Cowan, B. R., Branigan, H. P., Obregón, M., Bugis, E., & Beale, R. (2015). Voice anthropomorphism, interlocutor modeling and alignment effects on syntactic choices in human-computer dialogue. International Journal of Human-Computer Studies, 83, 27-42.
Branigan, H. P., Pickering, M. J., Pearson, J., McLean, J. F., & Brown, A. (2011). The role of beliefs in lexical alignment: Evidence from dialogs with humans and computers. Cognition, 121(1), 41-57.
前言:泛科學臉書粉專推廣〈在臺海危機下,淺談戰地醫療〉時,讀者們熱情分享檢傷分類經驗,與急救課程資訊。事後更有國軍弟兄私訊筆者,表示對相關中文資料的迫切需求。有別於先前介紹戰時的醫療制度與創傷急救,本文摘譯知名期刊《The Lancet》(中譯「刺胳針」或「柳葉刀」)的附屬刊物,概述俄烏戰爭中,烏克蘭承受的公衛挑戰;並分享俄裔美國心理學家 Elena Cherepanov 對當地心理健康應變的觀察。同時,再次歡迎大家提供更多專業資訊,討論臺灣應該如何備戰,謝謝。
烏克蘭總統Volodymyr Zelenskyy視察被俄軍屠殺的地區。圖/President Of Ukraine on Flickr(Public Domain)
心理急救(Psychological First Aid)是一套用來給予身陷危機者心理支持,加強其調適能力,並滿足基本需求的對策。有別於精神科的臨床技巧,無論是專業醫療人員或一般民眾,都可以學習並執行。[6]世界衛生組織的心理急救指南,建議大眾注意重大危機事件發生的時間、地點和受難的對象,以及哪些單位參與救援。[7]在擁有這些認知的前提下,進行下列心理急救的步驟:
由此可見,當前的 AI 缺乏創作所需的感受力與想像力,無法做出超越預先設定的創意行為。然而,在不久的將來,AI 是否會逐漸產生情感,演變成電影《A.I. 人工智慧》中渴望人類關愛的機器人?
AI 其實沒有想像中聰明?
近期有一則新聞「AI 有情感像 8 歲孩童?Google 工程師爆驚人對話遭停職」,讓 AI 是否已發展出「自我意識」再度成為眾人議論的焦點。蔡宗翰研究員表示:「當前的 AI 還是要看過資料、或是看過怎麼判讀資料,經過對應問題與答案的訓練才能夠運作。換而言之,AI 無法超越程式,做它沒看過的事情,更無法替人類主宰一切!」
會產生 AI 可能發展出情感、甚至主宰人類命運的傳言,多半是因為我們對 AI 的訓練流程認識不足,也缺乏實際使用 AI 工具的經驗,因而對其懷抱戒慎恐懼的心態。這種狀況特別容易發生在文科人身上,更延伸到文科人與理科人的合作溝通上,因不了解彼此領域而產生誤會與衝突。如果文科人可以對 AI 的研發與應用有基本認識,不僅能讓跨領域的合作更加順利,還能在工作中應用 AI 解決許多棘手問題。
「職場上常遇到的狀況是,由於文科人不了解 AI 的訓練流程,因此對 AI 產生錯誤的期待,認為辛苦標注的上千筆資料,應該下個月就能看到成果,結果還是錯誤百出,準確率卡在 60、70% 而已。如果工程師又不肯解釋清楚,兩方就會陷入僵局,導致合作無疾而終。」蔡宗翰研究員分享多年的觀察與建議:
如果文科人了解基本的 AI 訓練流程,並在每個訓練階段協助分析:錯誤偏向哪些面向?AI 是否看過這方面資料?文科人就可以補充缺少的資料,讓 AI 再進行更完善的訓練。
史上最認真的學生:AI
認識 AI 的第一步,我們先從分辨什麼是 AI 做起。現在的數位工具五花八門,究竟什麼才是 AI 的應用?真正的 AI 有什麼樣的特徵?
