1

4
2

文字

分享

1
4
2

臺灣發展地熱發電到底可不可行?(上)

PanSci_96
・2023/01/29 ・3490字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

2022 年 3 月臺灣政府正式公布了「台灣 2050 年淨零排放路徑藍圖」,我們在先前的影片也有聊到,2050 淨零排放就是要讓台灣的總碳排放量,再扣掉人為捕捉移除的量之後歸零。

直觀來說,極低碳排放的再生能源電業,在淨零排放上勢必扮演重要角色。這次我們要來聊聊除了太陽光電和離岸風電之外,大家也非常期待的綠色能源——地熱發電,談談地熱發電究竟是什麼?有發展的可能嗎?

什麼是地熱發電?

大家學過地科都知道,地球內部處於極高溫狀態,而這股地熱能,會隨著地函對流和熔岩,被帶至地表附近。

地函對流。 圖/wikimedia

人類很早就懂得利用地熱資源,例如你我曾經泡過的溫泉,就源自於被地熱加熱的地下水。換言之,地熱能是地球自然產生、乾淨的再生能源。若拿來發電,就是所謂的地熱發電。

-----廣告,請繼續往下閱讀-----

地熱發電擁有不少優點,包括使用腹地小、碳排放低、低污染、抗天災等,更沒有目前太陽能發電和風力發電最為人詬病的不穩定問題,可以 24 小時全天候提供電力。若能妥善開發和利用,不失為未來全球再生能源供給的重要選項。

臺灣地熱潛力為何?

說得再理想,還是要先回答一個關鍵:臺灣的地熱潛能到底有多少?這邊要介紹一個名詞:地溫梯度(geothermal gradient),它指的是地球內部隨深度增加而使得溫度升高的變化率。

地球內部的溫度曲線示意圖。 圖/wikimedia

一般來說,在地表附近,每往下一公里,溫度就上升約攝氏 25 到 30 度;但是,在靠近地球構造板塊邊界處,溫度梯度較高;也就是說,往下同樣的深度,會得到比較高的溫度。在這些地區,要進行地熱發電明顯比較有利。

而臺灣正好位於菲律賓海板塊和歐亞大陸板塊的交界,因為兩個板塊的互相擠壓,使得地殼隆起而形成。

-----廣告,請繼續往下閱讀-----

因此,臺灣不但多地震,就先天條件來說,似乎也是地熱潛力值得期待的區域。

可惜的是,根據上個世紀的地熱評估文獻,臺灣的地熱發電潛能最多不會超過 1000MW,這個數字是多少?我們作個對照,核四兩部機組的總裝置容量是 2700MW。

若再考慮這些地熱的位置和環境,不見得都適合開發,所以可實際運用的地熱就又更少了。對此,工研院甚至曾推估,其中真正能拿來發電的地熱,只有 150MW。

這麼說來,我們大概不用指望地熱發電,只能洗洗溫泉睡了,或頂多只能有小型的發電規模。

-----廣告,請繼續往下閱讀-----

不過,代誌(tāi-tsì)不是那麼簡單。當談到地熱資源多寡的時候,就跟為人處世一樣,我們至少必需要留意兩個要素:溫度和深度。很顯然地,當溫度不夠高,地熱發電就沒效率;另一方面,既然地底越深處溫度越高,我們只要一直挖、一直挖、挖得夠深,總是可以得到足以發電的高溫。

前面說到臺灣地熱發電潛能最多不到 1000MW,事實上考慮的是溫泉地區中,離地表比較近、最容易開發的地熱。若往更深的地方探勘,又是另一番風景。

地熱發電,除了考慮溫度還要考慮深度。 圖/envato.elements

在習慣上,國際常分別用淺層地熱(shallow geothermal)和深層地熱(deep geothermal)的稱呼來區別深度不同的地熱能。但要值得留意的是,要多淺才叫淺層、多深才叫深層,並沒有全球一致的定義,反而依各國情況而定。

近年來,在國科會的能源國家型科技計畫支持下,臺灣大學的研究團隊分析了大屯火山群、宜蘭地區、廬山地區和花東地區共四個區域的資料,發現海拔高度 1000 公尺以下、地底深度 4000 公尺以內,且地溫高於攝氏 175 度的地熱蘊藏發電容量,可達 33640MW。換句話說,約等於 12 座核四。

-----廣告,請繼續往下閱讀-----

既然臺灣蘊藏了這麼高的發電容量,那我們還不趕快開發開個爆嗎?

