3

11
4

文字

分享

3
11
4

既是科學家,也是樂團鼓手!──專訪數學物理學家程之寧

研之有物│中央研究院_96
・2022/03/11 ・5978字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|郭雅欣、簡克志
  • 美術設計|林洵安、蔡宛潔

在學術與搖滾的多重維度上行走

還記得美劇《The Big Bang Theory》嗎?劇中常常出現的物理名詞「弦論」,是描述物理世界基本結構的理論。中央研究院「研之有物」專訪院內數學研究所程之寧研究員,她正是研究弦論的科學家,也是熱愛音樂的搖滾樂團鼓手,這種跨領域身份並不衝突,兩邊都需要創造力與紀律。由於天生斜槓的性格,讓程之寧在數學和物理領域大展身手,透過數學的深入探討,她試圖將弦論更往前推進。最近程之寧更跨足到人工智慧領域,為學界提供理論物理上的貢獻。

中研院數學所程之寧研究員,主要研究 K3 曲面(特殊的四維空間)的弦論,她發現模函數和有限對稱群之間有 23 個新的數學關聯,稱之為「伴影月光猜想」(Umbral Moonshine)。圖/研之有物

萬有理論和難以捉摸的「月光」

世界從那裡來呢?物理世界的本質是什麼呢?回答這樣的大哉問,一直是理論物理學家所追求的目標。從牛頓力學(日常應用)、廣義相對論(探討很重的物質)到量子力學(探討很小的物質),隨著物理學不斷發展,我們似乎一步步接近答案,但至今卻還未走到終點。

舉例來說,如果有個東西很重又很小,就像「黑洞」,或是大爆炸時的宇宙,我們要怎麼用數學描述?於是科學家試圖整合廣義相對論和量子力學,找出所謂的「萬有理論」(Theory of Everything)──能完全解釋物理世界基本結構的核心理論。

程之寧研究的「弦論」就企圖發展成這樣一個萬有理論。弦論一如其名的「玄妙」,它設定宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。

「人類一直以來的夢想之一就是,如果能用一句話解釋所有事情,那該有多麼美好。」中研院數學所研究員程之寧說道。

程之寧的研究牽涉到數學上的「月光猜想」(Moonshine)與弦論中 K3 曲面的連結。月光猜想是存在於模函數係數與特殊群之間的數學關聯,程之寧與其研究夥伴共發現了 23 個新的關連,並稱之為「伴影月光猜想」(Umbral Moonshine)。

基於弦論的假設,我們的世界是十維的,除了人們在日常生活中可以感知到的 3+1 維(空間+時間),還有六維是因為尺寸太小而無法用肉眼觀察的,這些看不到的維度影響著物理世界,最終也產生了我們這個物理世界所需的各種條件與特性。

綜觀程之寧的研究,橫跨了物理與數學兩個領域,她笑稱自己「天生斜槓」。在學術上,程之寧原先喜歡文學,之後卻走上數理研究的道路;在音樂上,程之寧喜愛搖滾樂,至今仍在自己的樂團裡擔任鼓手。

她如何看待自己一路走來的各種轉折?游徜在數學與物理之間,她又對這兩個領域的連結有怎樣的體會?在與「研之有物」的訪談中,程之寧侃侃而談她的經歷、想法,以及對學術研究的熱忱所在。

在弦論的設定中,宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。圖/iStock
  • 請問您是如何對數學及物理產生興趣?從何時開始?

一開始考大學時,其實我想去念中文系(笑)。不過,因為我高中是選理組,而且只念了一兩年,對文科考試比較沒把握,加上對工程科系沒興趣,最後就選擇臺大物理系就讀。

後來發生兩個轉折,第一個是我很認真的去修了大學中文系的課,結果發現真的沒有想像中容易。第二個就是我發現物理系的課還蠻有趣的,像量子力學和相對論,讓我覺得還想再多學一點、多知道一點。

我開始覺得如果念完臺大物理系就停下來,好像有一種小說沒讀完的感覺,所以就想繼續讀碩士班。那時還沒有覺得自己會走上學術研究的路,單純抱著想把故事看完的想法。

  • 後來是如何接觸到弦論?弦論是如何引起您的興趣?