基本上,有「預測」功能的才是 AI,你無法得知每次 AI 會做出什麼判斷。如果只是整合資料後視覺化呈現,而且人類手工操作就辦得到,那就不是 AI。
數位化到 AI 自動化作業的進程與舉例。圖/研之有物
蔡宗翰研究員以今日常見的語音辨識系統為例,大家可以試著對 Siri、Line 或 Google 上的語音辨識系統講一句話,你會發現自己無法事先知曉將產生什麼文字或回應,結果可能正是你想要的、也可能牛頭不對馬嘴。此現象點出 AI 與一般數位工具最明顯的不同:AI 無法百分之百正確!
因此,AI 的運作需建立在不斷訓練、測試與調整的基礎上,盡量維持 80、90% 的準確率。在整個製程中最重要的就是訓練階段,工程師彷彿化身老師,必須設計一套學習方法,提供有助學習的豐富教材。而 AI 則是史上最認真的學生,可以穩定、一字不漏、日以繼夜地學習所有課程。
AI 的學習方法主要分為「非監督式學習」、「監督式學習」。非監督式學習是將大批資料提供給 AI,讓其根據工程師所定義的資料相似度算法,逐漸學會將相似資料分在同一堆,再由人類檢視並標注每堆資料對應的類別,進而產生監督式學習所需的訓練資料。而監督式學習則是將大批「資料」和「答案」提供給 AI,讓其逐漸學會將任意資料對應到正確答案。
圖/研之有物
學習到一定階段後,工程師會出試題,測試 AI 的學習狀況,如果成績只有 60、70 分,AI 會針對答錯的地方調整自己的觀念,而工程師也應該與專門領域專家一起討論,想想是否需補充什麼教材,讓 AI 的準確率可以再往上提升。
就算 AI 最後通過測試、可以正式上場工作,也可能因為時事與技術的推陳出新,導致準確率下降。這時,AI 就要定時進修,針對使用者回報的錯誤進行修正,不斷補充新的學習內容,讓自己可以跟得上最新趨勢。
在了解 AI 的基本特徵與訓練流程後,蔡宗翰研究員建議:文科人可以看一些視覺化的操作影片,加深對訓練過程的認識,並實際參與檢視與標注資料的過程。現在網路上也有很多 playground,可以讓初學者練習怎麼訓練 AI,有了上述基本概念與實務經驗,就可以跟工程師溝通無礙了。
AI 能騙過人類,全靠「自然語言處理」
AI 的應用領域相當廣泛,而蔡宗翰研究員專精的是「自然語言處理」。問起當初想投入該領域的原因,他充滿自信地回答:因為自然語言處理是「AI 皇冠上的明珠」!這顆明珠開創 AI 發展的諸多可能性,可以快速讀過並分類所有資料,整理出能快速檢索的結構化內容,也可以如同真人般與人類溝通。
著名的「圖靈測試」(Turing Test)便證明了自然語言處理如何在 AI 智力提升上扮演關鍵角色。1950 年代,傳奇電腦科學家艾倫・圖靈(Alan Turing)設計了一個實驗,用來測試 AI 能否表現出與人類相當的智力水準。首先實驗者將 AI 架設好,並派一個人操作終端機,再找一個第三者來進行對話,判斷從終端機傳入的訊息是來自 AI 或真人,如果第三者無法判斷,代表 AI 通過測試。
圖靈測試:AI(A)與真人(B)同時傳訊息給第三者(C),如果 C 分不出訊息來自 A 或 B,代表 AI 通過實驗。圖/研之有物
換而言之,AI 必須擁有一定的智力,才可能成功騙過人類,讓人類不覺得自己在跟機器對話,而這有賴自然語言處理技術的精進。目前蔡宗翰的研究團隊有將自然語言處理應用在:人文研究文本分析、新聞真偽查核,更嘗試以合成語料訓練臺灣人專用的 AI 語言模型。
讓 AI 替你查資料,追溯文本的起源
目前幾乎所有正史、許多地方志都已經數位化,而大量數位化的經典更被主動分享到「Chinese Text Project」平台,讓 AI 自然語言處理有豐富的文本資料可以分析,包含一字不漏地快速閱讀大量文本,進一步畫出重點、分門別類、比較相似之處等功能,既節省整理文本的時間,更能橫跨大範圍的文本、時間、空間,擴展研究的多元可能性。
例如我們想了解經典傳說《白蛇傳》是怎麼形成的?就可以應用 AI 進行文本溯源。白蛇傳的故事起源於北宋,由鎮江、杭州一帶的說書人所創作,著有話本《西湖三塔記》流傳後世。直至明代馮夢龍的《警世通言》二十八卷〈白娘子永鎮雷峰塔〉,才讓流傳 600 年的故事大體成型。
在 AI 的協助之下,我們得以跨時空比較不同文本,了解說書人如何結合印度神話、唐代傳奇、在地的真人真事,創作出流傳千年的白蛇傳經典。
最困難的挑戰:AI 如何判斷假新聞
除了應用在人文研究文本分析,AI 也可以查核新聞真偽,這對假新聞氾濫的當代社會是一大福音,但對 AI 來說可能是最困難的挑戰!蔡宗翰研究員指出 AI 的弱點:
如果是答案和數據很清楚的問題,就比較好訓練 AI。如果問題很複雜、變數很多,對 AI 來說就會很困難!
