Loading [MathJax]/extensions/tex2jax.js

1

4
2

文字

分享

1
4
2

臺灣發展地熱發電到底可不可行?(上)

PanSci_96
・2023/01/29 ・3490字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

2022 年 3 月臺灣政府正式公布了「台灣 2050 年淨零排放路徑藍圖」,我們在先前的影片也有聊到,2050 淨零排放就是要讓台灣的總碳排放量,再扣掉人為捕捉移除的量之後歸零。

直觀來說,極低碳排放的再生能源電業,在淨零排放上勢必扮演重要角色。這次我們要來聊聊除了太陽光電和離岸風電之外,大家也非常期待的綠色能源——地熱發電,談談地熱發電究竟是什麼?有發展的可能嗎?

什麼是地熱發電?

大家學過地科都知道,地球內部處於極高溫狀態,而這股地熱能,會隨著地函對流和熔岩,被帶至地表附近。

地函對流。 圖/wikimedia

人類很早就懂得利用地熱資源,例如你我曾經泡過的溫泉,就源自於被地熱加熱的地下水。換言之,地熱能是地球自然產生、乾淨的再生能源。若拿來發電,就是所謂的地熱發電。

-----廣告,請繼續往下閱讀-----

地熱發電擁有不少優點,包括使用腹地小、碳排放低、低污染、抗天災等,更沒有目前太陽能發電和風力發電最為人詬病的不穩定問題,可以 24 小時全天候提供電力。若能妥善開發和利用,不失為未來全球再生能源供給的重要選項。

臺灣地熱潛力為何?

說得再理想,還是要先回答一個關鍵:臺灣的地熱潛能到底有多少?這邊要介紹一個名詞:地溫梯度(geothermal gradient),它指的是地球內部隨深度增加而使得溫度升高的變化率。

地球內部的溫度曲線示意圖。 圖/wikimedia

一般來說,在地表附近,每往下一公里,溫度就上升約攝氏 25 到 30 度;但是,在靠近地球構造板塊邊界處,溫度梯度較高;也就是說,往下同樣的深度,會得到比較高的溫度。在這些地區,要進行地熱發電明顯比較有利。

而臺灣正好位於菲律賓海板塊和歐亞大陸板塊的交界,因為兩個板塊的互相擠壓,使得地殼隆起而形成。

-----廣告,請繼續往下閱讀-----

因此,臺灣不但多地震,就先天條件來說,似乎也是地熱潛力值得期待的區域。

可惜的是,根據上個世紀的地熱評估文獻,臺灣的地熱發電潛能最多不會超過 1000MW,這個數字是多少?我們作個對照,核四兩部機組的總裝置容量是 2700MW。

若再考慮這些地熱的位置和環境,不見得都適合開發,所以可實際運用的地熱就又更少了。對此,工研院甚至曾推估,其中真正能拿來發電的地熱,只有 150MW。

這麼說來,我們大概不用指望地熱發電,只能洗洗溫泉睡了,或頂多只能有小型的發電規模。

-----廣告,請繼續往下閱讀-----

不過,代誌(tāi-tsì)不是那麼簡單。當談到地熱資源多寡的時候,就跟為人處世一樣,我們至少必需要留意兩個要素:溫度和深度。很顯然地,當溫度不夠高,地熱發電就沒效率;另一方面,既然地底越深處溫度越高,我們只要一直挖、一直挖、挖得夠深,總是可以得到足以發電的高溫。

前面說到臺灣地熱發電潛能最多不到 1000MW,事實上考慮的是溫泉地區中,離地表比較近、最容易開發的地熱。若往更深的地方探勘,又是另一番風景。

地熱發電,除了考慮溫度還要考慮深度。 圖/envato.elements

在習慣上,國際常分別用淺層地熱(shallow geothermal)和深層地熱(deep geothermal)的稱呼來區別深度不同的地熱能。但要值得留意的是,要多淺才叫淺層、多深才叫深層,並沒有全球一致的定義,反而依各國情況而定。

近年來,在國科會的能源國家型科技計畫支持下,臺灣大學的研究團隊分析了大屯火山群、宜蘭地區、廬山地區和花東地區共四個區域的資料,發現海拔高度 1000 公尺以下、地底深度 4000 公尺以內,且地溫高於攝氏 175 度的地熱蘊藏發電容量,可達 33640MW。換句話說,約等於 12 座核四。

-----廣告,請繼續往下閱讀-----

既然臺灣蘊藏了這麼高的發電容量,那我們還不趕快開發開個爆嗎?

