按讚數不停地增加,下方的討論串更是熱絡,大家又驚又喜、七嘴八舌:我可以跟你阿嬤聊天嗎?是阿嬤自己申請的嗎?你的阿嬤好像比她的孫子聰明 XDD?我想跟阿嬤視訊!後來朋友回應說:「叔叔幫她申請帳號的,現在家裡有一支電話是專門 FOR SKYPE,打過去我阿嬤就會接,超邱的!!!」我這個台客朋友難得溫馨可愛的一面,我還真沒看過。
手機裡的手寫輸入功能完全減輕了媽媽辛苦ㄅㄆㄇ的困擾,她不但可以在晚餐準備好正等先生一起開飯時的空檔 LINE 一下,也很方便在看到新聞氣象預報時就給在外地工作及讀書的兒子們叮嚀一聲要帶雨具或外套。除此之外,我朋友覺得他媽媽最有趣的舉動是很愛用表情符號,總是讓他會心一笑,心想我怎麼從來都不知道我老媽這麼可愛。聽到這裡,在場的我們這群朋友都很羨慕,甚至嚷嚷也要幫爸媽換手機了。
當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。
-----廣告,請繼續往下閱讀-----
那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。
當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray
第一個不好是物理限制:「延遲」。 即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。
第三個挑戰:系統「可靠性」與「韌性」。 如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。 所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!
邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌
知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!
-----廣告,請繼續往下閱讀-----
所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。
以研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。
這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技
此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。
當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray
模型剪枝(Model Pruning)—基於重要性的結構精簡
建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。
這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。
-----廣告,請繼續往下閱讀-----
模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。
知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」
想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。
但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。
-----廣告,請繼續往下閱讀-----
邊緣 AI 的強心臟:SKY-602E3 的三大關鍵
像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?
三、可靠性 SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。
-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技
「我家親戚群組又在 LINE 傳假訊息了!」這是常在年輕族群中聽到的抱怨,彷彿隨意散播謠言是長輩特有的行為,當你願意了解長輩的數位社交生活,將發現事實並非如此。中央研究院「研之有物」專訪院內民族學研究所李梅君助研究員,在研究 Cofacts 事實查核協作計畫時發現,臺灣民眾對公共議題的關注存在世代衝突,該衝突延伸至日常相處上,卻在事實查核的協作過程中看到正向溝通的曙光。究竟臺灣長輩發展出什麼樣的數位社交生活?如何應用第三方資訊與長輩溝通,甚至邀請長輩加入闢謠打怪行列?
此外,早安圖也是長輩與人互動的敲門磚。李梅君察覺,有些長輩在傳訊息時相當在意社交分寸,不像年輕人想到什麼就 LINE 一下朋友,反而擔心隨意發文會被當成不懂規矩的「老人」。因此,當與新朋友開啟話題時,他們會先禮貌性地試探,這時無害的早安圖就是最好的敲門磚,可以從對方回傳的字句、貼圖或已讀不回,判斷能否進一步交談。
但是,伴隨著早安圖的問候,群組裡轉傳的文字與圖像影片卻可能含有具爭議性的農場內容,例如每天喝檸檬水可以防疫、常喝地瓜葉牛奶可以防癌等,讓以關懷為出發點的長輩成為散播謠言的代罪羔羊。為此,有越來越多公民團體開始號召民眾一起打擊假訊息,李梅君研究的 Cofacts 就是其中一個針對 LINE 假訊息亂象所發展的計畫。
-----廣告,請繼續往下閱讀-----
聽到外面的聲音:「事實查核協作社群」打開群組封閉的大門
LINE 聊天室裡所有的對話都經過加密,就算檢舉了某用戶的言論,LINE 官方也難以遏阻資訊傳播。 圖/Unsplash
LINE 假訊息亂象一直是假新聞議題中非常難處理的一塊,因為 LINE 不像 Facebook、Twitter 或 Instagram 有審查下架機制,LINE 聊天室裡所有的對話都經過加密,就算檢舉了某用戶的言論,LINE 官方也難以遏阻資訊傳播。
李梅君提到:「雖然 LINE 群組相當封閉,在臺灣卻已具有極大的公共性。」很多群組都涉及公共議題的討論,並累積千百人以上的成員,一旦有人惡意散播不實謠言,在缺乏查核機制的情況下,後果可能不堪設想。
因此,自 2016 年起,公民科技社群 g0v 臺灣零時政府的成員推出「Cofacts 真的假的 – 訊息回報機器人與查證協作社群」,邀請民眾主動回報在 LINE 上發現的可疑訊息,再由來自各領域的編輯志工進行事實查核,撰寫有助判斷訊息真假的回應。之後只要有民眾發出相似問題,機器人便會從資料庫中找出相關回應供民眾參考。收到回應的民眾如有不同看法,也可以補充新的回應。
你可能會好奇,當今的「人工智慧」(AI)已可查核假訊息,為何 Cofacts 還在仰賴編輯志工這樣的「工人智慧」?李梅君指出,目前的 AI 僅可以偵查大規模的操弄訊息來源,或者評估影像有無修圖造假。當前要用 AI 來判讀文字內容的真偽還相當困難,因為一則文字訊息通常真假資訊參雜,當中還包括個人意見或情緒用詞,很難明確判定是真是假。
-----廣告,請繼續往下閱讀-----
因此,Cofacts 的編輯志工除了指出訊息錯誤之處,也會提醒該則訊息是否含有個人意見,有助民眾從封閉的 LINE 群組接收外界聲音,進而創造一處可以參與討論的公共空間,共同思考謠言是什麼、怎麼跟謠言對話。