困難點在於新聞資訊的對錯會變動,可能這個時空是對的,另一個時空卻是錯的。雖然坊間有一些以「監督式學習」、「文本分類法」訓練出的假新聞分類器,可輸入當前的新聞讓機器去判讀真假,但過一段時間可能會失準,因為新的資訊源源不絕出現。而且道高一尺、魔高一丈,當 AI 好不容易能分辨出假新聞,製造假新聞的人就會破解偵測,創造出 AI 沒看過的新模式,讓先前的努力功虧一簣。
因此,現在多應用「事實查核法」,原理是讓 AI 模仿人類查核事實的過程,尋找權威資料庫中有無類似的陳述,可用來支持新聞上描述的事件、主張與說法。目前英國劍橋大學為主的學者群、Facebook 與 Amazon 等業界研究人員已組成 FEVEROUS 團隊,致力於建立英文事實查核法模型所能運用的資源,並透過舉辦國際競賽,廣邀全球學者專家投入研究。
想像與 AI 共存的未來,蔡宗翰研究員驚嘆於 AI 的學習能力,只要提供夠好、夠多的資料,幾乎都可以訓練到讓人驚訝的地步!圖/研之有物
AI 的未來充滿無限可能,不僅可以成為分類與查證資料的得力助手,還能照護並撫慰人類的心靈,這對邁入高齡化社會的臺灣來說格外重要!許多青壯年陷入三明治人(上有老、下有小要照顧)的困境,期待有像動畫《大英雄天團》的「杯麵」(Baymax)機器人出現,幫忙分擔家務、照顧家人,在身心勞累時給你一個溫暖的擁抱。
Cowan, B. R., Branigan, H. P., Obregón, M., Bugis, E., & Beale, R. (2015). Voice anthropomorphism, interlocutor modeling and alignment effects on syntactic choices in human-computer dialogue. International Journal of Human-Computer Studies, 83, 27-42.
Branigan, H. P., Pickering, M. J., Pearson, J., McLean, J. F., & Brown, A. (2011). The role of beliefs in lexical alignment: Evidence from dialogs with humans and computers. Cognition, 121(1), 41-57.
近年來因為人工智慧、大數據、區塊鏈等應用科技快速發展,以及 Google 等科技公司大舉來到臺灣進駐並招聘大量軟體工程師,臺灣頂大的資工科系成為超熱門志願。不過大家對資工系的印象就是要學寫程式,也就是俗稱的 coding,但 coding 在解決什麼問題?今天我們訪問了臺大資工系的陳縕儂副教授,從老師的專業「自然語言處理」(Natural Language Processing,縮寫 NLP)做切入,來帶大家了解資工系究竟在解決什麼問題。
大家可以想像一下,今天要跟一個 AI 互動,通常是透過語音或者文字來下達指令,接著 AI 就會協助我們完成特定的任務,並解決特定的問題。
在這個過程中,有四個主要的環節必須克服,分別是語音辨識 (Automatic Speech Recognition; ASR)、語意理解 (Natural Language Understanding; NLU)、對話決策 (Dialogue Management)、以及語言生成 (Natural Language Generation; NLG),說的白話一點,就是接收你講的話、翻譯成 AI 能理解的指令、要如何處理指令,以及怎麼把回應翻譯成人類能聽懂的聲音或文字。
在這四個環節裡都有相當複雜的問題需要去解決,譬如語音辨識,在技術上通常是將語音訊號直接轉換成文字,讓 AI 去理解,但在將音訊輸入的過程中,就必須要排除掉我們口語中會用的「嗯」、「啊」、「喔」等贅字或不自然的停頓,又或者是新創的流行語、方言、口音……等等的問題必須先解決,才能讓 AI 真的能聽懂人類的自然語言。
在「語意理解」上,要讓 AI 去分析語言或文字的脈絡、理解關鍵字,再找出對應的資料(搜尋資料庫);而「對話決策」更是困難,前面理解了人類的語言或文字表意後,AI 應該要如何回應?可能使用者給的資訊不完整,AI 要追問使用者以釐清問題?又或者在語意理解上有聽不懂的字,得要再次詢問並確認?
這還只是 AI 面對人類自然語言時,其中幾個回應的選項,真實的對話情境可能更加複雜,而且整個對話過程只要有一個環節正確度不夠高,那 AI 後續也很難準確的回應,只要有一步錯了,就會對後續對話體驗造成負面影響。
不過好消息是,現在的深度學習技術已經相當成熟,只要餵資料給電腦時,告訴他怎麼樣是對、怎麼樣是錯,基本上電腦都可以不斷修正(餵的資料也要夠多),再加上現行語言代表模型的優化,智慧 AI 在特定領域的應用上都有蠻不錯的成果。
AI 處理語音指令的過程。圖/陳縕儂提供
Jarvis 仍遙遠,AI 的新突破是精準翻譯
聊到這幾年 AI 的重要突破,老師提到三年前 Google 所開發的語言代表模型 BERT(Bidirectional Encoder Representations from Transformers),當時 BERT 一出現市面上所有自然語言處理的模型都改採用了它的運作邏輯。相較於過去的語言模型,通常都是餵指定任務的文字來訓練電腦,BERT 是在給電腦任務前,先餵它吃很多的文章或書,接著再提供任務給它。
而 BERT 的技術確實也得到相當好的成效,所以擊敗了當時許多正在開發的語言模型,成為了當前語言模型的基礎。有趣的是,BERT 的前身是一個名為 ELMo(Embeddings from Language Models,與芝麻街角色名字相同)的語言模型,所以 BERT 的開發者們就用芝麻街的角色,來為他們開發出來的語言模型命名。
雖然說 NLP 領域在商業與學術上都有相當大的發展空間,但陳老師認為,目前要達到人的「common sense(常識)」對 AI 來說還是非常困難,舉例來說,今天我們跟智慧助理說我今天要跟某某人吃晚餐,這個時候如果是人類的助理,我們可能會聯想到「吃什麼」、「要不要聯絡某某人」、「交通方式是?」……等等與飯局相關的問題,但 AI 目前並沒有辦法執行這麼複雜的互動,還得必須跟 AI 說「幫我訂位」、「幫我叫車」,仍在一個指令一個動作的狀態,這種 AI「common sense」的建立,可說是目前非常有挑戰性的項目。
身為 AI 的設計者,陳縕儂老師認為 AI 會成為輔助人類的一部分,雖然說現階段許多人對於 AI 可以執行我們的工作感到彆扭,但實際上 AI 正在減輕我們的工作量,舉例來說,像是目前醫院已經有在使用協助診斷的 AI,但這樣的 AI 並不會取代醫生的工作,因為 AI 只是提供醫生診斷的相關依據,實務上對於病患的判斷最終還是得由醫生來做。
雖然 AI 已在產業中被廣泛利用,但基本上仍以「人機協作」為大宗,雖然能取代部分人力,但像是創造類型的工作 AI 就幾乎無法獨自完成。至於大家想像中,AI 恐對人類造成威脅的情節,基本上不會發生,因為 AI 是不會憑空出現意識的,AI 威脅人類的可能,比較會是人類不當利用造成的風險,所以在未來 AI 的開發上,基本上會往輔助人類的方向去做應用。
Cowan, B. R., Branigan, H. P., Obregón, M., Bugis, E., & Beale, R. (2015). Voice anthropomorphism, interlocutor modeling and alignment effects on syntactic choices in human-computer dialogue. International Journal of Human-Computer Studies, 83, 27-42.
Branigan, H. P., Pickering, M. J., Pearson, J., McLean, J. F., & Brown, A. (2011). The role of beliefs in lexical alignment: Evidence from dialogs with humans and computers. Cognition, 121(1), 41-57.