地熱發電原理與技術

這就會牽涉到現實中,地熱發電技術的發展。

理想狀況下,地熱資源的構造,大致可以用這張圖來表示。最下方是熱源,熱源之上稱為儲集層(reservoir),再上方則是由緻密岩石組成的蓋層(caprock)。

地下水會經由地層裂縫進入儲集層而受到加熱。因為蓋層的阻擋,大部分熱水或水蒸氣會在儲集層進行熱對流,而少部分的水或蒸氣則可能會透過蓋層的裂縫,從地表竄出,成為溫泉或是噴氣孔。

-----廣告,請繼續往下閱讀-----

就傳統的地熱發電來說,地底需要三個條件,豐富的熱源、充足的地下水,和良好的滲透率,讓水可以在其中流動,這三者缺一不可。在具備這些條件的地方,汲取地熱能量相對容易。

如果從地底出來的水是蒸汽型態,我們可以直接利用,讓蒸汽通過渦輪機,產生電力,稱為乾蒸汽(Dry Steam)發電,這也是最古老的地熱發電方式。只不過,這麼好的條件可遇不可求。

若存在地底的是攝氏 180 度以上的高溫熱水,當這些熱水從高壓環境抵達地表的低壓貯存槽,因為壓力降低,會迅速轉變成氣體,推動渦輪發電機,這稱為閃發蒸汽(Flash Steam)發電,同時也是目前最普遍的地熱發電方式。

要是地熱資源的條件沒那麼好,比如說,世界上大部分地方,地溫梯度並不高,就算挖得很深,地下水溫就是不熱,怎麼辦呢?就像教授在課堂上講笑話,大學生托著腮毫無反應一樣,那就找批笑點很低、又很有精神的小學生來吧!

-----廣告,請繼續往下閱讀-----

近來,許多的新建地熱發電廠採用所謂雙循環(Binary-Cycle)發電方式,當溫度沒那麼高的地下水到達地表後,會在熱交換器(heat exchanger)與另一種流體交換熱能,像是正戊烷(Pentane)或丁烷(Butane);它們因為沸點很低,所以在接收到地下水的熱能後,會轉變成氣態並推動渦輪,產生電力。雙循環系統的好處是適用更廣大的區域,而且對溫度的要求不高,甚至有攝氏 57 度就成功發電的紀錄,但缺點就是發電效率較低。

目前世界上的地熱發電廠,主要都是用以上三種方式進行發電,深度約在 1.5 公里到 2.5 公里左右。然而,正是地熱發電技術的瓶頸,成為臺灣大規模開發地熱資源的難處之一。但這些難處,其實也有技術可以破解!

臺灣地熱的先天條件、侷限、破解之道

上述的地熱發電方式,至少都需要有充足的地下水或地下流體,和良好的滲透率;就算溫度不夠高,也還可以用雙循環系統來彌補。

但在臺灣,深度較淺、容易探勘與利用的地熱資源,發電潛能最多也不過前面提及的 1000MW,而且還得再扣除不適合開發的地區。如果想大規模進行地熱發電,就勢必要往更深處的地熱資源著手。

-----廣告,請繼續往下閱讀-----

然而,我們卻沒辦法保證潛在的地熱資源,都具備充足的地下水跟良好的滲透率。有很大可能是,地底深處儘管溫度夠高,卻沒有水也沒有適當的裂隙。這也是全球地熱發電發展腳步緩慢的原因之一。

為了克服此一問題,這些年來陸續有不同的提案出現。而國際上最常被提及的解方,就是所謂的增強型地熱系統(Enhanced Geothermal System),簡稱 EGS。

