0

0
0

文字

分享

0
0
0

「每天睡前吃一點它,不出一週白髮不見!」——當 YouTube 也被內容農場攻陷(上)

科學新聞解剖室_96
・2019/03/29 ・4258字 ・閱讀時間約 8 分鐘 ・SR值 527 ・七年級

  • 科學新聞解剖室-案件編號 32

案情

這幾天解剖員的阿嬤傳來了一則訊息,點開 LINE 一看是影音訊息:「每天睡前吃一點它,不出一周白髮不見了,快收藏吧!」光看標題就有濃濃的農場味,點開之後更不得了,它可是有著九百多萬爆量點擊率的一支影音,這可是科學新聞解剖室一輩子都到達不了的成就,當場嚇到解剖員目瞪口呆。而且阿嬤表示,這樣的訊息她一天都可以收到好幾則,淺顯易懂還蠻好看的,看完也會忍不住要轉傳嘉惠老友跟子孫。

究竟這樣的訊息有什麼特殊之處可以吸引這麼人去看?如果有錯誤的話,那可是會影響不少人,該如何是好?

究竟這樣的訊息有什麼特殊之處,可以吸引這麼人去看?圖/截圖自心靈舒果

解剖

一、不用染髮劑、不猛搓頭髮、睡前吃芝麻,頭髮就能由白轉黑?

這支影片裡面提供了許多將頭髮由白轉黑的偏方,看完後最直覺的問題是:「跟著影片那樣吃究竟有沒有效呢?」我們解剖員中,有的已白髮蒼蒼,也很想要知道照著影片吃一周之後,頭上白髮是不是真的會不見?以下,解剖員就逐一地來看看影片內容的真實性。

人的白髮由黑轉灰白,基本上是一個緩慢的生理過程,最直接的原因在於頭髮中黑色素的減退所致。影片先從白髮的成因說起,點出每個人白髮的成因都會有所不同,男性是因為腎精虧損,女性是因為肝血不足,少年白則可能因為遺傳、壓力大、腎精不足、長期熬夜等等的因素,到這裡雖然都僅是泛泛之談,但是勸人作息正常,倒也沒有什麼不好。

-----廣告,請繼續往下閱讀-----

接著影片建議黑髮變白的「療法」,第一是避免使用染髮劑,因為「染髮劑對身體是不好的」,這裡一竿子打翻所有染髮劑倒是有點欠缺公允,畢竟染髮劑還是有品質之分。第二是從外部護理做起:

  1. 建議用 40 度的溫水洗頭
  2. 先沖一分鐘水,再用洗髮水
  3. 邊洗頭邊用手指腹部輕輕按揉頭皮
  4. 洗頭後不要用手巾猛搓頭髮,應用手巾輕輕抹乾,再用暖風機輕輕吹乾、梳直。

解剖員好奇的是,這些步驟似乎沒有區分是為了治療男性白髮、女性白髮、還是少年白髮?看起來根本只是一般的護理步驟,頭髮怎麼可能這樣就變黑?尤其是第四點,洗完頭擦乾不要猛搓應該是為了避免頭髮分岔嚴重吧,還以為是在看洗頭教學。

圖/取自 giphy
接著開始介紹各種食療法,其中提到了桑葚、黑芝麻、核桃、桑葚乾、蜂蜜水、水果燕麥、何守烏、財魚、紅棗、黑豆、醋等等的食物。不像醫學文獻會將食物的屬性、用法說清楚,這影片僅就某部分食物的療效提供說明以及部分食物的進食方法進行描述,使得影片標題與內容經常搭不起來。

例如,影片裡有個標題是「每天睡前吃一點它」,到底是不同的食物每天都吃一點?還是每天吃一點不同的東西?

