0

0
0

文字

分享

0
0
0

臭蟲的逆襲

Alex
・2013/05/08 ・1187字 ・閱讀時間約 2 分鐘 ・SR值 547 ・八年級

圖文 / Alex Tzeng

大多數的人不喜歡在夜晚擾人的家蚊(Culex spp.)、戶外郊遊時把腿叮成紅豆冰棒的小黑蚊(Forcipomyia taiwana)以及由寵物動物攜帶的跳蚤和蟎蜱,這些常見於台灣生活中常見吸血昆蟲在報章雜誌上多有報導,但近年除了這些耳熟的吸血昆蟲外,又多了一種名為「臭蟲」或稱「床蝨」(Bed bug)的昆蟲。臭蟲並非台灣沒有,而是早年台灣進行瘧疾防治時,大量使用DDT進行室內的殘效噴灑以及多數家庭不再以日式榻榻米為家中裝潢後,導致臭蟲族群大幅減少,但有時在軍隊中仍然會發現它們危害的蹤跡,這些臭蟲也因為會躲藏在軍人背包的縫隙隨軍人移動又被稱為「忠誠龜」。

實際上臭蟲是屬於昆蟲綱中的半翅目、臭蟲科(Cimicidae)的昆蟲,這類昆蟲以吸食動物血液為主食,較適應人類生活環境則是溫帶臭蟲(Cimex lectularius)以及熱帶臭蟲(Cimex hemipterus),約於90年代中期在美國的大城市又開始流行,台灣近年與鄰近國家的交流頻繁,而且現今殺蟲劑的使用限制比早年嚴格許多,在眾多條件支持下,這些臭蟲在台灣似乎有捲土重來趨勢,在台灣近年發現的危害主要為熱帶臭蟲。

臭蟲是夜間活動的昆蟲,日間的活動力非常弱,臭蟲外型扁平,依環境營養的不同,一隻雌性臭蟲生活週期約為一年,一生中約可產下200至400顆卵,臭蟲吸血的行為並非如同蚊子一次吸到飽後離開,而是會在一個寄主身上留下數個吸血痕跡直到吸飽為止,叮咬後的反應也不同於蚊子或小黑蚊立刻會有紅腫的症狀,而臭蟲叮咬通常會經過24小時才會形成2-6公分的紅腫區域,叮咬處的抓癢破皮繼而造成細菌感染或皮膚潰爛也是危害症狀之一,但臭蟲的叮咬通常不會造成過敏反應,此外臭蟲未發現能夠傳播人類疾病,因此臭蟲僅被認為是騷擾性害蟲。

-----廣告,請繼續往下閱讀-----

臭蟲在家中躲藏之處為床墊、櫥櫃、沙發等傢具或是背包、行李箱的縫隙中,當中以床墊為主要的棲所(圖二),若家中發生臭蟲危害時,首先會發現手臂或背上有大片被叮咬的痕跡,其次在床上可發現斑點狀的小血漬,這時可以以肉眼檢查床墊的上下細縫是否有暗紅色的血便痕跡,甚至可以直接發現蟲體或卵。

圖二、紅色箭頭為床墊縫隙中的臭蟲,周圍黑色斑點則為臭蟲的排遺。

那麼當臭蟲發生的時候要怎樣處理?第一、千萬不要任意丟棄還有活蟲或蟲卵的床墊、被褥或背包,這樣會使得臭蟲散佈到附近住家,第二、在日間仔細搜尋危害發生區域內的各個傢具細縫,吸塵器或是鑷子將臭蟲移除,床墊的細縫處以殺蟲劑噴灑處理再以黑色垃圾袋密封,其他小型的物品可以用夾鍊帶密封起來,放置在太陽下曝曬或是以二氧化碳熏蒸,第三、發生臭蟲的房間密封起來使用殺蟲劑進行熏蒸,然而台灣長年未大規模發生臭蟲的危害,因此當家中發生臭蟲時,除了自己動手清除發生處外,還是需要請有處理臭蟲危害經驗的專業除蟲公司幫忙。

參考文獻:

  1. Stephen L. Doggett, Dominic E. Dwyer, Pablo F. Peñas, and Richard C. Russell, 2012, Bed Bugs: Clinical Relevance and Control Options. Clinical Microbiology Review 25: 164-192
  2. Klaus Reinhardt and Michael T. Siva-Jothy, 2007, Biology of the Bed Bugs (Cimicidae). Annual Review of Entomology 52: 351-37
-----廣告,請繼續往下閱讀-----
文章難易度
Alex
5 篇文章 ・ 0 位粉絲
研究病媒昆蟲和蟲媒病毒,是台灣少數的蚊子博士,看到正在吸血的蟲子會忍不住觀察他們,高中偶然拜讀了伊波拉病毒的故事,覺得研究病毒是件很酷的事,在昆蟲系研究病媒昆蟲,才發現人類、蚊子、病毒的三角關係是大自然的奇妙邂逅。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
1

文字

分享

0
2
1
只許交配不許失敗,不擇手段的生殖大戰──《昆蟲真不可思議》
PanSci_96
・2016/04/30 ・4146字 ・閱讀時間約 8 分鐘 ・SR值 520 ・七年級

所有生物都想留下自己的基因,這是生物與生俱來的本能。

昆蟲的貞操帶

青蛙與大部分魚類等水生生物的雄性,利用體外受精的方式,讓自己的精子與雌魚排出的卵結合受精。另一方面,陸上生物多以交配方式體內受精,對這些生物的雄性而言,自己的交配對象(雌性)很可能再與其他雄性交配。當人類面對這種狀況,通常會以忌妒表達自己的不安,相對於此,動物就沒那麼麻煩,牠們的做法較為徹底。為了留下自己的基因,牠們會不擇手段達成目的。最直接的方法就是在自己交配後,不讓雌性與其他雄性交配。人類自古發明了金屬製貞操帶,利用上鎖的內褲避免女方紅杏出牆,事實上,昆蟲也會利用相同手法。

一到早春季節就會現身的日本虎鳳蝶薄翅白鳳蝶等小型鳳蝶,雄性會在交配期間將精胞送進雌性身體的同時分泌黏液,在雌性生殖器蓋上交配栓(交配囊)。如此一來,即可避免雌性與其他雄性交配。遇到這類蝴蝶時,可從外觀清楚辨識出交尾後的雌性。

029
日本虎鳳蝶(左)與雌性薄翅白鳳蝶的腹部,有一個交配栓(右:箭頭處的三角形突起)©丸山宗利

龍蝨科的龍蝨是一種水生甲蟲,雌性身上也有交配栓,但雌性會用腳將其取下;這個行為看在與雌性交配的雄性對象眼裡,可說是情何以堪。此外,另一種避免雌性與其他雄性交配的方法,就是一直與對方交配。毒蛾科的雄性舞毒蛾與雌性交配,將精胞送進雌性體內後,身體仍與雌性相連。這個方式可以避免雌性受到其他雄性引誘,與其他雄性發生關係。

-----廣告,請繼續往下閱讀-----

上述行為稱為交配後保護行動,其他還有即使不處於交配狀態,雄性仍一直停在雌性背上的頭蝗科負蝗,這是最顯著的例子。大多數鍬形蟲科的雄性甲蟲在交配後,也會一直停在雌性背上,避免其他雄性接近雌性。

雄蟲的大男人主義

當雄蟲遇到已經跟其他雄蟲交配的非處女雌蟲,雌蟲身上原有的貞操帶也起不了任何作用。

珈蟌科深山珈蟌的雄蟲在這一點上,顯得有些大男人主義。雄性深山珈蟌的陰莖前端有一處突起,交配時會將該雌蟲前一次交配放在身體裡的精胞刮出來。此外,昆蟲習性與人類不同,雌蟲會將雄蟲排出的精胞放在自己體內的儲精囊裡,產卵時再從中取出精子,形成受精卵。換句話說,雌蟲會利用事先放在體內儲精囊的精子完成受精。離儲精囊入口愈近的精子,會最先被用來完成受精。

蜻蜓科的小紅蜻蜓會將前一次交配的雄蟲精胞往內推,再將自己的精胞送進去。這類發生在雄性之間的精子戰爭稱為「精子競賽」,利用將其他雄蟲的精胞刮出來或往裡推等方式,增加自己的勝率。對雌蟲來說,應付雄性之間的精子競賽也是很大的負擔。話說回來,雌蟲在與不同雄蟲交配的過程中,只會留下最強的雄蟲後代,事實上,雌蟲也會選擇最強的雄蟲留下後代。

-----廣告,請繼續往下閱讀-----

異常交配行為

交配通常指的是陰莖插入陰道裡的行為,體內受精的陸上生物大多採用這個方法交配。不過,這個世界上有些昆蟲的交配行為,超出了我們的常識範圍。

以俗稱「南京蟲」的吸血性半翅目昆蟲床蝨為例,雄蟲會在雌蟲腹部隨便找一個地方插入陰莖,送入精子。不同種的方法略有差異,但一般來說,精子會經由血液進入雌蟲卵巢,完成受精。有鑑於此,只要詳細檢查床蝨雌蟲的腹部有無傷口,就能確認其是否已經交配,就連跟多少雄蟲交配都看得出來。床蝨的腹部有一個特殊的袋狀器官,據說可以預防外傷感染。至今昆蟲學家尚未釐清,為何床蝨不採取一般的交配行為,而選擇如此特殊的交配方法。

590px-Traumatic_insemination_1_edit1
床蝨,又稱南京蟲,雄蟲會直接在雌蟲身體任一處植入精子,以達到交配之目的。圖/wikipedia

此外,捻翅目有一群可說是最接近甲蟲的昆蟲,所有種都寄生在其他昆蟲身上。大多數種的雄蟲會飛,雌蟲則長得像蛆,整個身體都躲在寄主體內,只露出一顆頭。雄性成蟲的壽命極短,到處飛翔尋找雌蟲。一發現雌蟲,就會在相當於交配器的部分之外,找一個地方插入陰莖,完成交配。雌蟲身體的大部分為產卵管,精子經由血液傳輸,與大量的卵結合。

-----廣告,請繼續往下閱讀-----

034
捻翅目的Xenos moutonii 雌蟲,寄生於擬大虎頭蜂的腹節之間©小松貴

果蠅科的昆蟲也有類似的交配行為。雖然不清楚採取這種行為的目的何在,或許這樣的方法比其他交配方式更適合牠們的演化環境,也可能是因為這個方法使其他雄蟲無法像前方介紹的那樣,將競爭對手的精胞刮出或往裡推。

同性間的交配行為?

在正常的交配關係裡,雄性會將精子送至雌性體內。不過,有些昆蟲再度打破人類的認知。

花椿科椿象的一種就是由兩隻雄蟲進行交配。雖說是交配,雄蟲並無陰道,因此採用與床蝨相同的方法,將陰莖插入雄蟲腹部的任一部位,將精子送進去。以下我將插入陰莖的雄蟲稱為T被插入陰莖的雄蟲稱為N進行說明。根據研究顯示,T排出的精子會進入N的精巢存放

-----廣告,請繼續往下閱讀-----

至於精子在精巢裡會產生什麼樣的變化,至今仍毫無所知,但一般認為,N在與雌蟲交配時,會連T的精子一起送進雌蟲體內。換句話說,T將自己的精子託付給另一隻雄蟲N,讓N交配時可以使用自己的精子。事實上,T也可以自己與雌蟲交配,但牠利用這個方法增加自己的精子與卵結合的機會。擬步行蟲科的擬榖盜也有這類同性戀行為,根據研究結果,該種雄蟲會將老舊的劣質精子射入其他雄蟲體內

性別顛倒

昆蟲學家觀察棲息在巴西洞窟裡的嚙蟲目昆蟲Neotrogla,發現雌蟲具有陰莖狀器官,可插進雄性身上類似陰道的交配器裡吸收精胞。換句話說,這種昆蟲在交配時處於性別顛倒的狀態。由於囓蟲目的雄蟲精胞裡含有營養物質,雌蟲為了吸收營養物質,才會發展出主動插入的交配型態。

誠如前方所說,在一般性選擇中,雌蟲產卵比雄蟲生產精子還辛苦,因此雌蟲選擇雄蟲,雄蟲之間相互競爭的型態較為常見。不過,囓蟲目的雄蟲生產營養物質較辛苦,因此雌蟲發展出可以多次交配的習性,逆轉了性選擇的演化方向。

此外,大部分昆蟲是雄蟲趴在雌蟲背上,陰莖插入陰道。囓蟲目昆蟲的體位完全相反,由雌蟲主導爬到雄蟲背上,完成交配。

-----廣告,請繼續往下閱讀-----

殺了對手的小孩

大家都知道獅子、長尾葉猴等雄性動物有殺小孩的習性,由於兩種動物的社會型態皆為一隻雄性霸主擁有一群雌性,生下一大群子嗣,因此新霸主上位時,會殺掉所有小孩(其他雄性的孩子)。獅子、長尾葉猴這麼做的原因眾說紛紜,一般認為育兒中的雌性動物不會發情,因此新霸主會殺掉別人的小孩,讓自己儘早得到交配機會,確實留下自己的子孫。有些昆蟲也會做同樣的事情,從中可看到性別顛倒的適應性演化。

大田鼈是大型的水生椿象,棲息於水田與池塘,以青蛙和魚為食,屬於肉食性昆蟲。大田鼈雌蟲會在突出於水面的木樁或植物,產下六十到一百顆卵,由雄蟲以身體覆蓋卵子。雄蟲在水中和卵塊間游來游去,讓卵保持濕潤,直到成功孵出幼蟲為止。若雄蟲不保護卵,卵就會腐壞,無法孵出新生命。

Unicode
大田鱉為一肉食性昆蟲,在市街許多地區已被列為瀕危物種,圖為日本大田鱉。圖/wikipedia

雌蟲只要在水中發現雄蟲,便強迫其交配、產卵。此時雄蟲會放棄原本保護的卵,改為保護新產下的卵。有時雌蟲找到有雄蟲保護的卵塊,會故意破壞卵塊,殺死別人的小孩。卵塊遭到其他雌蟲破壞的雄蟲,會與該雌蟲交配,改為保護該雌蟲產下的卵。

-----廣告,請繼續往下閱讀-----

看到雄蟲毫無男子氣概,成為雌蟲小跟班的窩囊樣,心中忍不住覺得可憐。不過,大田鼈雌蟲的行為確實值得玩味,為了爭奪保護卵塊的雄蟲,雌蟲之間肯定掀起一場腥風血雨。可惜最近沒有任何相關的研究報告,這可說是十分有趣的研究主題。

陰莖大小固定的演化法則

外骨骼與內骨骼是昆蟲和人類之間的差異之一,昆蟲和蝦子等節肢動物,體表覆蓋著一層功能相當於「骨骼」的外殼,相對於此,我們人類與魚類等脊椎動物的骨骼則架構在體內。這一點也可從昆蟲的交配器官(交配器)的構造差異看出端倪。昆蟲的陰莖與陰道都是由堅硬、伸縮性較差的外骨骼所構成

大多數昆蟲的雌蟲交配器(陰道)與雄蟲交配器(陰莖),屬於鎖與鑰匙的關係。基本上生物會盡量避免和異種交配,因為這樣的行為無法繁衍後代(不能受精或發生交配行為),徒然浪費交配機會。即使可以生出雜種,也很容易無法適應環境而滅絕,結果還是無法留下自己的基因。因此,只要建立鎖與鑰匙的關係,就不會與異種交配,也不會浪費交配機會。

這類現象我們稱之為「交配前生殖隔離」,誠如前方所述,生物會釋放費洛蒙等化學物質吸引異性,利用這個方式在交配前確認對方與自己是否屬於同種。另一方面,即使是鎖與鑰匙的關係,要是雄蟲營養狀態很好、體型很大,遇到營養狀況不佳,體型過小的雌蟲,也無法完成交配。說得明白一點,大型鑰匙很可能無法插入小小的鑰匙孔。

-----廣告,請繼續往下閱讀-----

以鍬形蟲為例,每隻雄性成蟲的體型差異相當大,令人好奇雄蟲與雌蟲之間的鑰匙與鑰匙孔關係又是如何?根據一項研究鋸鍬形蟲體型的報告,昆蟲學家測量許多鋸鍬形蟲的身體各部位,發現其他部位的大小差異較明顯,唯有雄蟲陰莖的尺寸大小差不多。由此可見,即使是體型較小的雄性成蟲,其陰莖尺寸與體型較大的雄性成蟲幾乎一樣,藉此確保所有雄性成蟲可以交配。有些昆蟲的成蟲體型差異也很大,讓我忍不住想知道,牠們的身體構造是否也跟鋸鍬形蟲一樣?

2621111108_03f18fa4ec_z
鍬形蟲的體型差異可以達到不小的差距,但生殖器官的差異不明顯。圖/LiChieh Pan@flickr

順便一提,人類經常誤認體型較小的鍬形蟲成蟲是「幼蟲」,以為牠還會長大。事實上,除了極少數特例之外,昆蟲只要長為成蟲之後,體型便不會再變大。


昆蟲真不可思議立體書 (1)

 

 

 

牠們也會吵架、記恨別人,戀愛會送禮物、跳舞,也有同性戀、貞操觀、愛打扮、甚至結婚詐欺?地球上最多樣的生物──昆蟲,千奇百怪的生活大公開!!《昆蟲真不可思議》,晨星出版

-----廣告,請繼續往下閱讀-----