後來我去荷蘭念碩士,指導教授是諾貝爾物理獎得主 Gerard ’t Hooft。他其實蠻不認同弦論,但他對於如何處理量子力學與相對論很有興趣。

當時 ’t Hooft 教授在建議我碩士題目時就說:「你也知道我不太認為弦論是一條正確的道路,不過聽說弦論最近真的在量子重力這一塊有一些成果。不如妳去讀一讀,看看是不是真的有一些東西在那裡,也可以比較一下其他量子重力理論。」

在我很認真的比較各個量子重力理論之後,就變成弦論派了(笑)。’t Hooft 教授對此也保持開放態度,他有幾個不錯的博士生後來也變成弦論學家,之後我在 Erik Verlinde 的指導下念博士時,就完全以弦論為研究主題了。

  • 研究理論物理會影響您對現實世界的理解嗎?

蠻多人會問我說,妳學了量子力學,是不是就會比較了解這個世界不是非黑即白?或問我量子力學跟宗教是不是有關?可是我覺得我分得很開,我不會去做這樣的連結,我還是活在現實裡,走路時大部分都在專注於自己不要跌倒之類的。

如果真的要講,我蠻感激我們的存在,因為我所學的東西讓我知道這是沒有必然性的。我們能這樣以一種人形的很奇怪的生物的形式存在,然後在這樣一個環境過一輩子,是機率很低的事情,而且我還蠻開心我是當人,而不是奇怪的阿米巴蟲或外星生物!有些人會從這裡連結到宗教或轉世,但我不會,我就停在這裡。

  • 來談談您的研究,伴影月光猜想與 K3 曲面弦論之間是什麼關係?

弦論中有很多的可能性,我們可以挑選特定的四維,然後假設這四維空間是個 K3 曲面。例如說,我們可以把兩個甜甜圈乘起來,在上面做特殊的奇異點,來製造出一個 K3 曲面。這個曲面有一些很有趣的對稱性。從弦論的角度來講,我們可以透過這個過程,找出一個解釋為何有伴影月光猜想的框架。

「把維度乘起來」這個概念很難想像,但這在數學上是成立的。我舉例一個我們能想像的「乘起來」:如果有一個空間是一條線,另一個空間是一個圓,乘起來就變成一個圓柱形,從一個方向剖面可以切出圓,另一個方向則切出線。而在數學上,不管幾維,能不能在紙上畫的出來,都可以這樣操作。

程之寧向「研之有物」採訪團隊解釋「把維度乘起來」的概念。圖/研之有物
  • 如何透過計算,發現捉摸不定的「月光」?

有時候這看似湊巧,一個數學上的函數正好就是弦論某個問題的答案。但其實並不是真的那麼巧,弦論看起來很有彈性,好像什麼都可以解釋,但它其實有非常多結構及限制。

當我在計算一個弦論理論時,它的內部結構可能原本就具有某些特定的性質,然後我再去觀察數學中,有這樣性質的函數可能就只有一兩個,只要再初步算一下,就能知道哪一個是答案。弦論學家日常的計算常常是這樣的,所以這是巧合嗎?是也不是。

  • 您曾經發現 23 個新的伴影月光猜想,您對這類題目特別有興趣嗎?

我覺得數學有兩種,有些數學家喜歡系統性的事情,就像蓋房子一樣,在數學裡建造一個很美麗、非常有系統性的結構,可以把很多事情都放入這個結構來理解。

另一種比較少數的,就是喜歡獵奇,去收集分類奇奇怪怪的特殊東西,例如有這些性質的函數在哪裡?可能你算出來就是 5 個,你也不知道為什麼。月光猜想很明顯就屬於這一類。

兩種的樂趣感覺是不一樣的,我覺得應該都很棒,但我可能是屬於偏好獵奇的這種。

  • 您的研究連結了物理上的弦論與數學上的月光猜想,您怎麼看待這兩個知識體系的互動?