影片又提到:

-----廣告,請繼續往下閱讀-----

「再加上這款沖劑中還含有黑芝麻……每天早上來一杯,還能在不知不覺中恢復黑髮。」

「建議可以每天早上用它(桑葚干)來泡蜂蜜水渴,對烏髮後果更好」

「這款水果燕麥含有黑燕麥的成分。」

沖劑指的是什麼?到底是要睡前吃一點還是早上來一杯?這些東西可以混一起吃嗎?「這款水果燕麥」是指影片圖片中的產品嗎?以上內容不只與標題不符,也欠缺清晰的指示,坊間電台賣藥的服用說明可能都比這些明確許多。此外,影片中提到「腎健康了,頭髮自然就黑回來了」,那自然老化的長輩,顧好腎臟,頭髮也會由白反黑嗎?這不科學啊。

對應較早前有關少年白髮的成因,醫學文獻指出[1],在飲食、用藥上都需搭配醫生建議服用,並且平常多食蔬菜、飲食清淡多樣也能有助治療白髮。除此之外,患者也需要保持心情愉快,並加強身體鍛煉以提高免疫力。可見改善白髮的狀況,有許多不同的生理及心理因素需要配合,更需要長期飲食及生活習慣的改變,不是一朝一夕的「速成」方法所能夠達成。

保持心情愉快,加強身體鍛煉,頭髮由白轉黑沒有不可能!圖/skeeze @pixabay

二、農場影片如何吸睛?懂長輩喜好、為長輩量身打造

這麼多有講等於沒講的內容,怎會有九百多萬的爆量點擊率呢?這實在是個讓解剖員耿耿於懷的數字,在搜尋這些性質類似的 YouTube 頻道後發現,這些農場影音的表現手法相當一致,我們以阿嬤傳來的這則當作範例,看看這樣的影片究竟是如何吸睛的?

字大、含金量低:為高齡族群量身打造的視覺呈現

這則影片是來自「心靈舒果」頻道(截至 2019 年 2 月 25 日,訂閱數 59 萬人),查閱這個 YouTube 頻道的影片,會發現在視覺呈現上有著驚人的一致性,解剖員歸納如下:

-----廣告,請繼續往下閱讀-----
  1. 超大字體與緩慢上捲:影片一律搭配超大字體,文字還加上外框,增加易讀性與辨識度,搭配緩慢地上捲式閱讀模式。
  2. 輕薄短小的片長:影片多數是 5 分鐘上下,對閱讀疲乏感的掌握度很高,就在你想要放棄的時候,影片也剛好播完了,很完美(但解剖員則是使用兩倍速才勉強看完這則影音)。
  3. 廉價的背景與配樂:背景圖片單純,多數是影片內提到的名詞圖片,例如黑棗、紅棗、核桃等。而背景音樂是水晶音樂、心靈類的音樂,沒有吵人的旁白。

整體而言,這些類型的影片彷彿為了高齡族群量身打造,十分便於長輩閱讀,可謂非常貼心,即便整體的製作相當簡單、廉價,這影片卻有直逼一千萬的點閱數,是該頻道排名第一的影片,傳播力道驚人。

超大字體與緩慢上捲、輕薄短小的片長、廉價的背景與配樂,是這頻道的三大特點。圖/截圖自心靈舒果

除了前述的視覺效果外,敘事模式也非常內容農場。就這個影片來說,先花五分之二左右的篇幅說明該如何洗髮,剩下的再說該吃什麼,影片援用的中醫觀點沒有特別的根據,卻從標題到內容的敘述口吻都很堅定,彷彿人人都適用、沒有例外。解剖員也在網路上找到這則影片的文字版,發現圖片、文字與影片如出一轍,所以可以說是「內容農場的長輩影音版」無誤。

浮誇標題、宣稱援用某研究、鬼打牆重複論點:農場影片獨有敘事特徵

除了前述的幾項特質之外,解剖員觀察這個頻道的其他影片,還發現幾點有趣的敘事特徵:

1. 農場式浮誇標題:在標題方面,影片標題與內容農場一樣,維持「語不驚人死不休」的浮誇、驚悚,「每天睡前吃一點它,不出一周白髮不見了,快收藏吧!」每天吃一點就能在一週內消滅白髮,這標題實誘惑人心,不管你信不信,解剖員是不信。

