2

4
3

文字

分享

2
4
3

【從中國經典認識大腦系列】從「莊周夢蝶」討論真實與幻覺

YTC_96
・2023/03/24 ・3863字 ・閱讀時間約 8 分鐘

夢蝶,選自明代陸治《幽居樂事圖》冊。 圖/Wikipedia

有一天,莊周夢見自己變成蝴蝶,能翩翩飛舞感受非常的真實,甚至都忘了自己其實是莊周。但夢醒後才發現原來自己還是莊周,不是蝴蝶。由於夢境太過真實,他一時間相當迷惘,搞不清楚自己到底是做夢變成莊周的蝴蝶,還是夢見變成蝴蝶的莊周。

莊周和蝴蝶、現實與虛假,一定是有區別的,但卻在夢境以及現實間混而為一,這也是萬物的交融以及轉化。莊子在《齊物論》透過故事的形式,想要告訴我們萬物皆可同化,達至齊一的境界,人生變幻無常。

既然如此,那所謂的真實和虛幻又有什麼不同呢?這篇文章我會從哲學、心理學、以及神經科學的層面來討論。

主觀感受是大腦對真實世界產生的模擬實境

從生物學來看,我們的感覺以及感知是透過大腦的神經活動對應外界環境所產生表徵[1][2]。因此,美國哲學家、數學家與電腦科學家希拉里.普特南(Hilary Whitehall Putnam)就在《理性、真理和歷史》(Reason, Truth, and History)書中提出一個思想實驗,稱作缸中之腦(Brain in a vat),又或是桶中之腦(brain in a jar)。

假設我們存在一種技術,能將大腦從人體取出,放置在充滿培養液的桶子內維持其生理活性,並能透過超級電腦將真實大腦接收的電訊號完全複製並連結到缸中之腦。超級電腦會提供一個模擬的真實環境(譬如走路),讓缸中之腦能以為自己還控制著身體的主人並在真實的世界活著(圖一)[3]

-----廣告,請繼續往下閱讀-----
圖一,認為自己正在走路的缸中之腦示意圖。圖/ Wikipedia

此思想實驗常常用來作為哲學懷疑論(philosophical skepticism)和唯我論(Solipsism, 一種認為只有自我是唯一真實存在的哲學理論)的論證(argument)。因為從大腦的角度,不論我們是在真實世界走路,抑或是在缸中接收走路的電訊號,我們都認為自己正在走路,大腦無法知道自己是顱中之腦還是缸中之腦,也因此我們無法得知何謂真實與虛假。

有趣的是,透過現今的神經科學技術,科學家們也能在小鼠腦中的海馬迴(hippocampus)上,透過刺激記憶痕跡(memory engram)來製造真實世界並未學習過的虛假記憶[4]

身體的「歸屬感」是一種大腦產生的假象

上述的思想實驗又或是動物實驗都存在一個很大的盲點,那就是並沒有真正的人(又或是各位讀者)能證明自己主觀的感受是被大腦牽著鼻子走。思想實驗是存在於假想的情境,科學上並未提供驗證。即便動物實驗測量了的動物行為表現,我們仍舊無法得知動物真正的主觀感受和行為是否一致。

我們常認為自己感受的一切理所當然存在,就如同我們能感受自己的四肢的存在,並隨意的指揮身體的移動,從沒思考過其存在的真實性。

-----廣告,請繼續往下閱讀-----

1998 年,美國賓州的心理學家馬修.伯敏尼(Matthew Botvinick) 和強納森・考亨(Jonathan Cohen)就在《Nature》期刊發表了一個簡短的通訊,透過了一個經典的橡膠手錯覺(rubber hand illusion)實驗[5],讓我們知道原來我們身體的感知,其實也是大腦塑造的一種假象。

兩位男子試做橡膠手錯覺實驗。

此研究獲得極大迴響,也影響後續許多哲學理論、心理學、神經科學、以及醫學工程的發展,至今(1998-2022)甚至引用次數已將近五千次。

橡膠手錯覺實驗的操作非常容易,只需要準備一隻假手,一塊不透明的隔板,以及兩支毛筆刷。接著,將假手放在面前的桌子,並透過隔板將自己的手藏在隔板旁不讓自己看到,然後讓另一位夥伴用毛筆刷同時你的真手以及假手,過程中我們必須一直盯著假手。