地熱發電原理與技術

這就會牽涉到現實中,地熱發電技術的發展。

理想狀況下,地熱資源的構造,大致可以用這張圖來表示。最下方是熱源,熱源之上稱為儲集層(reservoir),再上方則是由緻密岩石組成的蓋層(caprock)。

地下水會經由地層裂縫進入儲集層而受到加熱。因為蓋層的阻擋,大部分熱水或水蒸氣會在儲集層進行熱對流,而少部分的水或蒸氣則可能會透過蓋層的裂縫,從地表竄出,成為溫泉或是噴氣孔。

-----廣告,請繼續往下閱讀-----

就傳統的地熱發電來說,地底需要三個條件,豐富的熱源、充足的地下水,和良好的滲透率,讓水可以在其中流動,這三者缺一不可。在具備這些條件的地方,汲取地熱能量相對容易。

如果從地底出來的水是蒸汽型態,我們可以直接利用,讓蒸汽通過渦輪機,產生電力,稱為乾蒸汽(Dry Steam)發電,這也是最古老的地熱發電方式。只不過,這麼好的條件可遇不可求。

若存在地底的是攝氏 180 度以上的高溫熱水,當這些熱水從高壓環境抵達地表的低壓貯存槽,因為壓力降低,會迅速轉變成氣體,推動渦輪發電機,這稱為閃發蒸汽(Flash Steam)發電,同時也是目前最普遍的地熱發電方式。

要是地熱資源的條件沒那麼好,比如說,世界上大部分地方,地溫梯度並不高,就算挖得很深,地下水溫就是不熱,怎麼辦呢?就像教授在課堂上講笑話,大學生托著腮毫無反應一樣,那就找批笑點很低、又很有精神的小學生來吧!

-----廣告,請繼續往下閱讀-----

近來,許多的新建地熱發電廠採用所謂雙循環(Binary-Cycle)發電方式,當溫度沒那麼高的地下水到達地表後,會在熱交換器(heat exchanger)與另一種流體交換熱能,像是正戊烷(Pentane)或丁烷(Butane);它們因為沸點很低,所以在接收到地下水的熱能後,會轉變成氣態並推動渦輪,產生電力。雙循環系統的好處是適用更廣大的區域,而且對溫度的要求不高,甚至有攝氏 57 度就成功發電的紀錄,但缺點就是發電效率較低。

目前世界上的地熱發電廠,主要都是用以上三種方式進行發電,深度約在 1.5 公里到 2.5 公里左右。然而,正是地熱發電技術的瓶頸,成為臺灣大規模開發地熱資源的難處之一。但這些難處,其實也有技術可以破解!

臺灣地熱的先天條件、侷限、破解之道

上述的地熱發電方式,至少都需要有充足的地下水或地下流體,和良好的滲透率;就算溫度不夠高,也還可以用雙循環系統來彌補。

但在臺灣,深度較淺、容易探勘與利用的地熱資源,發電潛能最多也不過前面提及的 1000MW,而且還得再扣除不適合開發的地區。如果想大規模進行地熱發電,就勢必要往更深處的地熱資源著手。

-----廣告,請繼續往下閱讀-----

然而,我們卻沒辦法保證潛在的地熱資源,都具備充足的地下水跟良好的滲透率。有很大可能是,地底深處儘管溫度夠高,卻沒有水也沒有適當的裂隙。這也是全球地熱發電發展腳步緩慢的原因之一。

為了克服此一問題,這些年來陸續有不同的提案出現。而國際上最常被提及的解方,就是所謂的增強型地熱系統(Enhanced Geothermal System),簡稱 EGS。