EGS 在嚴謹控制的環境下,以高壓朝地下深處注入冷水,迫使岩石原本既有的裂隙擴大,人為創造良好的滲透率。

這些冷水在吸收地底的高溫之後,又會回到地表作為發電之用。一旦發電完畢,這些冷卻下來的水又會被注入地底,如此往復循環。有如開了二檔的魯夫。

整套方法在 1:05 有動畫呈現。

這樣聽起來,增強型地熱系統似乎很不錯,降低了地熱發電的環境限制門檻。但是,它也存在一些問題。

首先,往地下注入的水,其流動取決於人為擴大的裂縫,但我們並沒有辦法保證裂縫方向符合需求,所以會有很多水是沒辦法回收的;二來,它也有引發地震活動的可能性。這些都是使用 EGS 進行地熱發電時,要實際考慮的問題。

這集,我們討論了地熱發電的原理,以及臺灣是否適合地熱發電,下一集將討論地熱發電的成本,與開發上需要考量的細節,並回顧台灣地熱發電的發展歷史。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
PanSci_96
1261 篇文章 ・ 2388 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
1

文字

分享

0
1
1
用科學定義左邊:當宇稱對稱被顛覆時,物理學如何重新書寫規律?
PanSci_96
・2024/12/16 ・1888字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

揭開宇宙的對稱之謎

如果有人問你:「什麼是左邊?」你可能會說:「左手那邊就是左邊。」但如果對方問:「左手是哪一隻?」你可能回答:「心臟那邊的手就是左手。」這樣的回答對人類來說很容易理解,但如果對方是一個從未見過人類的外星人,該怎麼解釋呢?

這個問題看似簡單,實際上涉及了物理學中的深奧話題。1956 年,三位華人科學家楊振寧、李政道和吳健雄,通過實驗揭示了一個驚人的事實:我們的宇宙對「左」與「右」其實並不完全對稱。這一發現推翻了人類長期以來對對稱性的認識。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

宇稱對稱性:鏡子中的世界會一樣嗎?

要了解這個發現,我們需要先認識「宇稱」的概念。宇稱(Parity)是物理學中用來描述對稱性的一種方法。它的意思是,如果我們把空間中的座標 (x, y, z) 反轉成 (-x, -y, -z),自然界的規律應該還是一樣的。例如,當一顆蘋果從樹上掉下來,我們用鏡子看時,蘋果還是會掉向地面,而不是飛向天空。這說明鏡像中的世界和真實世界是對稱的。

很長一段時間裡,科學家認為這種對稱性適用於所有自然現象,無論是在宏觀還是微觀世界。然而,到了 1950 年代,一些基本粒子的行為挑戰了這種觀點。

-----廣告,請繼續往下閱讀-----

宇稱不守恆:弱交互作用的例外

在物理學中,有四種基本交互作用:重力、電磁力、強交互作用和弱交互作用。弱交互作用是描述粒子衰變的力量,比如中子會通過弱交互作用衰變成質子、電子和一個反微中子。

1956 年,楊振寧和李政道提出一個大膽的假設:在弱交互作用中,宇稱對稱性可能並不成立。他們指出,雖然大多數物理現象在鏡像中是對稱的,但弱交互作用的某些過程可能偏好「左手性」。

楊振寧與李政道提出一個大膽的假設,指出在弱交互作用中可能破壞宇稱對稱性。圖/envato

為了驗證這個假設,他們邀請吳健雄設計了一個關鍵實驗,這就是後來著名的「吳氏實驗」。

吳氏實驗:揭示宇宙偏愛左手性

吳健雄選擇使用鈷-60 原子的 β 衰變作為實驗對象。鈷-60 是一種不穩定的同位素,會釋放出電子和反微中子。她將這些原子冷卻到極低溫,並用強磁場讓它們的自旋方向統一。

-----廣告,請繼續往下閱讀-----

實驗的關鍵是觀察電子的發射方向。如果宇稱守恆,那麼電子應該會均勻地向各個方向發射。然而,吳健雄的實驗結果卻顯示,電子有明顯的偏向,總是傾向於與原子自旋方向相反的方向發射。

這一結果證明,在弱交互作用中,鏡像世界與真實世界並不對稱,宇稱不守恆。而且,它表明自然界偏好「左手性」,或者說弱交互作用是一個「左撇子」。

為什麼這個發現重要?