過了一陣子後,實驗者會開始有假手才是自己真的手的錯覺,甚至當對方用鎚子敲打假手時,我們會有疼痛感。也有研究指出透過橡膠手錯覺,能用來調控痛覺達到止痛效果[6]

-----廣告,請繼續往下閱讀-----

橡膠手錯覺的進一步應用甚至能讓實驗者產生自己有三隻手的錯覺[7],此現象稱作畢博布羅克斯錯覺(The Beeblebrox illusion),命名概念取自銀河漫遊指南一位擁有三隻手的角色柴法德.畢博布羅克斯(Zaphod Beeblebrox)[8]

橡膠手錯覺所帶來的身體轉移錯覺現象(body transfer illusion)說明了我們感受到的肉身其實只是大腦產生的一種假象,我們甚至能將自己的身體一部分移轉到虛擬的影像[9]上,讓自己出現類似靈魂出竅、遊離出身體的現象[10],又或是和別人身體交換的感覺[11]。這個現象也說明了在適當的實驗操作下,我們想要體驗莊周夢蝶是極有可能辦到的。

我們對身體的感知也是大腦創造的假象的話,你的手有可能不是你的手…? 圖/GIPHY

大腦內的幽靈——幻覺

為了驗證人們所謂的真實,必須要能針對相同事物與環境進行描述,且大多數的人能給出相似的答案。同時能用超過一種感官驗證該事物的存在。

舉例來說,要確認我面前的是一顆真正的蘋果,除了我眼睛看到外,我甚至能聞到其香味,又或是拿起來吃下肚,而且不只是我,路上隨便的一個人也能和我一樣對該蘋果進行類似的描述。但若是我說眼前的是一顆真的蘋果,但卻發現伸手拿也拿不到,且周圍朋友也說根本沒看到任何蘋果,這就代表著很有可能我出現幻覺(hallucination)。

-----廣告,請繼續往下閱讀-----
「嘿!我看到了一顆蘋果,你有看到嗎?」 圖/GIPHY

這邊的幻覺指的是擁有非外界刺激產生的感知,包含聽到、看到、又或是感受到實際並不存在的東西。產生幻覺的人雖然自認該感覺是真實的,但從旁人來看,我們能清楚知道那是虛假不存在的,也因此研究幻覺的大腦神經機制將有助於幫助我們了解那種說不出的「真實感」,到底是如何在大腦被建構出來。

在南北戰爭結束後,美國醫師塞拉斯.威爾.米切爾(Silas Weir Mitchell)在 1866 年的七月《亞特蘭大月刊》(Atlantic Monthly)刊登了一篇喬治‧迪德羅(George Dedlow)北軍中尉被截肢切掉雙腳卻感受到其仍存在的故事[12],並開始用感覺幽靈(sensory ghosts)以及幻影(phantoms)來定義之。

在今日我們稱此幻覺為「幻肢」,是人類失去身體部位後所產生的一種幻覺,會使人感覺失去的部份依舊附著在軀幹上,並與身體一起移動。統計上發現超過八成的截肢患者都會出現幻肢的現象。幻肢產生的神經機制目前還尚未完全清楚,但普遍認為是和截肢後大腦皮質的重組(cortical reorganization)有關[13]

幻覺的出現也與精神疾病、神經退化性疾病或是物質濫用有關。

-----廣告,請繼續往下閱讀-----

思覺失調症(schizophrenia)的病人有大約八成曾經出現過幻覺,尤其是幻聽[14]。巴金森氏症(Parkinson’s disease)的病人大約七成五左右也會出現幻覺,尤其是幻視[15]

以神經科學的角度來說,幻覺的發生有很多種原因。 圖/GIPHY

迷幻劑(hallucinogens)、K 他命(ketamine)、致譫妄藥(deliriants),具有阻斷大腦神經傳導物質乙醯膽鹼(acetylcholine, ACh))的物質的抗膽鹼劑(anticholinergic agents)[16],甚至過量攝取咖啡因(caffeine)[17]的報導與幻覺出現有關。