-----廣告,請繼續往下閱讀-----

2. 題文不符:標題與影片內容經常嚴重不符,例如「毒!蘋果千萬不能和「它」一起吃!比砒霜還毒,嚴重腎衰竭!趕緊轉發出去!」解剖員用兩倍速看完這則影音,影片只有說蘋果的各種優點,完全沒說究竟蘋果不能跟什麼一起吃,好像只是要把人騙進去,到底什麼不能和蘋果一起吃啦!?(摔滑鼠)

3. 天外飛來一筆:例如這個影片中出現「中醫認為桑葚味甘性寒,能滋補肝腎、補血養顏、生津止渴,再加上這款沖劑中還含有黑芝麻,兩者相結合既起到了補腎的功效,每天早上來一杯,還能在不知不覺中恢復黑髮。」(影片 3 分 38 秒處)沖劑?什麼沖劑?這種天外飛來的沖劑,經常在觀看過程中出現許多黑人問號。

4. 宣稱援用「某某研究」:有些影片會提到根據最新科學研究,例如「最新公佈的 20 個長壽法,吃蘋果排到了第 14 喝茶排到了第 13,排第一的竟是」中的「世界各國權威部門公佈了最新的 20 個長壽方法,簡單易學,可以幫助中老年朋友降低血壓,保護心臟,預防糖尿病和老人痴呆症」,裡面集結 20 個國外研究,但每個都不是很確實,借一下名稱壯壯膽。

圖/截圖自心靈舒果

5. 鬼打牆之重複論點:鋪陳半天才進入主題,內容卻一直重複,例如「每晚洗腳時放一點,半個月體內濕氣全無,肚子平了,腰也細了」這影片中一直鬼打牆地重複類似的標題,是因為工讀生累了嗎?

-----廣告,請繼續往下閱讀-----

6. 非台灣用語或錯字:不知是不是境外移入或世界分工,經常會有許多怪異的用語或顯而易見的錯字,例如「每天睡前吃一點它,不出一周白髮不見了,快收藏吧!」這影片中出現「烏髮養發」、「洗髮水」、「咱們」、「桑葚干」等各種詭異語法。

7. 「訂閱我、瘋傳吧」:影片右下角多會有「訂閱」的符號,輕鬆簡單就能訂閱頻道,不漏掉任何一則嚇到吃手手的影片。而影片尾聲也一定會出現:「喜歡這篇文章嗎?立刻分享出去,讓更多人知道」,想必是一種傳越多賺越多的概念。

點擊 vs 留言不成比例:爆量點擊率從哪裡來?

此外這類影片也有個很特殊的地方,就是點擊量與留言量的嚴重不成比例。

例如最近火紅的「理科太太」最多點閱率的影片,分別是 127 萬點擊數及 1398 留言;而「阿滴英文」頻道,最高點閱的影片則有 275 萬點擊與 10789 留言!但這部黑髮影片有 913 萬點擊數,留言數卻僅有 441 則,比例相當懸殊。

-----廣告,請繼續往下閱讀-----

解剖員再逐一查看影片下方的留言,則大致可分成幾種類型:

  1. 嘲諷:例如「如果你真能使人一週內白髮變黑髮,你必可得諾貝爾獎」、「看完,頭就白了」、「我的頭髮本來不白的,但看完這條片子後,我卻覺我的頭髮好像有點白了……」
  2. 嚴正反駁:例如「心靈舒果不要在誤人子弟了」、「不要再傳遞一些未經證實的消息,害死人呀」
  3. 勸世說理:例如「理論說得似是而非,不是很負責的態度。有種刻意嘩眾取寵的用意。而且,就拿核桃來說,它是滋補,但脾胃弱者或運化得慢,反而不能常吃。」

從這些結果大概可以合理的推論,這些點擊數多是透過像 LINE 這類通訊媒體導流到 YouTube,點擊的人並不是這些頻道的特定擁護者,所以也不會針對這些議題去進行太多的討論或互動,大體上是一種「用完就丟」、「反正就點點看」的概念。因此可以合理的推論,高度使用 LINE 群組的長輩團、對於訊息缺乏思辯的同溫團,都會是這類影片的消費大宗,值得警惕啊。