弦論是一個需要很多數學理論配合的物理理論,它是一個有點繁複的框架,我們什麼都要會一些,才能看懂這個理論。當你把許多不一樣的學門的知識加起來,有時候就會在某一個學門──例如幾何──有意想不到的收穫。

弦論在數學上也扮演探索與找尋新方向的角色,讓數學家有新的發現。雖然最後數學定理的證明還是得仰賴傳統數學方法,但在這二三十年間,我們一直從弦論身上找尋數學研究的新方向或有趣的猜想,看到了弦論與數學之間的互動。

數學家有兩種,一種人喜歡建立美麗又有系統性的結構,另一種人喜歡尋找和收集奇怪特殊的數學物件(比如函數),程之寧表示自己屬於後者。圖/研之有物
  • 剛才一開始提到,您高中只念了一兩年,是因為對學校沒有興趣嗎?

其實我一直都覺得上學很無聊。我小時候臺灣教育和現在很不一樣,一班 50 幾個人,老師必須盡量軍事化管理,大家最好都一模一樣,比較好管理。我和學校一直處於互相磨合的狀況,我自認已經努力配合學校,但學校一直覺得我在反抗,這可能是一個認知上的差別。

舉例來說,我小學的時候不想睡午覺,可是老師說大家都一定要睡午覺,不睡午覺的人要罰抄課文,所以我早上到學校時就會把已經抄好的課文交給老師。我覺得我這樣做是在配合老師的規定,可是以老師的立場會覺得我在反抗,學校教育中我遇到了很多類似的情況。

還有就是不喜歡高中的升學氛圍,同學和老師好像都只有一個活著的目標,就是「考大學」。我當時無法習慣升學氛圍,感覺好像活在平行宇宙一樣。

  • 高中休學後,您去唱片行工作,可否談談當時的想法?

我國中開始聽音樂,這是我除了看書之外的重要興趣,我也很快就喜歡上了搖滾樂。高中休學的時候,我唯一的謀生技能可能就是我對音樂的各類知識吧!所以我就去了唱片行,這是唯一一個我會做又有興趣的工作,還好那時候還有很多唱片行(笑)。

  • 對音樂的熱忱,讓您與朋友共組了樂團,並擔任鼓手。您是否比較過樂團生活和學術研究之間的異同之處?

有些人覺得我這樣很跳 tone,但我自己覺得還好。音樂和學術都是我發自內心覺得好玩的東西,兩者也有相同之處,例如它們都需要創造性,也都有需要了解的框架。數學需要嚴謹的證明,音樂演奏也需要遵循結構,例如不能掉拍。

音樂領域還有一點和數學類似──玩樂團的圈子也是以男性為主。我們樂團則是只有一個男生,其他都是女生,可能我真的天生對框架有點遲鈍,玩團之後才發現:「怎麼大家都是男生?」

程之寧表示,學術界仍有許多性別不平等問題未受重視。圖/研之有物
  • 也就是說,目前數學學術圈仍是男性主導,在研究路上,您有因為性別而感受到一些衝擊或眼光嗎?您怎麼面對?

有。那感覺很明顯,日復一日地要去面對,尤其是年紀還比較輕、還必須每一天去證明自己的能力的時候,特別有感。

我遇到時的反應就是,在心裡暗罵一句髒話,然後繼續做我要做的事。我不會想改變別人的想法,感覺那是浪費時間,就算環境給我的阻礙是這樣,我還是繼續去做該做的事。

可是有些事情沒那麼簡單,現在我也當過老師,有時候會看到年輕女生在學術界因為性別而被欺負,或遭到不公平待遇、甚至騷擾。

對此我感到心痛,覺得為何我們學術領域還是這樣的狀況?甚至為什麼性騷擾至今還是一個議題?可以確定的是,學術界許多性別不平等問題未受到重視。

  • 您現在已經有傑出的研究成果,還會因為性別而遭受質疑嗎?