宇稱不守恆的發現改變了我們對宇宙基本規律的理解。物理學家過去認為自然界的規律應該是完全對稱的,但這一發現表明,在某些情況下,對稱性會被打破。

這項研究還引發了更多的問題。例如,為什麼宇宙會偏愛「左手性」?是否還有其他交互作用也會破壞對稱性?隨後的研究顯示,如果將宇稱(P 對稱)和電荷共軛(C 對稱)結合在一起,則可以恢復某種對稱性,這被稱為「CP 對稱」。

-----廣告,請繼續往下閱讀-----

然而,1964 年的實驗又發現,CP 對稱在某些情況下也會被打破,這進一步推動了對基本物理規律的研究。特別是 CP 對稱破壞可能與宇宙中物質多於反物質的原因有關,這是當代物理學的一個重要課題。

CP 對稱破壞揭示了宇宙偏愛「左手性」與物質多於反物質的可能原因。圖/envato

用科學解釋左與右

回到最初的問題:如果我們需要向外星人解釋「左邊」的概念,該怎麼做呢?現在我們知道,可以通過像吳氏實驗這樣的方法,用弱交互作用來區分左與右。簡單地說,只要觀察粒子的衰變方向,就能定義出哪一邊是「左」。

這個發現讓我們更深入地理解了自然界的基本規律。它不僅是一次物理學的重大突破,也讓我們重新認識到宇宙的奇妙與複雜。

歡迎訂閱 Pansci Youtube 頻道 鎖定每一個科學大事件!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
AI 蛋白質設計革命:2024 諾貝爾化學獎背後的醫學奇蹟
PanSci_96
・2024/12/15 ・2175字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

2024 年諾貝爾化學獎,因為 AI 在蛋白質結構預測上的突破而備受矚目。Google DeepMind 的創辦人之一哈薩比斯(Demis Hassabis)與他的團隊,因開發出能預測蛋白質摺疊的 AlphaFold 系列獲得一半獎金。而另一半獎金則頒給了化學家大衛·貝克(David Baker),他開發出另一套令人驚嘆的工具,甚至突破了 AlphaFold 的極限。這些成就不僅為科學界帶來革命性的改變,更可能大幅加速藥物開發與疾病治療的進程。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

蛋白質摺疊:生命的拼圖

蛋白質作為生命的基石,其結構對其功能至關重要。當蛋白質在細胞內生成時,它由多個胺基酸分子組成的長鏈,會在極短的時間內像折紙般扭曲成特定的三維形狀。這種形狀決定了蛋白質的功能,比如構成細胞的結構、催化化學反應或傳遞訊息。

然而,預測這些複雜的三維結構曾經是生物化學界的一大挑戰。科學家們雖然能夠測量蛋白質序列(即胺基酸的排列順序),但如何從一維的序列準確推測其三維構造,卻是一個需要龐大運算能力和深刻科學理解的難題。

這個挑戰直到 2021 年 AlphaFold 2 的問世才有了質的突破。這套工具運用深度學習技術,能快速準確地預測蛋白質的摺疊方式,其精度已接近實驗室測試的水平。而今年推出的 AlphaFold 3,更進一步預測生物分子如 DNA 和 RNA 與蛋白質的交互作用,為藥物設計提供了重要基礎。

-----廣告,請繼續往下閱讀-----

不止於 AlphaFold:貝克的逆向設計

與 AlphaFold 側重於「順向」預測不同,大衛.貝克帶領的團隊採取了全然相反的路徑。他們開發的工具能夠進行「逆向」工程:不僅能根據已知序列推測結構,還能從需求出發,設計出具有特定功能的蛋白質。這種技術突破意味著,我們可以隨心所欲地設計出抗癌抗體、病毒疫苗,甚至是工業用的環保酵素。

這就像一位技藝超群的主廚,能根據客人的描述,精準還原一道複雜的菜餚,甚至能重新設計出更美味、更符合需求的版本。而貝克團隊的這套技術,則讓這樣的「創造」成為科學事實。

大衛.貝克團隊突破逆向工程技術,能夠設計具特定功能的蛋白質。圖/envato

設計蛋白質的技術演進

早在 1997 年,貝克的團隊就已經開發出 Rosetta,這是一款能模擬蛋白質摺疊的電腦工具。當時,他們利用能量假設,評估一個三維結構的穩定性。然而,由於電腦運算能力的限制,他們不得不採取取巧的方法,例如利用多序列比對(MSA)與蒙地卡羅模擬法來提升效率。這些技術雖然簡單,但在當時已經能顯著縮短運算時間。

