0

1
0

文字

分享

0
1
0

腦下垂體功能異常,內分泌失調症狀多!

careonline_96
・2023/04/25 ・2058字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

「醫師,公司體檢發現我的血壓、血糖都偏高。」28 歲的陳小姐拿著報告進到診間。

由於患者有高血壓與糖尿病家族史,於是醫師便開始使用藥物治療。林口長庚醫院內分泌暨新陳代謝科林怡瑄醫師回憶起病患回診時,提到容易感到疲倦、無力,於是便替她抽血檢測,結果發現促腎上腺皮質激素(ACTH)特別高。後續的腦部核磁共振檢查顯示患者的腦下垂體有腫瘤,於是後續便轉介給神經外科醫師評估手術治療。

神經外科醫師使用內視鏡,由鼻腔進行顯微鏡經蝶竇移除腦下垂體腫瘤手術。術後,患者的血糖和血壓都逐漸回復正常。林怡瑄醫師說,即使患者外觀沒有明顯庫欣氏病的樣貌,但是若出現高血糖、高血壓、無力等症狀,也要提高警覺並讓專業醫師評估,才能及早發現病因,及早接受治療。

腦下垂體是重要的內分泌器官,位於顱底骨正中央的蝶鞍部,在後方視神經交叉的附近。腦下垂體的前葉可以分泌生長激素(GH)、泌乳素(PRL)、促甲狀腺素(TSH)、濾泡刺激素(FSH)、黃體生成素(LH)和促腎上腺皮質素(ACTH)。

-----廣告,請繼續往下閱讀-----

這些激素分別有不同的功能,例如生長激素可以刺激肝臟合成類胰島素生長因子(IGF-1),進而影響脂肪分解、脂肪酸氧化、肝臟新陳代謝、骨骼、牙齒、神經的生長,調節免疫反應,以及心臟血管內皮增生等作用相關。

泌乳素與女性在懷孕哺乳期時的乳汁分泌有關;促甲狀腺素主要刺激甲狀腺分泌甲狀腺素,調節全身新陳代謝;促腎上腺皮質素會刺激腎上腺分泌皮質醇,和全身的代謝與脂肪分布等有影響;濾泡刺激素與黃體生成素則會刺激性荷爾蒙分泌,控制精子與卵子的成熟。

腦下垂體後葉主要負責釋放抗利尿激素(ADH)和催產素(Oxytocin)。林怡瑄醫師說,抗利尿激素可以調節身體的血壓、以及身體內電解質平衡和水分調節;催產素則在生產過程中會大量釋放,刺激子宮收縮,幫助順利分娩。除了在生產過程中發揮作用外,它們也對腦部的內分泌和情緒調節產生影響。這些激素在男女體內都有,只是比例不同。

哪些原因會導致腦下垂體功能異常?

除了先天發育異常可能導致腦下垂體功能異常。林怡瑄醫師說,腦部外傷、腦出血、蜘蛛膜下腔出血、手術、放射線治療也可能影響腦下垂體功能。

-----廣告,請繼續往下閱讀-----

而感染或自體免疫疾病造成的發炎反應也是導致腦下垂體功能異常的原因。另外,大量失血造成血壓過低,讓腦下垂體血流供應不足,也可能導致腦下垂體功能喪失。腦部腫瘤也是造成腦下垂體功能異常的原因,無論是腦下垂體自身的腫瘤還是周邊腫瘤的壓迫,都可能影響它的功能。

腦下垂體功能異常會造成哪些症狀?

腦下垂體腫瘤大部分為良性,可分為「功能性」與「非功能性」。林怡瑄醫師說,功能性的腦下垂體腫瘤會分泌過多的荷爾蒙,而造成相對應的症狀。

泌乳激素瘤會導致異常乳房發育及乳汁不正常分泌;生長激素瘤在小孩會導致巨人症,在成人則會出現肢端肥大症,導致手腳變大、額頭變寬、嘴唇變厚等等症狀;促腎上腺皮質素過多會導致庫欣氏症,症狀包括高血壓、高血糖、中樞型肥胖、肌肉無力、容易出現瘀斑及骨質疏鬆等;促甲狀腺激素過多會一直刺激甲狀腺分泌甲狀腺素,造成甲狀腺亢進的症狀,如手抖、心悸、緊張、焦慮、體重減輕等。

當腦下垂體遭到壓迫時,可能出現分泌不足的狀況,使功能受到影響。林怡瑄醫師說,也有些腦下垂體腫瘤並沒有明顯症狀,患者可能是在接受檢查時意外發現腫瘤。

-----廣告,請繼續往下閱讀-----

但是隨著腦下垂體腫瘤漸漸長大,便可能出現壓迫性症狀,例如頭痛、視力模糊、視野缺損等,所以必須持續追蹤觀察,必要時治療上便需要手術移除腫瘤。

貼心小提醒

腦下垂體是非常重要的內分泌器官,可分泌多種荷爾蒙調節全身的生理機能。林怡瑄醫師說,當腦下垂體功能異常時,全身都會受到影響而出現各式各樣的症狀。

大家若有發現相關問題,可以至內分泌科就診,和醫師詳細討論,共同找出病因並及早治療!