我現在比較會遇到一個狀況反而是來自學生的質疑。我在荷蘭阿姆斯特丹大學教書時,有時候學生會因為我是女教授,而且我的外表在許多歐洲人眼中看起來就像小妹妹,所以比較容易去挑我的毛病。

在課堂上,下面坐的可能都是男學生,只有一兩個女學生,那個氣氛就會變得很奇怪。例如說偶爾會聽到學生評論我的身材或樣貌。

我有和其他一些在歐洲或美國的女性教授聊過這樣的問題,似乎不少人都有類似的不太愉快的經驗。感覺不是很好。

  • 看到您最近的研究和人工智慧(AI)有關,為何會想往這個方向發展?

我有兩個動機。一個就是我真的想深入了解人工智慧。我也可以像普羅大眾,看看 AI 下圍棋,讚嘆「哇!好厲害!」這樣就好,可是我覺得我一定可以真的去理解它,這可能就是數學家的自大吧!

另一方面,我知道對科學研究來說,未來 AI 將會是一個非常重要的工具。這是「在職訓練」的概念,我可能會用到這個新工具,或以後我可能會需要教這樣的課,因為學生是下一代的科學家。因為這些原因,我覺得我需要去訓練自己使用新的工具。在我的領域裡,也有一些有趣的、還沒被解答的科學問題,是 AI 有可能幫得上忙的,我看到了一些潛力。

  • 弦論和 AI 感覺差距很大,AI 也可以應用到弦論的研究嗎?

乍看之下,弦論的確比較抽象,也不像其他許多實驗會產生大量數據。但其實弦論有大量的可能性,我認為使用 AI 來在這些巨量的可能性當中搜尋特別有趣的理論,是一個有潛力能夠加深我們對弦論理解的新的研究方法。

而且 AI 的應用絕不僅限於巨量資料。如果是面對一些比較新的挑戰,在沒有現成的演算法可以用的情形之下,可以自己做出需要的功能嗎?這過程我覺得也非常很有趣,而且應該是會有成果的一條路。這種不是那麼顯而易見的事情,我覺得很有挑戰性,也蠻好玩的。

除了用 AI 來幫助物理跟數學的研究之外,我也試著物理研究當做靈感來源,找出新的 AI 的可能性,我覺得這也是一個很有趣的研究方向。我現在有和 AI 的學者合作,嘗試做出一些創新的演算法,真的還蠻有趣的。

  • AI 對您而言是全新的領域,您如何面對跨領域遇到的門檻?

一開始會覺得真的要去碰這個新的領域嗎?其實現在也還是偶爾會有這樣的懷疑。我在弦論領域可能已經是專家,但去了一個新的領域,我學得不會比二十歲的人快,要怎麼去跟人家競爭?是不是在浪費時間?

但也會想,與其想這麼多,不如先做再說。到目前為止我做了兩年多,感覺還蠻好的,我有學到東西,也有做出小小的貢獻。

其實我還蠻感激有這樣的學習機會。對我來說當科學家最大的好處就是,去搞懂一個新的東西就是工作的一部分。當科學家雖然蠻辛苦,但就結果論來說,我還蠻開心能當一位科學家!

延伸閱讀

  1. Moonshine Master Toys With String Theory | Quanta Magazine
  2. Mathematicians Chase Moonshine’s Shadow | Quanta Magazine
  3. 林正洪教授演講 一 怪物與月光(Monster and Moonshine),《數學傳播》

 

國中生的科普素養閱讀平台: 《科學生》,素養強化訓練 今天就展開!