圖/截圖自心靈舒果影片留言

備註:

[1]方彥華、徐依依 (2005)。〈青少年白髮的病因及其治療、預防〉。《醫學與社會》,18(7),27-29。

-----廣告,請繼續往下閱讀-----
文章難易度
科學新聞解剖室_96
37 篇文章 ・ 12 位粉絲
「科學新聞解剖室」是由中正大學科學傳播教育研究室所成立的科學新聞監督平台,這個平台結合許多不同領域的科學解剖專家及義工,以台灣科學新聞最容易犯下的10種錯誤類型作為基礎,要讓「科學偽新聞」無所遁形。已出版《新時代判讀力:教你一眼看穿科學新聞的真偽》《新生活判讀力:別讓科學偽新聞誤導你的人生》(有關10種錯誤的內涵,請參見《別輕易相信!你必須知道的科學偽新聞》一書)。

0

3
1

文字

分享

0
3
1
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

-----廣告,請繼續往下閱讀-----

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

-----廣告,請繼續往下閱讀-----

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

-----廣告,請繼續往下閱讀-----
我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

-----廣告,請繼續往下閱讀-----

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

-----廣告,請繼續往下閱讀-----
  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

-----廣告,請繼續往下閱讀-----
  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

-----廣告,請繼續往下閱讀-----

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
2

文字

分享

0
0
2
電子信箱串連 Line 通知?再也不怕漏收重要信件!信件自動化篩選、通知,詳細教學!
泛科學院_96
・2024/05/19 ・4129字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

上次 notion + zapier 做完後,開會總算沒挨罵了,自動化服務真的讚!

而這次介紹 MAKE 串 LINE 做重要信件通知,也源自於我遇到的問題。

如果你不想聽故事,可以往下看教學。

Line Notify

首先,我們會用到 line notify 的服務,要先到官網登入申請。

-----廣告,請繼續往下閱讀-----

登入後如果完全沒用過,會直接進到登錄服務畫面。

這邊除了 email 以外可以隨便填,email 之後要收確認信用的,請用你常用的 email。 然後提醒一下,網址跟 callback URL 不要用 google 之類常見的網址,會沒辦法通過,請隨便打一串看起來正常的網址。