隨著深度學習的興起,貝克團隊在 2021 年推出 RoseTTAFold,這套工具採用了三軌神經網路,讓 AI 能從多序列比對、分子距離與原子位置三方面同時學習,進一步提升預測的準確性。而今年最新的 RFdiffusion,更將擴散模型融入其中,讓 AI 不僅能預測,還能根據輸入的需求直接設計蛋白質結構。

-----廣告,請繼續往下閱讀-----

擴散模型的應用就像圖像生成工具 DALL-E 或 Midjourney,能在短時間內生成大量的可能構造,再經過篩選,留下最可能實現的設計。這讓蛋白質設計變得前所未有的靈活和高效。

AI 與疾病的正面交鋒

RFdiffusion 的問世,為生物醫學界帶來了全新的可能性。例如,研究人員已用它設計出數千個抗體,針對癌症、新冠病毒、流感等多種疾病進行測試。雖然目前成功率僅為 1%,但這已經是一個令人振奮的起點。

更重要的是,這些設計並非停留在理論層面。早在 2003 年,貝克團隊就曾成功創造出自然界不存在的蛋白質 Top7,而在 2008 年,他們更進一步設計出能催化化學反應的人造酵素。這些突破證明,人類不僅能理解生命的基本組成,更能重新定義它。

RFdiffusion 開創生物醫學新可能,從設計抗體到人造酵素,重新定義生命的組成。圖/envato

從賽場到實驗室:設計蛋白質的熱潮

除了 AlphaFold 和 RFdiffusion,近年來還出現了多場蛋白質設計競賽,例如 Align to Innovate 的酵素設計挑戰、加拿大生技公司 Liberum Bio 的病毒酶改良項目,以及 BioML Society 的 CAR-T 細胞抗原設計比賽。這些比賽吸引了來自學術界與產業界的頂尖人才,激發了無數創新應用的靈感。

-----廣告,請繼續往下閱讀-----

隨著技術的進步,AI 工具已經不再僅僅是輔助,而是成為創造新型蛋白質的核心力量。從抗體設計到工業酵素,從疫苗開發到癌症治療,AI 正在以前所未有的速度推動著科學的邊界。

未來展望:AI 是否能掌控生命密碼?

2024 年的諾貝爾化學獎不僅表彰了科學家的創新,更為人類未來與 AI 攜手揭開生命秘密描繪了一幅清晰的藍圖。隨著技術的不斷進步,我們正在從被動了解大自然的蛋白質結構,轉向主動創造適應需求的新型蛋白質。

這場革命不僅改變了醫學的面貌,也讓我們對生命本質有了更深層次的理解。未來的某一天,AI 也許真的能成為人類對抗疾病的終極武器,甚至實現哈薩比斯預言的「治癒大部分疾病」。

歡迎訂閱 Pansci Youtube 頻道 鎖定每一個科學大事件!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

20
0

文字

分享

0
20
0
白噪音為什麼是白色?認識三種讓你一覺好眠的彩色噪音
雅文兒童聽語文教基金會_96
・2024/10/23 ・2981字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/洪萱眉 雅文基金會聽語科學研究中心 助理研究員

你的日常生活也是這樣子嗎?桌上總是堆滿了待處理的資料與報告,電話聲不斷,會議一場接一場,連坐下來喘息或喝水的機會都沒有。下班後拖著疲憊的身軀回家,睡前仍在想著白天的工作與隔天的待辦事項。日復一日,這些繁瑣的事務不僅讓人感到焦慮與壓力,還影響了生活作息和睡眠品質。為了舒緩壓力、獲得一覺好眠,有些人會在睡前點精油或香氛蠟燭,營造一個舒適放鬆的環境。但你知道嗎?我們的彩色噪音也能讓我們放鬆身心,助我們一覺好眠嗎?