EGS 在嚴謹控制的環境下,以高壓朝地下深處注入冷水,迫使岩石原本既有的裂隙擴大,人為創造良好的滲透率。

這些冷水在吸收地底的高溫之後,又會回到地表作為發電之用。一旦發電完畢,這些冷卻下來的水又會被注入地底,如此往復循環。有如開了二檔的魯夫。

整套方法在 1:05 有動畫呈現。

這樣聽起來,增強型地熱系統似乎很不錯,降低了地熱發電的環境限制門檻。但是,它也存在一些問題。

首先,往地下注入的水,其流動取決於人為擴大的裂縫,但我們並沒有辦法保證裂縫方向符合需求,所以會有很多水是沒辦法回收的;二來,它也有引發地震活動的可能性。這些都是使用 EGS 進行地熱發電時,要實際考慮的問題。

這集,我們討論了地熱發電的原理,以及臺灣是否適合地熱發電,下一集將討論地熱發電的成本,與開發上需要考量的細節,並回顧台灣地熱發電的發展歷史。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
E10 低碳汽油:台灣減碳新契機,為何我們應該接受?
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/17 ・3468字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與美國穀物協會合作,泛科學企劃執行。

台灣將在 2040 年禁售燃油車。但別急,現在路上開的舊有車款不會馬上報廢消失,因為舊有的車輛會繼續開到年限結束。根據計算,當禁售燃油車的那一天來臨時,還有大約 60% 的車輛是燃油車。這時,在多數交通工具還是燃油的情況下,美國、歐盟等國已經開始使用酒精燃料來減少碳排放,那麼,台灣也能做到嗎?

你聽過 E3、E10 汽油嗎?

這是指在汽油中加入酒精,E3 代表有 3% 的汽油被酒精取代,而 E10 則是 10% 的汽油換成酒精。酒精是一種抗爆震性能更好的燃料,且比化石燃料更環保,因為它可以來自生質燃料,碳排放也較低。即便算上運輸和加工的碳足跡,用玉米製造的乙醇仍比傳統汽油的碳排放低了 43%。其實,在美國、歐洲、澳洲等地,E10 或更高比例的酒精汽油早已廣泛使用,這在我們之前的影片中也有提過。

現在,台灣有 14 間加油站可以加到 E3 汽油,而中油也正積極促使相關部門開放 E10 汽油的銷售。

-----廣告,請繼續往下閱讀-----

不過,在推動這項改變之前,仍有許多民眾對酒精汽油有疑慮。大家最關心的問題是,把不是汽油的燃料放到引擎中,到底會不會對車輛引擎造成不良影響?例如會不會影響引擎運行,甚至影響里程數?
其實,換燃料確實會對引擎有影響,因為不同燃料燃燒後所產生的能量與副產物都不一樣。但別擔心,根據我們之前的討論,2011 年以後生產的所有汽車,還有大部分 1990 年代後期生產的汽機車,都能直接相容 E10 汽油。換句話說,除了少數舊車或特殊車型,約 95% 的汽機車都不需要擔心這個相容性問題。

2011 年以後生產的所有汽車,還有大部分 1990 年代後期生產的汽機車,都能直接相容 E10 汽油。圖 / 美國穀物協會提供

E10 汽油在效能上的表現,會不會受到影響?

學過化學的人都知道,燃燒其實是一種氧化反應,可以用化學式表達。也就是只要汽缸的大小是固定的,就能算出空氣中能參與氧化反應的氧氣分子有多少,進而推算出每次汽缸燃燒時,應該搭配多少的燃料。

當引擎運作時,汽缸內的氧氣分子會與燃料反應,產生動力。為了最佳化效能,引擎的噴油嘴會精準控制每次的進油量,確保空氣和燃料的比例,稱為「空燃比」。接著調整噴油嘴的設定,讓出油量符合我們的需求。