文章難易度
careonline_96
482 篇文章 ・ 273 位粉絲
台灣最大醫療入口網站

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
「經鼻內視鏡」腦下垂體腫瘤切除手術,克服治療困境,降低併發症機率!
careonline_96
・2023/12/05 ・2541字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

「有位 60 歲的男性病人,一開始是因為視力模糊、全身痠軟、虛弱無力來就診。檢查發現在腦下垂體長了一顆 3 公分左右的腫瘤。」

林口長庚醫院腦腫瘤神經外科主任李丞騏醫師指出,「受到腫瘤壓迫,正常腦下垂體的功能受到影響,導致內分泌失調。腦下垂體附近的視神經也受到壓迫,導致視野缺損、視力模糊。」

經過討論後,患者接受經鼻內視鏡腦下垂體腫瘤切除手術,利用內視鏡從鼻腔進入蝶竇,再磨開骨頭進入蝶鞍,移除腦下垂體腫瘤。李丞騏醫師說,手術過程相當順利,術後患者的視力便幾乎完全復原。隨著內分泌功能逐步恢復,全身痠軟、虛弱無力的狀況也明顯改善。經鼻內視鏡腦下垂體腫瘤切除手術從外觀看不到傷口,術後疼痛較少、恢復期較短,讓患者非常滿意。

腦下垂體是重要的內分泌器官,當腦下垂體出現腫瘤時,可能出現多種症狀表現。李丞騏醫師說,一般可將腦下垂體腫瘤區分為「功能性」與「非功能性」。

-----廣告,請繼續往下閱讀-----

功能性腦下垂體腫瘤會分泌過量荷爾蒙,例如泌乳激素瘤分泌過多泌乳激素,造成月經失調、乳房脹痛、乳汁分泌、不孕等;生長激素瘤分泌過多生長激素,在成人會導致肢端肥大症,而且常合併心血管疾病、睡眠呼吸中止症、大腸癌風險上升等;若分泌過多促腎上腺皮質激素(ACTH),會導致庫欣氏病,症狀包括月亮臉、水牛肩、肌肉萎縮、皮膚變薄、骨質疏鬆、中樞型肥胖等。

腦下垂體腫瘤較小時,可能完全沒有症狀。腫瘤逐漸變大之後,會對周遭的腦組織造成壓迫,而讓患者出現頭痛、頭暈、眼窩後方疼痛等症狀。李丞騏醫師說,若腫瘤壓迫視神經,可能造成視野缺損、視力模糊。

還有約 10% 的腦下垂體腫瘤會以急性腫瘤出血來表現。李丞騏醫師說,患者可能出現劇烈頭痛、噁心、嘔吐、視力急速惡化,甚至意識昏迷、性命垂危。

經鼻內視鏡腦下垂體腫瘤切除手術優勢解析

倘若腦下垂體腫瘤已壓迫視神經造成視力模糊、視野缺損,一定要手術治療。李丞騏醫師說,另外若腦下垂體腫瘤壓迫造成腦下垂體功能低下,導致全身倦怠、虛弱無力、食慾不振等症狀,也要考慮手術治療。

-----廣告,請繼續往下閱讀-----

功能性腦下垂體腫瘤會分泌過多荷爾蒙,影響生理功能。李丞騏醫師說,除了泌乳激素瘤以藥物治療為首選之外,其他的功能性腦下垂體腫瘤都應該採用手術治療。

腦下垂體腫瘤切除手術目前是以經鼻內視鏡手術為主流,已經逐漸取代傳統開顱手術。李丞騏醫師說,手術時會經由單側或雙側鼻孔,先從鼻腔進入蝶竇,接著會磨除顱底骨頭進入蝶鞍。將腫瘤外面的包膜切開,就可以使用一些特殊設計的器械將腫瘤一塊一塊的移除。直到確認腫瘤已全部切除或是神經獲得足夠減壓,就可以確認手術已經順利完成。