噪音和彩虹一樣也有顏色的區分

聽到「噪音」這個詞,通常會聯想到那些刺耳且令人心煩氣躁的聲音,例如施工時的電鑽聲或敲打聲。但其實噪音也有顏色區分,就像彩虹一樣。

一般而言,我們眼睛所見的顏色實際上是由可見光的不同頻率產生的,當光波刺激我們的眼睛並傳送到大腦時,大腦會根據其頻率和強度將其解釋為不同的顏色。例如,低頻的光波為暖色調,而高頻的光波為冷色調。而同樣的概念也可以套用在噪音上,因為噪音也有不同的強度及頻率[1-2],根據噪音的頻率範圍和強度,我們可以依此區分為白色噪音、粉紅色噪音、棕色噪音等不同類型的噪音[3-4]

一張含有 鮮豔, 光線, 螢幕擷取畫面, 藝術 的圖片

自動產生的描述
噪音顏色跟彩虹一樣,也有顏色的區分。不同顏色的噪音在頻率範圍和強度上各有不同。圖/freepik

不同類型的噪音顏色會有不同的功效

不同類型的噪音顏色都具其獨特的頻率分佈特性,其中,最常被討論的三個噪音顏色,分別為白噪音、粉紅噪音、棕色噪音:

-----廣告,請繼續往下閱讀-----
  1. 白噪音(white noise):白噪音是大家最熟悉、最常聽到的噪音顏色。我們人可聽到的聲音頻率介於 20~20,000 赫茲 ( Hz ),而白噪音在所有頻率上具有相同的強度。這與白色光由紅、綠、藍三原色均勻組成的概念相似。
    白噪音的聲音聽起來有如電視機壞掉發出沙沙聲、風扇聲、冷氣運轉聲音等[1, 5-6] 。白噪音通常用來蔽屏 ( mask ) 其他聲音,覆蓋掉環境中我們不想聽到的聲音,營造一個舒服、放鬆的環境。對於有睡眠困擾的人來說,白噪音可以幫助改善睡眠品質。Ebben、Yan、Krieger ( 2021 )針對 10 位因受環境噪音干擾而造成失眠問題的成人,執行一週白噪音的介入,並使用穿戴式睡眠測量器來記錄其睡眠狀況。結果發現,因白噪音介入會覆蓋擾人的環境噪音,這 10 位受試者他們的入睡後醒來時間(wake after sleep onset,簡稱WASO)與入眠期(sleep latency)比在介入前都有顯著降低與改善。然而,即使沒有白噪音的介入,其入睡後醒來時間(WASO)的改善成效依然能持續[7]
  2. 粉紅噪音(Pink noise):相比於白噪音,粉紅噪音的聲音聽起來較為低沉、舒緩且平衡,因為它過濾掉較多高頻的聲音且在低頻的能量上較白噪音強,聲音聽起來接近我們聽到大自然的風聲、雨聲等 [5,8]。研究指出,粉紅噪音能加強我們深度睡眠、提高記憶力[9]。Papalambros et.al(2017)探討使用不同聲音刺激(acoustic stimulation),對提升深層睡眠時間和記憶力的影響。受試者為 13 位 60-84 歲的健康的成人,結果發現,睡覺時有使用粉紅噪音介入能增加他們深層的睡眠時間,且在記憶測驗上也有顯著的提升[10]
  3. 棕色噪音 (Brown noise):又稱為紅色噪音。跟白噪音和粉紅噪音相比,棕色噪音具有更明顯的低音頻率,隨著頻率的增加而音量逐漸降低。所以聲音聽起來像是低沉的隆隆聲[11]。棕色噪音聲音類似打雷聲、大雨聲、海浪拍打聲音[9]。和白噪與粉紅噪音一樣,都能遮蔽環境中讓人干擾的聲音,並營造一個有利於放鬆、專注與睡眠的環境。有研究表明,棕色噪音會對大腦活動產生影響,與放鬆、冥想和深度睡眠有關,因此對於有減輕壓力和焦慮帶來很大的幫助[10]

噪音顏色除了讓我們放鬆、改善睡眠品質外,還是耳鳴、聽覺過敏以及新手爸媽的救星 

從上述可知,白噪音、粉紅噪音和棕色噪音不僅能改善睡眠品質、專注力以及放鬆外,其實在臨床上更被用來治療耳鳴和聽覺過敏等症狀。所謂的耳鳴,指的是在沒有外界聲音刺激的情況下,患者感覺耳中持續有嗡嗡聲。在臨床治療中,白噪音通常用作背景音,以減少患者對耳鳴的感知[12]。對於聽覺過敏患者,他們對日常生活中的聲音敏感度較高,因此粉紅噪音更適合用於治療,因為其低頻聲音的特性有助於患者長時間適應並習慣低強度聲音[12]。此外,許多新手父母使用白噪音來安撫哭鬧寶寶,因為它可以模擬寶寶在母體內聽到的模糊外界聲音,並遮蓋其他可能會驚擾寶寶的聲音,市面上的許多助眠裝置也運用了這個原理[5]

然而,儘管噪音顏色可以提升睡眠品質和專注力,長時間或過度暴露於任何類型的噪音都可能對聽力和整體健康造成負面影響。建議播放時間應限制在10至15分鐘,並給耳朵足夠的休息時間。如果打算使用彩色噪音來幫助自己入睡,應設置播放時間以避免整晚播放,避免聽力造成損傷,那就得不償失了![9, 11, 13]

一張含有 床, 人員, 室內, 安慰 的圖片

自動產生的描述
睡前使用噪音顏色幫助自己快速入眠時,應注意音量設定以及播放時間,適時的讓耳朵休息,避免造成聽力損失。圖/freepik

參考資料:

  1. Bulter, R.  & Writer, S. (2023). What Are Sonic Hues? White Noise, Brown Noise, Pink Noise, and More. https://thegatorseye.com/13787/opinion/what-are-sonic-hues-white-noise-brown-noise-pink-noise-and-more/
  1. Sound of Life。(2021)。噪音竟然助眠?白噪音、粉紅噪音是最佳床伴。取自:https://shorturl.at/abdV1
  2. 林奕榮。(2023/10/19)。噪音有顏色? 白、綠、棕、粉紅噪音都能減壓助眠。蔬福生活。取自:https://vegemap.merit-times.com/veganews_detail?id=5682 
  3. Color Energy Soup (2016/11/25)。人的眼睛為什麼能看到顏色?取自:https://color-energy-soup.com/2016/11/25/eyes-light/ 
  4. 鄭俊宇。(2021/4/16)。白噪音更能安撫寶寶?「粉紅噪音」能增強記憶力、改善睡眠。親子天下。取自:https://www.parenting.com.tw/article/5089287 
  5. Surles, T. (2023.3.13). What are white, pink and brown noises? Health Hearing. Retrieved from https://www.healthyhearing.com/report/53430-Noise-colors-white-pink-brown-tinnitus-hearing 
  6. Ebben, M. R., Yan, P., & Krieger, A. C. (2021). The effects of white noise on sleep and duration in individuals living in a high noise environment in New York City. Sleep Medicine83, 256-259.
  7. Sloan, M. (2023.3.27). Noise Colors: Which One Is Best for Sleep? Retrieved from https://www.discovermagazine.com/health/noise-colors-which-one-is-best-for-sleep 
  8. Shapiro, Z. (n.d.). Exploring the World of Color Noises: White, Pink, and Brown. Retrieved from https://audiologyisland.com/blog/exploring-the-world-of-color-noises-white-pink-and-brown/?srsltid=AfmBOordaPgtNG9s6MyfN–He9dD-BejcA5sQTj2hncTWg4MmkQi666v 
  9. Papalambros, N. A., Santostasi, G., Malkani, R. G., Braun, R., Weintraub, S., Paller, K. A., & Zee, P. C. (2017). Acoustic enhancement of sleep slow oscillations and concomitant memory improvement in older adults. Frontiers in human neuroscience11, 1-14
  10. Sedona Sky Academy (2024.5.10). Can brown noise turn off your brain ? Retrieved from https://www.sedonasky.org/blog/can-brown-noise-turn-off-your-brain
  11. American Speech-Language-Hearing Association. (n.d.). Tinnitus and Hyperacusis. (Practice Portal). Retrieved from www.asha.org/Practice-Portal/Clinical-Topics/Tinnitus-and-Hyperacusis/.
  12. Cleveland Clinic (n.d.). Brown Noise May Help You Focus and Relax. Retrieved from https://health.clevelandclinic.org/brown-noise 
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

雅文兒童聽語文教基金會_96
58 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。