每當空氣成分改變,燃料量或燃料的種類更換時,空燃比就會產生變化。在燃料相對空氣來說比較多時,我們通常稱為「富油」;相反的,如果燃料相比空氣來的少,就稱為「貧油」。如果我們把汽油換成百分之百的酒精,因為酒精每單位體積所需要的氧氣比較少,而且熱值比較低,因此會產生貧油現象,推力感受起來自然也會比較低。

要解決這個問題,方法其實不難,只要增加燃料量即可。而巴西早已證明,使用 E100 汽油是可行的。巴西近 50 年來推動 E85、E100 燃料車輛,並展示了彈性燃料引擎的優勢。

而巴西早已證明,使用 E100 汽油是可行的。巴西近 50 年來推動 E85、E100 燃料車輛,並展示了彈性燃料引擎的優勢。圖/美國穀物協會

這類交通工具被稱為彈性燃料引擎,顧名思義,能很彈性的使用汽油、E100 酒精汽油、或是任何比例的甲醇、乙醇、汽油的混合物。彈性燃料引擎跟一般引擎最大的差別,就是內建了「燃料成分感測器」。能透過判斷燃料的種類與比例,調整噴油嘴的出油量設定以及點火正時,讓引擎的輸出動力維持在最佳狀態,確保引擎效能不受影響。

-----廣告,請繼續往下閱讀-----

所謂的點火正時,指的是火星塞點火的時機。不同的燃料,化學反應的速度與膨脹的體積不同,當然會對應不同的點火時機。

但是 E100 其實也不是純酒精?

大家都知道,蒸餾酒需要經過多次反覆蒸餾,為什麼不能只蒸餾一次就好呢?原因在於,酒精與水的沸點雖然不同,但它們不完全互斥,會產生交互作用。在蒸餾過程中,即使酒精的沸點較低,水仍然會在加熱的過程中,隨著酒精部分蒸發進入容器中。

事實上,當酒精濃度達到 95.63% 時,不論再怎麼蒸餾,濃度也不會再上升。這是因為當酒精濃度接近這個比例時,酒精與水的沸點非常接近,這種現象稱為「共沸」,意思是酒精和水的混合物會一起沸騰,無法再進一步蒸餾分離。

共沸現象的結果,就是為什麼市面上銷售的藥用酒精,濃度最高都是 95%,而非 100%。因為更高濃度就必須使用脫水劑等方式處理,成本會提高,或是因為有添加物而不符合藥用標準。所以當然,E100 汽油裡面,實際上使用的也是濃度 95% 的酒精,而不是 100%。

-----廣告,請繼續往下閱讀-----
E100 汽油裡面,實際上使用的也是濃度 95% 的酒精,而不是 100%。 圖 / 美國穀物協會提供

解決迷思:酒精汽油是否容易因吸收水分,而產生油水分離?

事實上,酒精和水是高度互溶的,這使得高比例的酒精在汽油中有更高的水分耐受性。簡單來說,進入油箱的水氣,會溶在酒精汽油中而不會產生油水分離。

根據美國國家可再生能源實驗室的研究,即使在高溫高濕的極端環境下,E10 酒精汽油也需要經過三個月才會出現明顯的油水分離。而三個月也是一般汽油建議最長的保存時間,因為汽油放太久就會氧化。

也就是說,酒精與水混和物的特性,不是把酒精和水的相加除以二那麼簡單,它們的交互作用更加複雜。

一篇刊登在《國際能源研究期刊》的研究指出,在可變壓縮比引擎中的實驗結果,加入酒精後,引擎的功率會逐漸升高,在 E10 酒精時為最佳比例效果。

-----廣告,請繼續往下閱讀-----

當然,實際情況和實驗室當然不能直接類比。大多數汽車和機車並未專門為酒精汽油做調整,那這樣會有多大影響呢?根據英國政府的官方結論,直接使用 E10 汽油與一般汽油相比,每公升的里程數大約會降低 1%,但在日常駕駛中,這個差異幾乎不會被察覺。實際上,載貨量和駕駛習慣對油耗的影響,遠遠大於是否使用 E10 汽油的影響。