設定完成後按登錄。

這時回去剛剛填的 email 收通知信,開通剛設定好的 line notify。

-----廣告,請繼續往下閱讀-----

大功告成,這時點右上角的「管理登入服務」,就會看到剛剛設定好的 line notify,這樣 line 的部分就設定好了,可以去 make 做自動化串連。

Make

接著登入 make,如果是第一次使用,他會問你很多廢話。

不用管他隨邊點,直到你看到這個畫面。

點右上角 creat a new senario。

-----廣告,請繼續往下閱讀-----

一進去會看到的這個圓圈,這個圓圈跟之前 Zapier 說的 trigger 是一樣的東西,可以手動自己設定流程 flow。

但我們還是叫 AI 幫我們啦,點右下角的 AI Assistant,對話框選選 creat or edit a senario。

輸入「if my gmail get a new email, then send LINE notification」

然後得到畫面上的 flow,左邊是 Gmail watch email,右邊是 line send a notification。

如果你用中文輸入類似的內容,常會跑出很複雜的 flow,這種 flow 裡面有很多有趣的功能。

但這集用不到,我們還是先回到正確的 flow 上。

-----廣告,請繼續往下閱讀-----

點開 gmail,連上要整理的信箱。

連接完成後進入設定,先點選藍色的 click here to choose folder。

這邊會出現你在 gmail 裡做的標籤分類,由於我完全沒有按照規則整理,就直接選 inbox,對所有郵件進行分析。

filter type 用 simple filter。

-----廣告,請繼續往下閱讀-----

下面的 Criteria 選 all emails 就好了,我們後面會再用 filter 細分。

然後這個,選 no。

選擇 yes 會把偵測過的 email 變成已讀,我不想這樣。

然後這邊是每次執行 flow 時,會抓取多少筆最新的 email 到 line 上發布通知。

-----廣告,請繼續往下閱讀-----

免費的 make 是 15 分鐘執行一次 flow,請自己評估每 15 分鐘會收到多少封有用的信件,設定太多你的 LINE 通知會炸裂。

我自己測試後,設定為 5 就差不多了。

設定好點下 OK,會跳出從哪封 email 開始抓資料,用 from now on 就好,之後的新郵件就會自動讀取了。

按下OK,接下來就可以來設定 filter 啦。

-----廣告,請繼續往下閱讀-----

點連接線旁邊的板手會跳出選單,選第一個 set up a filter。

進入 filter 設定畫面,上面的 label 是幫這個 filter 上標籤,填你喜歡的就好。

然後點 condition 下面的輸入框,選 subject 標題跟 text content 內文。

然後在 text operator 這裡,選擇 contains。

contains 是在特定字串中如果包含某個關鍵字,就可以通過。

這邊說的特定字串,就是上面欄位設定的標題跟內文。

接下來,在下面空格打上關鍵字,就完成啦。

如果有多個關鍵字要篩選,點選 add OR rule 設定其他關鍵字,不能多個關鍵字打在一起。

按下OK,你會看到板手變成一個漏斗,這樣 filter 就設定完成。

接著點開 line,他會要你輸入 notify API。

回到 line notify 的「管理登入服務」頁面,點擊剛剛設定好的服務,進入服務細節的頁面,複製上面的 client ID。

回到 Make 複製貼上按SAVE。

接著會進到這個頁面,這邊是設定你要在哪個聊天室發送通知,你可以設定在工作群組發送,我這邊先設定我自己就好。

然後進入 line 推播訊息的設定頁面。

message 這欄可以打成這樣,這樣就不會丟一個不知道在做什麼訊息,你也可以發揮創意寫一些幹話進去,增添趣味。

下面的設定用不到,我們直接按OK就完成了。

接下來就要測試啦,我先分別寄三封信件到公用信箱中,分別是:

  1. 標題有關鍵字
  2. 內文有關鍵字
  3. 沒有關鍵字

寄完後,按下 run once。

成功的話就會在 line 上收到通知,果然,沒有把不含關鍵字的信件傳到 line 上,測試成功。

現在把下面的 scheduling 打開,就完成所有設定了。

以後再也不用擔心自己漏接公用信箱的重要信件啦!

結論

最後分享一下實做心得:

比起 zapier 跟 ifttt,make 用起來更有寫程式的感覺,對完全沒有程式背景的人,Zapier 跟 ifttt 會比較好上手,但在免費版的情況下,make 能做到比 zapier 更複雜的自動化功能。

像前面有出現過的複雜流程圖,就可以用 router 做出複數條件判斷的流程,例如前面抓gmail的流程,加上 router 後就不只能傳送提醒到line,還能自動回復罐頭訊息給符合條件的郵件,這如果要在zapier做,就要做兩個流程才能達成了。

另外如果你的公司信箱不是使用Gmail,前面的模組可以從Gmail改成Email,Connection type選用Microsoft系列。

理論上只要這邊按 save,就可以選擇你要串連的microsoft帳號。我串完之後還是抓不到信件,但 make 跟 microsoft 帳戶上,都顯示授權成功,如果有人知道這是什麼問題,請一定要留言告訴我⋯⋯

這次的分享就到這邊,如果有其他想看的 AI 工具測試或相關問題,可以直接留言 ,或給加入 Discord 跟我們一起討問喔。

如果喜歡這支影片的話,也別忘了按讚、訂閱,加入會員,我們下集再見~掰!

更多、更完整的內容,歡迎上科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----
泛科學院_96
44 篇文章 ・ 54 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

1

3
0

文字

分享

1
3
0
誰在傳送假訊息?提升全民媒體素養,讓謠言止於智者!
研之有物│中央研究院_96
・2023/06/09 ・4698字 ・閱讀時間約 9 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|莊崇暉、田偲妤
  • 責任編輯|田偲妤
  • 美術設計|蔡宛潔

不要再轉傳假訊息了!