文章難易度
所有討論 3
研之有物│中央研究院_96
237 篇文章 ・ 1804 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook


2

4
2

文字

分享

2
4
2

「科學家也需要 Art!」持續破解果蠅大腦神經迴路的李奇鴻

研之有物│中央研究院_96
・2022/04/11 ・6084字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/歐宇甜、黃曉君、簡克志
  • 美術設計/林洵安、蔡宛潔

神經科學與視覺

我們怎麼「看到」顏色,「察覺」東西在動?大腦如何產生視覺?中央研究院「研之有物」專訪院內細胞與個體生物學研究所所長李奇鴻,他是國際知名的神經科學家,過去長期在美國國家衛生院(National Institutes of Health)做研究,2018 年回到中研院貢獻自己所學。李奇鴻的實驗室主要是以果蠅視覺系統為模型,研究神經元如何在發育過程形成複雜的突觸連結,以及神經迴路如何產生視覺來引導動物行為。

李奇鴻是國際知名的神經科學家,研究神經迴路如何產生視覺來引導動物行為。圖/研之有物

技術帶動神經科學研究

神經系統如何運作?這對以前的科學家來說是黑盒子。由於大腦發生錯誤或出問題時,會直接表現在外在行為上,早期科學家想了解人腦運作機制,只能透過腦部哪裡受傷壞掉或中風等,知道腦部的大概功能區域,但沒辦法進入細胞層次。

「在生物學的發展上,除了需要有智慧的思考,其他都要靠技術去推動。你可能想到一個有趣的題目,但也許要 30 年後,才出現足夠的技術來解決問題。」李奇鴻舉例,從光學顯微鏡、電子顯微鏡、電生理技術、分子生物學到結構生物學發展,每個都在細胞、分子、及系統層次開啟了新的世界。

隨著顯微技術與遺傳工程日益完備,果蠅成為現今熱門的腦科學研究對象。李奇鴻指出,「果蠅的生長速度快,相較老鼠要幾個月成熟,果蠅只要兩週。果蠅的大腦複雜程度介於人和單細胞生物中間,結構跟人高度相似,成果可應用在人身上。」

因此,近 10 幾年來是神經科學大起飛時代,科學家透過遺傳學方法控制果蠅的神經元活性、觀察行為,藉此了解哪些基因會影響大腦發育和運作,逐漸破解神經迴路的奧祕。

「我在選博士後研究時,想到底要做線蟲、老鼠、魚、果蠅或其他模式生物?最後才選果蠅。回想起來,近年剛好碰到果蠅相關技術蓬勃發展,選果蠅是很正確的決定!」李奇鴻笑道。

李奇鴻引用知名神經科學家 David Marr 的三層假說(tri‐level hypothesis),認為大腦運作有三個層次:

  1. Computation level(運算):神經系統在做的事,如分辨顏色、觀察東西移動、辨認物體是圓是方、是蘋果或橘子等。
  2. Algorithm level(程序):神經系統的操作方式、程序怎麼做。 
  3. Implementation level(實行):神經系統如何透過神經元、神經網路來達成這個程序。

李奇鴻表示,「過去多數神經科學家都在討論 computation,再探究 algorithm,卻沒辦法解決 implementation 。現在因為具備技術,科學家終於能找出 implementation,再回推上層問題,甚至發現 algorithm 跟原本想的不一樣。」

視網膜感知系統怎麼運算?

關於神經系統的操作方式(Algorithm level),也有因為技術進步而解決爭議的案例。李奇鴻舉例,以前神經科學家在研究視覺系統感受物體運動的機制,曾出現幾種理論,HR 理論認為神經訊號是用乘法,另一派 BL 理論認為是用減法,爭議了很久。

近年科學家發現,原來視網膜感知系統的運算機制是混合的,一共三種,稱為 HR-BL 混合視覺運動偵測器。過去兩派都只對了一半。

關於視網膜感知系統的運算機制,過去 HR 理論和 BL 理論都只猜對其中一種方向(打勾處)。資料來源/Current Biology

Hassenstein-Reichardt(HR)模型:從昆蟲行為研究而來。

  1. 當有偏好方向(從左到右)的視覺刺激出現,左邊的光感應神經元收到訊號,這個信號會被延遲(時間 τ),接著右邊的光感應神經元收到訊號,兩者的訊號會同時到達下游的神經細胞(X),訊號將會相乘,生成運動訊號。
  2. 當有非偏好方向(從右到左)視覺刺激出現,兩個訊號會在不同的時間到達,不會生成運動訊號。

Barlow-Levick(BL)模型:從兔子電生理研究而來。

  1. 當有偏好方向(從左到右)的視覺刺激出現,左邊的光感應神經元收到訊號,接著右邊的光感應神經元收到訊號,但它為抑制訊號且會被延遲(時間 τ),左邊的訊號會先到達下游的神經細胞,生成運動訊號。
  2. 當非偏好方向(從右到左)視覺刺激出現,左、右兩個光感應神經元的訊號會在相同時間到達,刺激訊號和抑制訊號互相抵銷,不會生成運動訊號。

持續分析果蠅大腦的神經迴路!

