這個看起來很有吸引力的賭局,大概就要輸掉 8 美分。

-----廣告,請繼續往下閱讀-----

尋找愛情,有公式?

面對愛情,有人從感性出發,有人以理性去愛。兩種單獨運作時顯然效果都不太好,但加起來⋯⋯也不是很妙。不過,如果善用兩者,成功的機率可能還是大一些。回想舊愛,憑感性去愛的人很可能悲嘆錯失的良緣,並認為自己以後再也不會這麼愛一個人了。而用比較冷靜的態度去愛的人,很可能會對以下的機率結果感興趣。

在我們的模型中,假設女主角——就叫她香桃吧(按:在希臘神話中,香桃木﹝Myrtle﹞是愛神阿芙蘿黛蒂﹝Aphrodite﹞的代表植物,象徵愛與美)有理由相信,在她的「約會生涯」中,會遇到 N 個可能成為配偶的人。對某些女性來說,N 可能等於 2;對另一些人來說,N 也許是 200。香桃思考的問題是:到了什麼時候我就應該接受X先生,不管在他之後可能有某些追求者比他「更好」?我們也假設她是一次遇見一個人,有能力判斷她遇到的人是否適合她,以及,一旦她拒絕了某個人之後,此人就永遠出局。

為了便於說明,假設香桃到目前為止已經見過 6 位男士,她對這些人的排序如下:3—5—1—6—2—4。這是指,在她約過會的這 6 人中,她對見到的第一人的喜歡程度排第 3 名,對第二人的喜歡程度排第 5 名,最喜歡第三個人,以此類推。如果她見了第七個人,她對此人的喜歡程度超過其他人,但第三人仍穩居寶座,那她的更新排序就會變成 4—6—1—7—3—5—2。每見過一個人,她就更新追求者的相對排序。她在想,到底要用什麼樣的規則擇偶,才能讓她最有機會從預估的 N 位追求者中,選出最好的。

圖/envato

要得出最好的策略,要善用條件機率(我們會在下一章介紹條件機率)和一點微積分,但策略本身講起來很簡單。如果有某個人比過去的對象都好,且讓我們把此人稱為真命天子。如果香桃打算和 N 個人碰面,她大概需要拒絕前面的 37%,之後真命天子出現時(如果有的話),就接受。

-----廣告,請繼續往下閱讀-----

舉例來說,假設香桃不是太有魅力,她很可能只會遇見 4 個合格的追求者。我們進一步假設,這 4 個人與她相見的順序,是 24 種可能性中的任何一種(24=4×3×2×1)。

由於 N=4,37% 策略在這個例子中不夠清楚(無法對應到整數),而 37% 介於 25% 與 50% 之間,因此有兩套對應的最佳策略如下:

(A)拒絕第一個對象(4×25%=1),接受後來最佳的對象。

(B)拒絕前兩名追求者(4×50%=2),接受後來最好的求愛者。

如果採取A策略,香桃會在 24 種可能性中的 11 種,選到最好的追求者。採取 B 策略的話,會在 24 種可能性中的 10 種裡擇偶成功。

以下列出所有序列,如同前述,1 代表香桃最偏好的追求者,2 代表她的次佳選擇,以此類推。因此,3—2—1—4 代表她先遇見第三選擇,再來遇見第二選擇,第三次遇到最佳選擇,最後則遇到下下之選。序列後面標示的 A 或 B,代表在這些情況下,採取 A 策略或 B 策略能讓她選到真命天子。

-----廣告,請繼續往下閱讀-----

1234;1243;1324;1342;1423;1432;2134(A);2143(A);2314(A, B);2341(A, B);2413(A, B);2431(A, B);3124(A);3142(A);3214(B);3241(B);3412(A, B);3421;4123(A);4132(A);4213(B);4231(B);4312(B);4321

如果香桃很有魅力,預期可以遇見 25 位追求者,那她的策略是要拒絕前 9 位追求者(25 的 37% 約為 9),接受之後出現的最好對象。我們也可以用類似的表來驗證,但是這個表會變得很龐雜,因此,最好的策略就是接受通用證明。(不用多說,如果要找伴的人是男士而非女士,同樣的分析也成立。)如果 N 的數值很大,那麼,香桃遵循這套 37% 法則擇偶的成功率也約略是 37%。接下來的部分就比較難了:要如何和真命天子相伴相守。話說回來,這個 37% 法則數學模型也衍生出許多版本,其中加上了更合理的戀愛限制條件。

——本書摘自《數盲、詐騙與偽科學》,2023 年 11 月,大牌出版,未經同意請勿轉載。

討論功能關閉中。

大牌出版.出版大牌_96
3 篇文章 ・ 0 位粉絲
閱讀的大牌不侷限於單一領域, 視野寬廣,知識豐富,思考獨立。

0

1
0

文字

分享

0
1
0
資訊量過大啦!我們其實不擅長處理複雜的資訊?——《生物轉大人的種種不可思議》
商周出版_96
・2023/11/21 ・1330字 ・閱讀時間約 2 分鐘

誰不接受多樣性?

我們的成長方式具有多樣性。有人長得快,有人長得慢;有人長得高大,有人長不高。這種多樣性是「生物的策略」。不過有個東西並不接受多樣性。就是我們的大腦。

人腦不善於處理複雜的訊息。

有一個法則叫做「神奇數字七法則」,意思是:人類一次頂多只能記住七樣東西。

這是真的嗎?我們來試試看。

-----廣告,請繼續往下閱讀-----

請記住以下插圖,限時三十秒。

接著再看下面的圖,什麼東西不見了?

答案是不倒翁。為什麼明明十樣物品也不多,我們就是記不住呢?

再來試試下一題吧。

-----廣告,請繼續往下閱讀-----

雖然超過七個圖,但是這一題可能大家都記得住,因為這些圖都與《桃太郎》的故事有關。先找出關聯性,再加以歸納整理,大腦才有辦法勉強記住超過七樣東西。

大腦不擅長處理太多資訊

記憶圖畫或許比較困難,試試看數字吧。

請記住旁邊的數字,限時五秒。

怎麼樣? 是不是太簡單了點!

-----廣告,請繼續往下閱讀-----

下面這一組數字呢? 也是限時五秒。

上面這一題是不是也太簡單了!

下一組數字呢? 限時同樣五秒鐘。

如何?

-----廣告,請繼續往下閱讀-----

前兩題應該可以輕輕鬆鬆記住,但是第三題就比較不容易了吧?

你知道第三題有幾個數字嗎?

答案是八個。

只有八個!

-----廣告,請繼續往下閱讀-----

人類厲害到發明了電腦,我們優秀又傑出的大腦照理說應該能理解一百、一萬,甚至一億個數字。然而實際上,人腦必須費盡力氣才能記住兩隻手數得完的數字。我們的大腦本質上不擅長處理「大量」的資訊。

理解「大量」的方法

如同上述的例子,當題目是文字(圖像)時,只要歸納出《桃太郎》的故事,我們的大腦就更容易理解。

那麼數字呢?

我們來看看下面的數列。

-----廣告,請繼續往下閱讀-----

把亂七八糟的數字排成一列,是不是就好記很多?

如果再排成下面這樣呢?

這次是依照數字的大小排序。

我們可以看到「3」有兩個,而 1 到 9 中間缺少了「7」和「8」。經過排列和整理順序之後,人腦就比較能夠理解這些資料。我們的大腦最喜歡把東西排成一列或排順序。學校排成績也是這樣的關係吧?

-----廣告,請繼續往下閱讀-----

——本文摘自《生物轉大人的種種不可思議:每一種生命的成長都有理由,都值得我們學習》,2023 年 8 月,商周出版,未經同意請勿轉載。

商周出版_96
119 篇文章 ・ 361 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。