「我家親戚群組又在 LINE 傳假訊息了!」這是常在年輕族群中聽到的抱怨,彷彿隨意散播謠言是長輩特有的行為,當你願意了解長輩的數位社交生活,將發現事實並非如此。中央研究院「研之有物」專訪院內民族學研究所李梅君助研究員,在研究 Cofacts 事實查核協作計畫時發現,臺灣民眾對公共議題的關注存在世代衝突,該衝突延伸至日常相處上,卻在事實查核的協作過程中看到正向溝通的曙光。究竟臺灣長輩發展出什麼樣的數位社交生活?如何應用第三方資訊與長輩溝通,甚至邀請長輩加入闢謠打怪行列?

圖/研之有物。

2018 年臺灣地方選舉和公民投票讓存在已久的世代衝突瞬間引爆,面對韓流現象、同性婚姻、性平教育等議題,厭世代年輕人(1990 年代左右出生)和戰後嬰兒潮世代長輩(約 1946-1964 年出生)因經濟與社會生長背景的不同,常發生意見分歧而爭吵不休的情形。

在臺灣最多人使用的 LINE 即時通訊軟體中,出現不實謠言滿天飛的亂象,年輕人紛紛將矛頭指向長輩,批評長輩不先查核資訊真假就亂發文。

中研院民族所李梅君助研究員在研究 Cofacts 事實查核協作計畫時,發覺臺灣世代衝突問題的嚴重性。年輕人認定長輩就是假訊息的傳遞者,但事實上,許多年輕人也常在無意間互傳不實謠言。

-----廣告,請繼續往下閱讀-----

「大眾常急著為長輩貼標籤,卻從來不去了解他們怎麼使用數位工具。這樣並無助於解決問題,只會加深彼此的誤會。」研究過程中逐一浮現的問題為李梅君指引出一條研究道路,從事實查核協作行動出發,逐步深入長輩的數位社交生活,探索緩解世代衝突、提升全民媒體素養的可能途徑。

「早安圖」的背後:長輩獨特的數位社交

圖/研之有物(圖片來源/Unsplash

從了解長輩的數位社交生活做起,應有助於促進不同世代的相互理解,李梅君選擇由長輩們發展出的「早安圖」文化來切入研究。

科技與生活的緊密結合讓人手一機成為常態,再加上疫情造成的人群接觸減少,讓人們日漸習慣將社交重心從實體轉往線上。越來越多長輩靠 LINE 群組維繫親友感情、接收外界資訊,每天一早發布的「早安圖」經常是長輩社交生活的起頭。

然而,早安圖一直有被汙名化的傾向,溫馨圖片配上吉祥文字的簡單排版被貼上具有長輩風格的標籤,甚至還被戲稱為「長輩圖」。李梅君與長輩相處後發現,早安圖的存在對於長輩的社交生活具有深刻意義。

-----廣告,請繼續往下閱讀-----

首先,早安圖是長輩證明自己跟的上年輕人腳步的重要象徵!身為晚近才接觸手機、電腦的「數位移民」,長輩常因不會操作數位工具、又害怕晚輩覺得自己笨拙,而感到焦躁不安。因此,當自己好不容易學會用手機拍照、修圖、發早安圖,對長輩來說是自信心的累積,代表自己沒被時代淘汰

此外,早安圖也是長輩與人互動的敲門磚。李梅君察覺,有些長輩在傳訊息時相當在意社交分寸,不像年輕人想到什麼就 LINE 一下朋友,反而擔心隨意發文會被當成不懂規矩的「老人」。因此,當與新朋友開啟話題時,他們會先禮貌性地試探,這時無害的早安圖就是最好的敲門磚,可以從對方回傳的字句、貼圖或已讀不回,判斷能否進一步交談。