由於幻覺的成因種類太過複雜,目前在神經科學上還不清楚其詳細的機制。目前認為是和失常的訊息整合,以及接收周邊感覺刺激訊息的初級感覺區域有關,其中出現幻覺的巴金森氏症病人就與感覺整合區、視丘(thalamus)在結構上的變化以及多巴胺濃度失調有關[15]。一般幻聽和幻視症狀的人在初級聽覺以及視覺皮質上則出現自主的反應[18]

總結

從莊周自身的角度來說,不論是蝴蝶又或是莊周,他的主觀感受的真實感是真正存在於他的大腦。大腦塑造的真實感,從定義上來看就是一種神經表徵,這和物理真實世界引發的神經反應,又或是人工刺激大腦後產生的虛擬實境世界並無差異。

-----廣告,請繼續往下閱讀-----

透過幻覺的研究,科學家們發現和感覺區域的異常以及神經傳導物質的失調有關。真實與虛幻或許不只是一個哲學問題,也是一個科學問題。

參考文獻

  1. https://en.wikipedia.org/wiki/Sense
  2. https://en.wikipedia.org/wiki/Perception
  3. https://en.wikipedia.org/wiki/Brain_in_a_vat
  4. Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, Tonegawa S. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature. 2012 Mar 22;484(7394):381-5. doi: 10.1038/nature11028.
  5. Botvinick M, Cohen J. Rubber hands ‘feel’ touch that eyes see. Nature. 1998 Feb 19;391(6669):756. doi: 10.1038/35784.
  6. Fang W, Zhang R, Zhao Y, Wang L, Zhou YD. Attenuation of Pain Perception Induced by the Rubber Hand Illusion. Front Neurosci. 2019 Mar 22;13:261. doi: 10.3389/fnins.2019.00261.
  7. Guterstam A, Petkova VI, Ehrsson HH. The illusion of owning a third arm. PLoS One. 2011 Feb 23;6(2):e17208. doi: 10.1371/journal.pone.0017208.
  8. https://www.nationalgeographic.com/science/article/the-beeblebrox-illusion-scientists-convince-people-they-have-three-arms
  9. Slater M, Perez-Marcos D, Ehrsson HH, Sanchez-Vives MV. Towards a digital body: the virtual arm illusion. Front Hum Neurosci. 2008 Aug 20;2:6. doi: 10.3389/neuro.09.006.2008.
  10. Lenggenhager B, Tadi T, Metzinger T, Blanke O. Video ergo sum: manipulating bodily self-consciousness. Science. 2007 Aug 24;317(5841):1096-9. doi: 10.1126/science.1143439. 
  11. Petkova VI, Ehrsson HH. If I were you: perceptual illusion of body swapping. PLoS One. 2008;3(12):e3832. doi: 10.1371/journal.pone.0003832. 
  12. https://www.theatlantic.com/magazine/archive/1866/07/the-case-of-george-dedlow/308771/
  13. Ramachandran VS, Hirstein W. The perception of phantom limbs. The D. O. Hebb lecture. Brain. 1998 Sep;121 ( Pt 9):1603-30. doi: 10.1093/brain/121.9.1603.
  14. Montagnese M, Leptourgos P, Fernyhough C, Waters F, Larøi F, Jardri R, McCarthy-Jones S, Thomas N, Dudley R, Taylor JP, Collerton D, Urwyler P. A Review of Multimodal Hallucinations: Categorization, Assessment, Theoretical Perspectives, and Clinical Recommendations. Schizophr Bull. 2021 Jan 23;47(1):237-248. doi: 10.1093/schbul/sbaa101.
  15. Weil RS, Reeves S. Hallucinations in Parkinson’s disease: new insights into mechanisms and treatments. Adv Clin Neurosci Rehabil. 2020 Jul 13;19(4):ONNS5189. doi: 10.47795/ONNS5189.
  16. https://en.wikipedia.org/wiki/Hallucination#cite_note-17
  17. Crowe, S. F., et al. “The effect of caffeine and stress on auditory hallucinations in a non-clinical sample.” Personality and Individual Differences 50.5 (2011): 626-630.
  18. Zmigrod L, Garrison JR, Carr J, Simons JS. The neural mechanisms of hallucinations: A quantitative meta-analysis of neuroimaging studies. Neurosci Biobehav Rev. 2016 Oct;69:113-23. doi: 10.1016/j.neubiorev.2016.05.037.
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
YTC_96
11 篇文章 ・ 19 位粉絲
從大學部到博士班,在神經科學界打滾超過十年,研究過果蠅、小鼠以及大鼠。在美國取得神經科學博士學位之後,決定先沉澱思考未來的下一步。現在於加勒比海擔任志工進行精神健康知識以及大腦科學教育推廣。有任何問題,歡迎來信討論 ytc329@gmail.com。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
為期刊拍張封面 顯微鏡下的科學魔法
顯微觀點_96
・2024/05/27 ・3010字 ・閱讀時間約 6 分鐘

本文轉載自顯微觀點

希爾思使用VS120拍攝,小鼠大腦矢狀切口上的染色圖像。圖片來源:EVIDENT|Olympus官網

「我開始拍攝美麗的影像是出於興趣,因為我喜歡神經科學圖像藝術性的一面。」

史蒂芬妮.希爾思(Stephanie Shiers)是美國德州達拉斯大學的認知神經科學家,她拍攝的顯微鏡影像曾被選作多本期刊的封面,包括《神經科學雜誌》 (The Journal of Neuroscience)、《科學轉化醫學》 (Science Translational Medicine)等。要怎麼做才能讓自己拍攝的作品登上期刊封面呢?

希爾思在 2019 年取得認知和神經科學博士學位,目前從事疼痛研究,以移植捐贈者的神經組織探索慢性疼痛的臨床前機制和治療方法。

最驕傲的時刻——影像獲選期刊封面

希爾思攻讀博士期間,當第一篇論文獲得刊登且拍攝的照片一同被選為封面發表時,是她最引以為傲的時刻。她表示,第一篇論文被發表本身已經很令人興奮,當時並未預期會獲選封面,「因為我只是基於我對神經科學藝術的熱愛,而拍攝漂亮的圖片」。

-----廣告,請繼續往下閱讀-----

事實上,論文中所有影像都使用 40 倍物鏡拍攝,但她後來決定使用 100 倍物鏡拍攝,以捕捉一些漂亮的影像,加以觀察。

「我能看到所有的樹突和軸突初始段,這看起來令人震撼!」當希爾思與她的指導教授分享時,教授鼓勵她投稿期刊封面,同時提交論文。

希爾思表示,在攻讀博士學位時,面對周遭的同行都非常專業,自己曾感到無所適從。然而,當成功的數據和封面影像出現時,過去辛勤的工作和壓力都值得了。

歷經徬徨 受科學魔法吸引踏上研究路

對於自己選擇踏入神經科學研究,並繼續攻讀博士、成為科學家,希爾思坦承自己也曾經歷徬徨。「因為不知道自己想做什麼」,希爾思大學時曾選了三個主修、一個副修。

-----廣告,請繼續往下閱讀-----

原想攻讀醫學院的希爾思,在接受緊急救護技術(EMT)訓練時,意識到自己不想當醫師。因此她又選了神經科學和歷史專業,因為她自認可能喜歡人文學科、可能想成為律師。

直到完成學士學位後希爾思仍不清楚自己的職涯方向。但當她加入校內實驗室時,發現自己「真的很喜歡」,進而申請進入加州大學戴維斯分校的 NeuroMab 研究機構(UC Davis/NIH NeuroMab facility),從事免疫組織化學的工作。

在這份工作中,希爾思研究進行免疫組織化學染色、抗體驗證,在顯微鏡下觀察「肉眼」看不見的東西。這時她意識到「科學是最我們所擁有,最接近魔法的東西」,也因此確認了職業道路——走上學術研究之路。

而現在對希爾思來說,最難忘的時刻莫過於帶領在實驗室掙扎的學生領略科學的奇妙。

-----廣告,請繼續往下閱讀-----

曾經有一名學生未受太多訓練,因此希爾思帶著她完成染色工作、教她操作共軛焦顯微鏡;而當學生第一次看到顯微鏡下的影像時,露出驚訝的表情。 「看到別人也能體驗到科學的神奇,真是太好了!」希爾思這麼說道。