近代電腦的所有運算都能用 and、or、Xor 三個邏輯閘表達,科學家想知道,大腦裡有沒有類似但更高階的神經迴路運作方式?「從感官到行為比較容易觀察和操作,目前在視覺運動方面的神經迴路運作,我們知道的最多。」

李奇鴻近年在做昆蟲視覺與行為研究,發現昆蟲在感受顏色,如綠光和紫外光時,感光細胞的處理方式是先將紫外光跟綠光的強度做比較,把兩個光的強度相減,讓原本兩個訊號變成一個訊號,所謂的「顏色拮抗」。

「這種神經迴路能解析、比較兩個顏色強度的差異性,因為大部分在視覺上最重要的正是對比。拮抗運算模組能在一片訊號裡找出哪裡最強、其他較弱。其他感官機制也一樣,像觸摸物品時有凸出來的部分較重要,聽覺上要找出哪個聲音特別高等,讓最重要的訊號能凸顯出來。」李奇鴻補充道。

2021 年李奇鴻的團隊首次發現果蠅視覺系統堆疊了多套拮抗運算模組,以達成顏色及空間接受域雙拮抗的效果,成果發表在《Current Biology》。這樣的神經迴路可以比較相鄰的顏色,產生色彩區間對比感。「沒這樣的功能,我們就看不出紅配綠很悲劇了!」李奇鴻笑道。

科學家們正努力鑽研果蠅大腦的神經運算迴路,希望逐步整理出基本運算模組。或許有一天,看似複雜的大腦功能,都可能用基礎的迴路來破解!

李奇鴻實驗室所發現的顏色及空間接受域雙拮抗神經迴路。R1-R6 是吸收頻率範圍較廣的光接收器(輸出刺激訊號),R7 是吸收紫外光的光接收器(輸出抑制訊號),R8 是吸收綠光或藍光的光接收器(輸出刺激訊號)。從 R1-R8 接收光,輸出到神經細胞 Dm8 之後,會形成顏色拮抗效果。此外,相鄰的 Dm8 之間透過特殊的氯離子通道 GluClα 中介,會產生側向抑制作用(Lateral inhibition),形成空間拮抗效果。資料來源/Current Biology

老師是怎麼走上研究大腦神經科學這條路呢?

「我滿晚才走上科學研究的道路。我對電腦有興趣、喜歡寫程式,大學上中國醫藥學院醫學系,家裡也希望我當醫生。不過在實習時,我發現自己對治療病人沒興趣,反而對問題或疾病本身更有興趣。跟幾個老師談過之後,我決定不當醫生,跑去清華大學讀生命科學,後來就到中研院。」

因為有醫學背景,一開始比較想做能立刻解決問題的研究,像是用蛋白質跟毒素的綜合體來治療癌症。但後來了解,如果沒有深刻了解致病機制、沒有鑽進基礎科學研究,很難有突破。

後來去美國洛克斐勒大學攻讀博士,在洛克斐勒讀書期間,大家常互相交流,對我有很大的啟發。那時我在鑽研結構生物學,希望了解疾病真正的生理過程,曾解開愛滋病病毒跟人體信號傳遞有關的蛋白質結構。

博士畢業前,我接觸到神經科學,感到很有興趣,就去加州大學洛杉磯分校(UCLA)讀博士後,學神經科學裡的發育學,想了解大腦在發育過程是如何用不同分子在細胞間傳遞訊息。那時我待在很大的實驗室,老師不太管學生,要自己想辦法或跟旁邊的人學習,很多人素質都很高,學習環境很好。

之後我進入美國國家衛生院(National Institutes of Health,NIH)開始開實驗室帶自己的團隊,待了 16 年,算是真正進入神經科學領域,直到現在依然在做相關研究。

每個人的人生選擇,都被以前的經歷主導,如果沒有醫學背景,恐怕我不會去學結構生物學或走入大腦神經科學領域。

老師在美國的研究很順利,那是什麼契機才決定回臺灣呢?回來後是否有不適應之處呢?