如果我們願意深入體會早安圖對長輩的意義,你將發現早安圖是長輩表達「關懷」的重要媒介。

例如在不方便見面的疫情期間,許多長輩會互相分享充滿溫馨祝福的早安圖、早安短影片,當中包含一些身體保健資訊,即時表達對遠方親友的關心,也讓對方知道自己過的很好。

但是,伴隨著早安圖的問候,群組裡轉傳的文字與圖像影片卻可能含有具爭議性的農場內容,例如每天喝檸檬水可以防疫、常喝地瓜葉牛奶可以防癌等,讓以關懷為出發點的長輩成為散播謠言的代罪羔羊。為此,有越來越多公民團體開始號召民眾一起打擊假訊息,李梅君研究的 Cofacts 就是其中一個針對 LINE 假訊息亂象所發展的計畫。

-----廣告,請繼續往下閱讀-----

聽到外面的聲音:「事實查核協作社群」打開群組封閉的大門

LINE 聊天室裡所有的對話都經過加密,就算檢舉了某用戶的言論,LINE 官方也難以遏阻資訊傳播。
圖/Unsplash

LINE 假訊息亂象一直是假新聞議題中非常難處理的一塊,因為 LINE 不像 Facebook、Twitter 或 Instagram 有審查下架機制,LINE 聊天室裡所有的對話都經過加密,就算檢舉了某用戶的言論,LINE 官方也難以遏阻資訊傳播。

李梅君提到:「雖然 LINE 群組相當封閉,在臺灣卻已具有極大的公共性。」很多群組都涉及公共議題的討論,並累積千百人以上的成員,一旦有人惡意散播不實謠言,在缺乏查核機制的情況下,後果可能不堪設想。

因此,自 2016 年起,公民科技社群 g0v 臺灣零時政府的成員推出「Cofacts 真的假的 – 訊息回報機器人與查證協作社群」,邀請民眾主動回報在 LINE 上發現的可疑訊息,再由來自各領域的編輯志工進行事實查核,撰寫有助判斷訊息真假的回應。之後只要有民眾發出相似問題,機器人便會從資料庫中找出相關回應供民眾參考。收到回應的民眾如有不同看法,也可以補充新的回應。

在 Cofacts 群組回報 18 歲公民可以選市長的可疑訊息,獲得豐富的澄清回應與參考資料,使用者也可補充新的回應或分享給朋友。
圖/截圖自 Cofacts 群組

你可能會好奇,當今的「人工智慧」(AI)已可查核假訊息,為何 Cofacts 還在仰賴編輯志工這樣的「工人智慧」?李梅君指出,目前的 AI 僅可以偵查大規模的操弄訊息來源,或者評估影像有無修圖造假。當前要用 AI 來判讀文字內容的真偽還相當困難,因為一則文字訊息通常真假資訊參雜,當中還包括個人意見或情緒用詞,很難明確判定是真是假。

-----廣告,請繼續往下閱讀-----

因此,Cofacts 的編輯志工除了指出訊息錯誤之處,也會提醒該則訊息是否含有個人意見,有助民眾從封閉的 LINE 群組接收外界聲音,進而創造一處可以參與討論的公共空間,共同思考謠言是什麼、怎麼跟謠言對話。

和時間賽跑 艱辛的闢謠之路

不過該計畫也有艱辛之處,由於需仰賴大量人力進行事實查核,Cofacts 經常面臨闢謠速度趕不上謠言散播的問題。根據統計,Cofacts 的 LINE 目前有 42 萬名好友,過去 10 週每週傳來約 650 則新謠言;目前登記的編輯志工大約有 2,600 多人,但每週會固定回應訊息者只有 20 人上下,平均澄清一則謠言要花 20 至 30 分鐘。

李梅君分享實際參與事實查核的心得:「一開始你可能很熱血地上線回應訊息,但回應了一、二天後,可能會逐漸失去參與感,畢竟你只是一個沒支薪的志工,而且很多謠言看了又很令人痛苦,還要耐著性子花 30 分鐘回應。」

因此,為了維持志工夥伴的參與熱情,Cofacts 每個月都會辦一次聚會,藉由分組競賽活動,讓志工們培養共同打怪的向心力,也可相互交流查核經驗、結交志同道合的朋友。