Science Trans 1
圖片來源:擷自《Science Translational Medicine vol. 13, issue 595》封面

超敏通道

圖像顯示小鼠背根神經節表現瞬態受體蛋白 5 (TRPC5,紅色)編碼瞬時受體電位規範 5(TRPC5,紅色)、抑鈣基因相關胜肽(CGRP,綠色)、P2X3 受體(藍色)和神經絲蛋白 200(青色)的基因。

希爾思為〈Transient Receptor Potential Canonical 5 Mediates Inflammatory Mechanical and Spontaneous Pain in Mice.〉的共同作者。

本篇論文主要探討,多種原因引起疼痛超敏反應,其中 TRPC5 的活化增加了囓齒動物對疼痛的敏感性,而 TRPC5 通道也在人類感覺神經元中表現,因此研究認為 TRPC5 抑制劑可能可有效減輕患者的疼痛超敏反應。

拍科學藝術照 封面也可以很抽象

對於如何拍出「封面等級」的科學藝術照,希爾思也給出幾點建議。首先,她強調擁有適合的儀器至關重要,以降低信噪比和提升影像品質。

此外,研究者必須接受更多基礎訓練。她表示,過去自己雖操作過很多次顯微鏡,但主要使用明視野照明觀察。直到開始博士課程後學習神經解剖學、蛋白質定位等知識,使用免疫螢光染色最適當的卻是使用暗視野照明。因此持續接受培訓,了解如何正確使用顯微鏡也是非常重要的。

希爾思也建議,在實驗數據收集階段,就可預先規劃影像拍攝;一邊構思論文中需要使用的圖像和材料,如果材料和研究內容一致,就當場拍攝解析度更高的影像。

-----廣告,請繼續往下閱讀-----

她也鼓勵研究者不斷嘗試新事物,例如使用不同染劑(明視野病理染色劑、鈣染色劑等)與顯微鏡搭配,將更容易拍攝出引人注目的影像。

希爾思鼓勵研究者盡可能地投稿封面影像,並強調封面不必與數據收集所用的影像完全相同;甚至許多期刊封面的圖片可以是抽象的、不一定要和照片一樣真實。

物種特異性表達

以原位雜合技術(in situ hybridization,左)和空間轉錄(Spatial Transcriptomics,右)並置的人類背根神經節,用於描述感覺神經元轉錄譜的特徵。

痛覺受器是專門的感覺神經元,存在於背根神經節(DRG)和三叉神經節中,對生成最終疼痛感知的神經元信號至關重要。

希爾思為〈Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors.〉的第二作者。

本篇研究試圖為人類疼痛受器生成等效訊息,利用空間轉錄數據識別痛覺受器的轉錄組特徵,並藉以識別物種間差異和潛在的藥物靶點。

Sciencetrans2022 1
圖片來源:擷自《Science Translational Medicine (vol. 14, issue 632》封面 
Jneurosci 3
圖片來源:擷自《The Journal of Neuroscience vol. 38, issue 33》封面

圖像為患有神經性疼痛的小鼠內側前額皮質神經元,紅色為 PV 陽性細胞小白蛋白陽性中間神經元(紅色)與軸突初始段標記(Ankyrin-G,綠色)和核標記(DAPI,藍色)的共同標記。

希爾思為〈Neuropathic Pain Creates an Enduring Prefrontal Cortex Dysfunction Corrected by the Type II Diabetic Drug Metformin But Not by Gabapentin〉的第一作者。

認知障礙是神經性疼痛的共病。本篇研究使用原治療糖尿病的藥物二甲雙胍,治療神經疼痛 7 天後出現逆轉,包括功能和解剖學出現變化,顯示該藥物或可老藥新用於治療神經性疼痛及其認知合併症。

參考資料

  1. https://www.olympus-lifescience.com/en/discovery/behind-the-lens-dr-stephanie-shiers-creates-cover-worthy-neuroscience-art/
  2. Sadler, Katelyn E et al. “Transient receptor potential canonical 5 mediates inflammatory mechanical and spontaneous pain in mice.” Science translational medicine vol. 13,595 (2021).
  3. Tavares-Ferreira, Diana et al. “Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors.” Science translational medicine vol. 14,632 (2022).
  4. Shiers, Stephanie et al. “Neuropathic Pain Creates an Enduring Prefrontal Cortex Dysfunction Corrected by the Type II Diabetic Drug Metformin But Not by Gabapentin.” The Journal of neuroscience : the official journal of the Society for Neuroscience vol. 38,33 (2018).