更好的一點是,酒精其實是一種常見的工業用品,以每美國為例,在過去一年中,酒精的離岸價格實際上都比汽油還低,因此不用擔心酒精會讓油價變貴。

此外,經過調校的引擎也不必擔心推力問題。事實上,F1 賽車從 2022 年開始使用 E10 作為燃料,納斯卡賽車更早在 2011 年就採用了 E15 燃料,運行上沒有太大問題。

F1 賽車從 2022 年開始使用 E10 作為燃料,納斯卡賽車更早在 2011 年就採用了 E15 燃料,運行上沒有太大問題。圖/unsplash

最重要的是,使用 E10 燃料的好處明顯更多。由於酒精和烷類燃料的分子式不一樣,酒精分子式中多了一個氧原子,這使得燃燒過程中反應會更完全,能夠產生更多二氧化碳而非有毒的一氧化碳,同時降低一氧化氮和二氧化氮等氮氧化物的產生。

-----廣告,請繼續往下閱讀-----

最關鍵的一點,酒精與化石燃料相比,能夠更快速地幫助減碳。只要確保使用永續農法、不與糧食競爭土地的前提下,所製造的玉米乙醇,碳排量就是比化石燃料還要低。

E10 低碳汽油是填補減碳缺口的最快方案,挑戰只在接受度

英國引入 E10 後,每年減碳 75 萬噸,相當於減少 35 萬輛汽車的碳排量。而台灣呢?目前根據政策規劃,台灣 2040 年起將新售的汽機車全面電動化。依照這個目標進程,在 2025 年將達成減碳 288.6 萬噸的目標。然而,這距離運輸部門須減少 487 萬噸碳排量目標,還差 198 萬噸。

如果燃油車全面改用 E10 低碳汽油,則能減碳 202 萬噸,幾乎能完全彌補缺口。這項方案的優勢在於,E10 與一般汽油性質相近,不需更換新的引擎設計或架設特規加油站,執行門檻低。

實際上,目前推動低碳汽油最大的瓶頸,大概就是民眾對於這個新燃料的接受度了吧!如果接受度提升,購買量上升,成本也有機會進一步再下降。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
0

文字

分享

0
2
0
從門得列夫到 118 種元素:元素週期表是怎麼出現的?
F 編_96
・2025/01/04 ・2302字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

「氫鋰鈉鉀銣銫砝、铍鎂鈣鍶鋇镭…」相信很多人離開高中很多年,都還朗朗上口。

列著 118 種已知化學元素的「元素週期表」(Periodic Table),雖然唸起來像咒文,但有了它之後便能夠快速查詢原子序(proton number)、價電子(valence electrons)數量,以及元素可能的化學性質,成為各領域科學家與工程師設計實驗、預測物質反應必不可少的工具。

有趣的是,元素週期表並非一蹴可及。縱觀歷史,化學家們歷經數世紀的摸索、爭論與資料整理,才在 19 世紀後半葉逐漸確立。

我們現在看到的元素週期表,是在 19 世紀後半才逐漸確定。 圖/unsplash

週期表之父:門得列夫的突破

19 世紀中葉,已知的化學元素約有 63 種,許多化學家嘗試找出元素間的共同點,卻苦無系統性整理。當時能區分「金屬」與「非金屬」,或利用價電子概念將一些元素歸類,但要涵蓋大多數元素仍顯不足。俄國化學家門得列夫在撰寫《化學原理》教科書時,因接觸各元素的資料而產生新思路。他索性把已知元素各種性質寫在紙卡上,再一一比對它們的原子量(類似當今的原子量或原子序概念)與化學性質。

-----廣告,請繼續往下閱讀-----

確切的靈光乍現時刻,如今已無從完全重現,但我們知道門得列夫最後觀察到:「如果按照原子量(或後來的原子序)由小到大排列,某些化學性質就會呈週期性重複。」進一步來看,元素的價電子數量通常也會對應到表格的「欄位」或「族群」。於是,在 1869 年,他將研究結果發表,提出了第一版週期表的雛形,更大膽預言了尚未被發現的元素「eka-aluminium」(後來證實即鎵 gallium)及其他四種元素的性質。