-----廣告,請繼續往下閱讀-----
李梅君分享實際參與 Cofacts 事實查核的心得,編輯志工透過每月聚會維繫共同打怪的向心力。
圖/研之有物

至於使用 Cofacts 釐清謠言的民眾又有何回饋呢?李梅君聽過一些年輕志工分享參與事實查核的原因,主要是想透過 Cofacts 的第三方資訊與長輩對話。雖然不確定長輩能否接受,卻可盡量避免家人之間發生正面衝突。

根據李梅君的觀察,在政治議題上,純粹處理謠言無法真正化解世代衝突,因為謠言只是表現形式之一,背後牽涉每個人不同的價值觀與政治立場,需仰賴更多對話空間的產生。

不過,在疫情期間,與防疫相關的健康資訊則明顯受到不同世代的共同關注,Cofacts 的使用人數因此大幅成長,其中增加最多的就是 50 歲以上的使用者。因為健康資訊較不受政治立場影響,再加上全民必須共同面對疫情威脅,世代衝突的問題自然較少。

公民團體的辛勤奔走 努力提升全民媒體素養才是真正的關鍵

ChatGPT 等生成式 AI 問世後,未來可能會出現更多人為操作的假圖文,或是誤信 AI 偏差回覆等狀況。面對上述危機,李梅君認為:

應對關鍵在於,大眾是否具備足夠的「媒體素養」與「思辨能力」去判讀網路訊息。

可惜這在我們過去的教育裡並不受重視,直到近幾年教育部才開始在 108 課綱下推動「媒體素養教育」,要求在不同年級與學科中融入媒體素養課程。例如資訊課會介紹社群媒體用演算法投放廣告的邏輯;理化課會教學生分辨並思考「偽科學」的成因;國文課則透過閱讀不同文本培養思辨能力。

-----廣告,請繼續往下閱讀-----

然而,社會上多數人沒有上過相關課程,很多還是不太熟悉數位工具的長輩,幸好現在有 Cofacts 以及多家臺灣公民團體在做媒體素養教育。他們主動走進長輩的生活圈,教長輩怎麼使用手機、如何確認訊息真假,甚至鼓勵長輩善用發早安圖的習慣,成為謠言破除推手。

李梅君目前的研究正在觀察這些公民團體怎麼採取行動。例如 NGO 組織「假新聞清潔劑」會前進廟口、菜市場或老人服務中心等長輩聚集地,舉辦街頭宣講活動。在宣講過程中,一開始不會直接跟長輩講假訊息,因為假訊息在臺灣的脈絡裡很容易被導向敏感的政治議題,誤以為要聊網軍。

因此,宣講的切入點通常會先問長輩是不是常收到詐騙訊息?接著,志工會分享一些受騙案例,例如有人買了網路一頁式廣告的保養品,結果臉爛掉;或是吃了來路不明的保健食品,最後弄壞身體。藉由生活化、無政治立場、令人感同身受的案例,讓長輩意識到學會辨別訊息真假很重要!

另一個事實查核的組織「MyGoPen|麥擱騙」會製作一則則精美的謠言澄清圖文,吸引長輩像發早安圖一樣,將這些闢謠圖文大量轉發到各個群組。如此一來,長輩本身既可釐清謠言,還可幫助更多長輩遠離詐騙,更證明自己擁有不輸給年輕人的知識與能力。

-----廣告,請繼續往下閱讀-----
「MyGoPen/麥擱騙」製作的謠言澄清圖文,網站上也有詳細的澄清說明與參考資料
圖/截圖自 MyGoPen 群組

「我覺得這是很令人感動的事情,因為這個題目很難,可是有很多人願意用不同的角度去介入,而且大部分都是志工。」李梅君有感而發的說。

臺灣長期被國際視為境外假訊息泛濫的國度,如今一個提升全民媒體素養的生態圈正在形成,因假訊息而延伸出的世代衝突問題有待長時間相互理解溝通,但公民社群的力量讓人們看見改變的契機。

李梅君有感而發的談到,過去很多國際友人將臺灣視為一處被假訊息攻擊很嚴重的地方,現在我們已發展出一個應對的生態圈,國際上越來越多人來跟臺灣學習!圖/研之有物

延伸閱讀

-----廣告,請繼續往下閱讀-----
所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3747 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook