《讓你瞬間看穿人心的怪咖心理學:史上最搞怪的心理學實驗報告》(Quirkology:How We Discover the Big Truths in Small Things)和《心理學家教你59秒變A咖》(59 Seconds : Think a Little, Change a Lot)真的是兩本很有趣的書。
就像之前在〈蝦米!誰說人是理性的!?〉和〈別當正常的傻瓜了吧!〉提到的《誰說人是理性的!》(Predictably Irrational: The Hidden Force That Shape Our Decisions) 和《別當正常的傻瓜: 避免正常人的錯誤,成為超凡的決策者(全新第2版)》一樣,《讓你瞬間看穿人心的怪咖心理學》就是要透過一連串的有趣實驗,來瞭解人們理性和不理性的行 為。因此,在書中,作者Richard Wiseman列舉出人們在面對決策、迷信、時間、偏見、靈異、笑話、刻板印象、欺騙等等情境時,一致的行為反應。
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手、Readmoo部落格【GENE思書軒】、關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋。
你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?
馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。
如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?
-----廣告,請繼續往下閱讀-----
黑盒子模型背後的隱藏秘密
無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。
AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。
此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。
其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。
深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。
首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。
以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。
LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。
-----廣告,請繼續往下閱讀-----
第三是反事實解釋:如果改變一點點,會怎麼樣?
如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。
五十多年前,一項研究以三個月大的嬰兒為受試者,凸顯了控制感的重要性。研究者將嬰兒分成兩組,A 組是有控制權的嬰兒,他們躺在嬰兒床上,頭靠著枕頭,床的上方倒掛著一把半透明的傘,裡面用彈簧黏著幾隻動物玩偶,如果嬰兒轉一下頭,傘裡的燈就會亮起,嬰兒就可以看到那些玩偶在「跳舞」,但一會兒燈就熄滅了。當 A 組嬰兒碰巧轉頭,讓傘裡的燈亮起並看到玩偶,他們就會表現出好奇、開心和興奮的樣子,而且很快就學會利用轉頭來控制玩偶的出現,然後一次又一次重複這個動作,看起來一直都很開心。B 組嬰兒則沒有控制權,只有在 A 組轉頭時,他們床上的燈也跟著亮起,才可以「順便」看到玩偶, 所以 B 組看到玩偶的次數和時間都跟 A 組一樣多,但他們只有在一開始表現得跟 A 組一樣開心,然後很快就因為適應而失去興趣。
另一項研究以生命的另一端——老年人為受試者,也戲劇化地證明了「控制感」對於幸福快樂的重要性。研究者告訴 A 組養老院的住民必須為自己負責、照顧好自己;B 組住民則被告知他們的一切生活起居都由工作人員打理。此外,A 組每天都要決定一些簡單的事,並照顧一盆植物;B 組則沒有任何決定權,他們的植物也由工作人員照顧。結果,A 組老人(對自己的生活有一定的控制權)比 B 組(沒有控制權)更有活力、更靈敏,主觀幸福感也更高。最引人注目的是,A 組的平均壽命比 B 組多好幾年。可見,從出生到死亡,人都需要擁有對生活的掌控權。