移除腫瘤後,醫師會將腦膜貼回,再使用一些組織凝膠關閉傷口,減少術後腦脊髓液鼻漏的機會。接受經鼻內視鏡腦下垂體腫瘤切除術,患者通常可以在 5 天左右出院。

相較於傳統開顱手術,經鼻內視鏡腦下垂體腫瘤切除手術有許多優勢。李丞騏醫師分析,由於腦下垂體位於顱底,傳統開顱手術必須鋸開頭骨、切開腦膜、勾開大腦,橫越腫瘤上方的神經血管才有辦法進行腦下垂體腫瘤切除。

-----廣告,請繼續往下閱讀-----

在勾開大腦的過程中,很容易造成術後腦腫脹以及腦出血;在橫越神經血管的過程中,很容易造成不必要的損傷;在移除腫瘤的過程中,傳統手術使用顯微鏡,視野受到限制,所以沒有辦法做到非常完整的腫瘤切除,而且後續止血也比較困難。這些都是傳統開顱手術在處理腦下垂體腫瘤會遇到的問題,以及衍生出來的併發症。

經鼻內視鏡腦下垂體腫瘤切除手術是從大腦下方進行,不須鋸開頭骨、不須勾開大腦,不須橫越許多神經血管。而且內視鏡的解析度高,能夠提供較寬廣的視野,讓醫師能夠把病灶以及顱底構造看得更清楚,可執行完整的切除、減壓與止血。

「經鼻內視鏡手術與其說是『微創』,倒不如說是『無創』。因為是由鼻孔進入,所以外觀沒有傷口。」李丞騏醫師說,「患者在術後疼痛較少、感染風險較低、住院天數也比較短,大約 5 天便可以出院。」

除了用來切除腦下垂體腫瘤,經鼻內視鏡手術還可以處理多種顱底病灶,包括常見的腦膜瘤、顱咽管瘤、脊索瘤、鼻腔惡性腫瘤、或從其他地方轉移過來的惡性腫瘤。李丞騏醫師說,甚至於是一些感染發炎的病灶,也都可以利用經鼻內視鏡手術來處理。

-----廣告,請繼續往下閱讀-----

貼心小提醒

腦下垂體腫瘤的症狀表現很多樣,可導致頭痛、視力模糊、視野缺損、內分泌失調等,雖然腫瘤尺寸不大,但也會造成許多問題。李丞騏醫師說,經鼻內視鏡腦下垂體腫瘤切除手術克服了許多傳統開顱手術的困難,發揮較好的治療成效,並減少併發症發生的機會,幫助患者解決腦下垂體腫瘤的大麻煩!

討論功能關閉中。

0

0
0

文字

分享

0
0
0
怎麼樣才算身高矮小?留意兒童生長激素缺乏,及重要發育觀念提醒
careonline_96
・2023/09/24 ・2365字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

「那是一位 13 歲的國中女生,來就診的時候身高只有 134 公分,體重 27 公斤,非常瘦小,第二性徵也沒有發育[1]。」新竹市立馬偕兒童醫院兒童內分泌科主任林昭旭醫師分享,「進一步檢查發現她是生長激素缺乏症,骨齡是 10 歲 6 個月,且性荷爾蒙也沒有分泌[2]。」經過半年的追蹤,她依然沒有長高,於是開始遵照專業醫師的指示並適當使用藥物後,順利達到理想的身高。

很多因素會對成年身高造成影響,包括營養狀態、性早熟、生長激素缺乏[3]等。林醫師說明,一般而言,男生大概是 9 到 14 歲、女生大概是 8 到 13 歲會發育第二性徵[4],如:男生的睪丸、陰莖會變大,女生的初經來潮、胸部會變大[5]。在發育過程中,通常身高會快速成長,直到骨骼生長板完全癒合,達到成年身高。

隨著整體營養狀況改善,現在小孩的發育時間會比過去提前。林昭旭醫師指出,「很多家長可能還停留在過去的觀念,認為女生會長高到 16、17 歲,男生會長高到 18 歲,不過現在的兒童可能提早發育,也會提早結束[6]。」

身高過於矮小,可能對孩子的心理、社交造成負面影響。在兒童成長過程中,照顧者要定期紀錄生長曲線,才能提早發現身高矮小的狀況,把握治療時機。林昭旭醫師解釋,目前對於身高矮小的定義有兩個,第一個是長得很矮,身高落在兒童生長曲線圖中第三百分位以下[7]。第二個就是成長速率緩慢,6 歲以上的男生或女生,一年長高不到 4 公分[8]