讀懂週期表:原子序、符號與原子量

今日的週期表之所以能快速讓人獲得豐富資訊,關鍵在於三個核心欄位:

  1. 原子序(Atomic Number)
    代表該元素核內所含質子數。如果一原子核有 6 顆質子,就必定是碳(C),無論其他中子或電子數如何。此序號由上而下、由左而右遞增,貫穿整張表格。
  2. 元素符號(Atomic Symbol)
    多為一至兩字母縮寫,如碳(C)、氫(H)、氧(O)。但也有如鎢(W,因「Wolfram」得名)或金(Au,取自拉丁文「Aurum」)等較不直覺的符號。
  3. 原子量(Atomic Mass)
    表示該元素在自然界中各同位素的加權平均值,故通常是帶小數的數字。對合成元素則標示最常見或最穩定同位素的質量,但由於這些元素壽命極短,數值往往會被不斷修正。

舉例來說,硒(Se)在週期表中顯示原子序 34,屬於第 4 週期、第 6A 族,表示它有四層電子軌域,其中最外層(價電子層)有 6 顆電子。有了這些資訊,科學家可快速判斷硒的化學傾向、可形成何種化合物,乃至於在生物或工業應用中可能扮演的角色。

週期表的內部結構:週期、族與軌域

門得列夫最初按照原子量遞增排列元素,現代則依靠原子序(即質子數)來分類。橫向稱為「週期」(Period),從第 1 週期到第 7 週期;縱向稱為「族」(Group),目前總共有 18 組。週期數量在於顯示該元素電子軌域有幾層;而同一族則代表外層價電子數相同,故有相似化學性質。

-----廣告,請繼續往下閱讀-----

例如,第 18 族常被稱作「貴氣體」或「惰性氣體」,如氦(He)、氖(Ne)、氬(Ar)等皆不易與其他元素起反應。另一個顯著群體是位於第一族的鹼金屬(Alkali Metals),如鋰(Li)、鈉(Na)等,因外層只有 1 顆電子,極容易失去該電子而形成帶 +1 價的陽離子,故與水猛烈反應。

此外,在表格中央有一塊「過渡元素」(Transition Metals)區域,包括鐵(Fe)、銅(Cu)、鎳(Ni)、金(Au)、銀(Ag)等。它們具有部分填充的 d 軌域,使得該區域的元素呈現多樣性質,例如具有金屬光澤、可塑性或導電性等,被廣泛應用於工業及工程領域。

同一族的外層價電子數相同,因此大多有著相似化學性質。圖/unsplash

再進化:從 63 種到 118 種

當門得列夫在 1869 年發表週期表時,已知元素只有 63 種,表格中甚至留有空白以預留「未來或存在尚未發現的元素」。他果然預測到了鎵(Ga)以及日後證實的日耳曼ium(Ge)等新元素性質,贏得舉世矚目。隨後,有越來越多元素透過科學發展,尤其是光譜分析與放射性研究而被發現,例如鐳(Ra)和氡(Rn)等。

到 20 世紀後期,隨著粒子加速器的誕生,人類可以合成更重的超鈾元素(Atomic Number > 92)。這些人工合成元素往往極度不穩定,壽命僅能以毫秒或微秒計,但仍證實存在、並填補週期表後段空白。如今,週期表已收錄到第 118 號元素「鿆(Og,Oganesson)」,但科學家預測或許還能繼續向上延伸;只要能合成更重、更穩定的原子核,我們就能拓展週期表的新邊境。

-----廣告,請繼續往下閱讀-----

一般認為,隨原子序遞增,原子核內部的質子數目激增,原子愈趨不穩,往往在極短時間內衰變成較輕元素。然而,一些理論物理學家提出「島狀穩定性」(Island of Stability)的概念:也許在某特定質子與中子數量組合下,能出現意外長壽的「穩定」重元素。

是否真能在表格上方再增添「第八週期」甚至更高週期的列,仍有待更多實驗來驗證。但無法否認的是,週期表一直是科學家檢驗自然規律的試驗場,也見證了人類探索未知的無盡熱情。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