查看原始文章

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
16 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

1

5
1

文字

分享

1
5
1
【從中國經典認識大腦系列】從「子非魚,安知魚之樂?」淺談主觀意識的本質
YTC_96
・2023/10/18 ・3086字 ・閱讀時間約 6 分鐘

宋劉寀群魚戲荇。圖/npm.edu.tw

惠施觀點:人不能知道魚的快樂

「子非魚,安知魚之樂?」出自《莊子.秋水》篇中的濠梁之辯。惠施認為莊子不是魚,又怎麼能知道魚是快樂的?這看似簡單的一句話卻點出困擾哲學家以及科學家數百年之久的問題,那就是主觀意識到底是什麼?

圖/Pixabay

濠梁之辯的情境是這樣子的。莊子和惠施同遊至濠水的橋梁。莊子說:「鯈魚出遊時很從容,這就是魚的快樂啊。」惠施說:「你不是魚,怎麼知道魚的快樂?」莊子回答說:「你不是我,怎麼知道我不知道魚的快樂?」惠施說:「我不是你,當然不知道你的想法,而你當然也不是魚,所以你不知道魚的快樂,這完全是可以肯定的。」莊子說:「請回到開頭的話題。你問我『你怎麼知道魚的樂趣?』既然你已經知道我知道,並且問我,那我就是在濠梁上知道的。」

既然莊子認為自己能知道魚的快樂,那我也想問莊子,你知道成為一隻魚又是怎麼樣的感覺嗎?

圖/YouTube

成為一隻蝙蝠可能是什麼樣子

在濠梁之辯後的兩千多年,美國著名哲學家湯瑪斯.內格爾(Thomas Nagel)也從想像自己是蝙蝠(注意不是小小鳥)的過程中獲得靈感,並在 1974 年發表了〈成為一隻蝙蝠可能是什麼樣子〉(What is it like to be a bat?)。他認為主觀經驗無法透過客觀描述來獲得,是心靈與物理之間的解釋鴻溝(Explanatory Gap)。簡單來說,就算我們知道蝙蝠是透過聲納來感知並飛行在空中,但因為我們不是真正的身歷其境成為一隻蝙蝠,我們還是無法知道作為蝙蝠是什麼樣的感覺。

-----廣告,請繼續往下閱讀-----
圖/YouTube

這種主觀經驗,哲學上稱作感質(Qualia),是指主觀意識經驗的特殊品質或性質。它們是個人直接體驗的主觀感受,無法通過客觀描述或第三人稱觀察來完全理解或解釋。感質是一種主觀的、非物理的屬性,無法被完全捕捉或解釋。它們涉及到我們感知世界的方式、感受事物的質感、觸覺、視覺、聽覺、嗅覺等等。

舉例來說,如果你試圖向另一個人解釋一朵玫瑰的芬芳,或者試圖描述一個人的愉快感受,這些主觀感受都屬於感質。它們是我們內心獨有的體驗,無法被他人直接體驗或理解。

另一個哲學家們喜歡舉的例子是「你和我看到的紅色是一樣的嗎?」這或許聽起來是一個很蠢的問題,因為當紅色物品擺在眼前,非色盲或沒有眼疾的一般人都能異口同聲說出該顏色。透過醫學研究,我們也都知道波長約 700 nm 的紅色光刺激到視網膜的錐細胞是我們大家都能看到紅色的原因。

不過,雖然紅色光能刺激每個人相同的視網膜錐細胞是不變的客觀物理事實,但沒有人能保證你和我主觀感受到的紅色是相同的,就像是幾年前網路爆紅的藍黑白金裙 (The Dress)(圖一),即使是同一條裙子的照片,有人說是藍黑裙,卻有人說是白金裙。這也說明看似客觀的色彩,也存在有主觀性。

-----廣告,請繼續往下閱讀-----
圖一、藍黑裙?白金裙?都幾咧。圖/The dress – Wikipedia

人類或許能想象自己作為一隻蝙蝠使用聲納來飛行導航,又或是把自己像蝙蝠般倒掛休息,但這和成為一隻真正蝙蝠的感受還是不同的。

感質可能埋藏在複雜的神經網路中

莊子和惠施的辯論背後探討了意識的本質,也引發人們對於知覺和主觀體驗的一種思考。即使經過數千年的探索,「意識究竟是怎麼產生的?」仍是一個深奧而又複雜的問題,也是所謂的「意識的困難問題(Hard Problem of Consciousness)」。從哲學角度,感質無法透過描述去感受,但從科學上來說,我們無法否認大腦是產生主觀感受的關鍵,這也讓神經科學家們好奇是否能找到感質的神經機制。

英國巴斯大學疼痛研究中心的教授羅傑奥普伍德(Roger Orpwood) 多年來進行感質的理論研究,他認為感質是局部大腦皮質網路訊息處理的結果。這個網路能轉換訊息結構(Information Structure; 訊息在大腦中的物理表現,主要是動作電位的模式)和訊息資訊(Information Message; 感質的基礎)(圖二)。當輸入的訊息結構被網路辨識,而產生訊息資訊,這網絡還可以輸出一個訊息資訊的表徵並進行下一個傳遞與轉換(Structure → Message → Structure → Message…)(圖三)。舉例來說,臭雞蛋的硫化氫(H2S)氣味感質是透過一層一層的網路後產生。 當鼻腔吸入硫化氫氣味分子後,嗅覺系統的訊息結構通過嗅覺神經束傳遞到嗅覺皮質網絡。而傳遞的訊息所獲得的資訊都建立在前一個資訊的基礎上。這資訊從硫化氫的第一階段的辨識內在身份(Inner Identiy),演變為硫化氫的內在形式(Inner Form),到發展成硫化氫的意象(Inner Likeness or Image),也就是硫化氫的感質體驗(圖四)。

知名美國神經科學家,研究意識神經機制多年的克里斯托夫.科赫(Christof Koch),也認為意識不是來自個別大腦區域,而是來自區域內和區域間高度網絡化的神經元。意識相關的神經區域(Neural Correlates of Consciousness (NCC))概念的興起,也希望透過實驗研究的方式來找到產生意識的最小神經集合,並了解哪些大腦的區域是產生意識所不可或缺的。

-----廣告,請繼續往下閱讀-----
圖二、當我們看到藍色後,大腦透過訊息結構的模式傳送到視覺皮層 V4 區域。對大腦來說,這就是一種訊息資訊,是我們主觀上看到的「藍色」。圖/frontiersin.org
圖三、網絡或神經元集合中的​​基本訊息處理。輸出訊息結構從被辨識的訊息資訊從輸入訊息結構中形成。訊息(Information)從結構(Structure)到資訊(Message),再到結構。圖/frontiersin.org
圖四、嗅覺感質的產生示意圖。圖/frontiersin.org

結論

莊子和惠施辯論河中的鯈魚是否快樂,以及雙方怎麼知道魚是否快樂,很有趣的帶到了哲學以及神經科學重要的議題。意識到底是什麼?我們能否知道其他人又是其他物種的真正主觀感受?

圖/Pixabay

感質是意識研究中的一個重要議題,它引發了關於意識本質和主觀體驗的哲學和科學辯論。有些人認為感質是生物或腦部運作的結果,而另一些人認為它們是超出物理過程的主觀現象。不論如何,未來仍需要更多的研究來了解意識產生的機制。

參考資料

-----廣告,請繼續往下閱讀-----
所有討論 1
YTC_96
11 篇文章 ・ 19 位粉絲
從大學部到博士班,在神經科學界打滾超過十年,研究過果蠅、小鼠以及大鼠。在美國取得神經科學博士學位之後,決定先沉澱思考未來的下一步。現在於加勒比海擔任志工進行精神健康知識以及大腦科學教育推廣。有任何問題,歡迎來信討論 ytc329@gmail.com。