-----廣告,請繼續往下閱讀-----

生長激素缺乏影響成年身高

生長激素是影響兒童身高的重要賀爾蒙,林昭旭醫師說:「生長激素由腦下垂體分泌,能夠刺激骨骼生長[9]。如果遇到身高矮小的兒童都要留意是否有生長激素缺乏的狀況。」

懷疑生長激素缺乏時,會先幫患者抽血,並作骨齡 X 光檢查。根據臨床經驗與觀察,林醫師提到,通常會發現患者 IGF-1 偏低[10],且骨齡有落後的現象。

為了確定診斷生長激素缺乏症,會安排住院進行生長激素刺激測驗[11]。林昭旭醫師說明,我們體內的生長激素是脈衝式分泌,因此得藉由藥物刺激,評估生長激素能否正常分泌。若發現有生長激素缺乏的狀況,病人可諮詢專科醫師,進行相關檢查與治療。

貼心小提醒

在孩子成長過程中,請務必維持均衡營養、規律運動[12]、與充足睡眠[13],要盡量避免甜食[14],以免影響生長速度。

-----廣告,請繼續往下閱讀-----

記得要定期紀錄身高,如果身高落在兒童生長曲線圖中第三百分位以下[15],便須特別留意。林昭旭醫師提醒家長,若發現孩子的第二性徵太早發育,像是男生的睪丸變大、女生的胸部變大[16],也要至兒童內分泌科檢查。

經過詳細檢查與專科醫師的評估,若確認生長激素缺乏症、沒有腦部病灶、且經過追蹤都沒有長高,面對治療藥物選擇時,充分地跟開立藥物的專科醫師進行討論。林昭旭醫師提醒,在骨骼生長板癒合之後,便沒辦法再長高,請務必及早至兒童內分泌科檢查,把握治療時機,幫助孩子順利成長!

(本衛教資訊由台灣輝瑞大藥廠提供)

PP-UNP-TWN-0090-202308

-----廣告,請繼續往下閱讀-----

參考資料

  1. 醫師受訪時分享的案例資料
  2. 醫師受訪時分享的案例資料
  3. 中華民國兒童生長協會(child-growth.org.tw)(Access date:2023.09.04)
  4. 淺談兒童長高與骨齡迷思,國泰綜合醫院,
    https://www.cgh.org.tw/ec99/rwd1320/allphoto/1900/240-2-1.pdf
  5. Abreu AP, Kaiser UB. Pubertal development and regulation. Lancet Diabetes Endocrinol. 2016;4(3):254-264. doi:10.1016/S2213-8587(15)00418-0
  6. 醫師受訪時分享的臨床觀察訊息
  7. 基層醫學 ; 21卷12期 (2006 / 12 / 25) , P359 – 366,
    https://www.mmh.org.tw/taitam/famme/old%20website/failure%20to%20thrive.pdf
  8. Diagnostic approach to children and adolescents with short stature – UpToDate
  9. Brinkman JE, Tariq MA, Leavitt L, et al. Physiology, Growth Hormone. [Updated 2023 May 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482141/ (Access date: 29th, August, 2023)
  10. Ibba A, Corrias F, Guzzetti C, et al. IGF1 for the diagnosis of growth hormone deficiency in children and adolescents: a reappraisal. Endocr Connect. 2020;9(11):1095-1102.
  11. 生長激素刺激測驗檢查須知:GH stimulation test.pdf (cgmh.org.tw)
  12. Cappa, M et al. “Neuroregulation of growth hormone during exercise in children.” International journal of sports medicine vol. 21 Suppl 2 (2000): S125-8.
  13. Chaput, Jean-Philippe et al. “Systematic review of the relationships between sleep duration and health indicators in the early years (0-4 years).” BMC public health vol. 17,Suppl 5 855. 20 Nov. 2017, doi:10.1186/s12889-017-4850-2
  14. Coldwell SE, Oswald TK, Reed DR. A marker of growth differs between adolescents with high vs. low sugar preference. Physiol Behav. 2009;96(4-5):574-580. doi:10.1016/j.physbeh.2008.12.010
  15. 基層醫學 ; 21卷12期 (2006 / 12 / 25) , P359 – 366,https://www.mmh.org.tw/taitam/famme/old%20website/failure%20to%20thrive.pdf
  16. 淺談兒童長高與骨齡迷思,
    https://www.cgh.org.tw/ec99/rwd1320/allphoto/1900/240-2-1.pdf