「我 26 歲出國,在美國也待 26 年,幾乎完全融入美國生活,實驗室運作得蠻好,連太太也是美國人。但在美國很多年後,內心出現一個很深感覺:我在臺灣待過這麼久,臺灣是我進入科學的起點,也許該回來教教臺灣的子弟。」

剛開始有些想法,曾受邀回臺演講幾次,但沒有下決心。後來出現一個重要轉捩點。中研院分子生物研究所 30 週年慶時邀我回來演講,那時有機會跟歷任所長聊天,這些所長中許多是我過去在中研院碰過的老師。聊了後感觸很深,發現每任所長都要面對分生所的成長或各種問題,每個所長都有獨到的見解和重要貢獻。

我看到分生所運作得很好,覺得非常感動, 內心想:也許我回來能效法他們,也許對中研院細胞與個體生物學研究所的發展能有一點點實質貢獻。

雖然如果待在美國國家衛生院,我也會有這樣一個機會,但還是想帶自己的子弟,把力氣用在自家子弟身上,讓自己的國家和組織進步。我想將在美國國家衛生院學到的經驗,像哪些組織可以運作、哪些不行,嘗試帶回臺灣。

我很清楚可能碰到的問題,像科學研究會受影響,要重新花幾年時間建立實驗室,但那次契機讓我徹底下定信心。我曾跟廖俊智院長開玩笑,就算不給我錢,我大概也會回來。因為真的覺得這是一個很好的機會,自己能為中研院、為臺灣做些事。畢竟中研院也一直都像我的家!

不過,畢竟過去在美國實驗室和家裡都是講英文,只有打電話給媽媽會說臺灣話,因此, 2018 年剛回臺灣時,國語講得不太流利,臺灣話反而比較流利。

老師覺得美國的研究環境有哪些優點?希望將什麼樣的新觀念、新風氣帶進臺灣呢?

「國外最大特點是學術交流很頻繁,雖然國內也蠻頻繁,但他們交流層次更深入。也就是說,我跟參與的老師交流之後,常能改變想法、做事方法或方向,且是正向的改變。」

國外老師受邀演講,會很積極在幾小時內一直談,在一天中完全沉浸其中,不單講出自己在做的東西,也要求聽眾給予批評或建議等,彼此有深度交流,我每次參加都覺得收穫很多並產生合作可能性。

國內我的經驗是,演講結束後比較缺乏機會跟其他老師深度溝通,領完演講費就屁股拍拍坐高鐵回來。這可能是國內的慣有模式,我覺得需要改變。現在所內我也要求大家,既然花錢請老師來,一定要做深度交流,請對方給予建議。

重要的不是形式或邀到諾貝爾獎得主之類,而是在演講結束後、這個人走出我的辦公室、這些人離開後,對我做的事或做事方法,是不是有什麼實質的改變?在其他科學家交談中是否能得到啟發,改變自己的思考或做實驗方式?或聽聽別人告訴你,你還有哪些沒想到的地方?

分享,也是一種很重要的技術,在交流過程中,當我們可以把一件事講清楚,自己也會茅塞頓開,知道問題在哪。

現在所裡的計畫是把老師分成各種不同興趣小組,組內做交流或有跨組活動。其餘像寫計劃、申請經費、經營實驗室或撰寫並發表文章,這些是基本技術問題。

做任何工作,一個是基本的核心技術,如果沒有「技」就無法生存;另一個是 「藝」(Art) , 可以驅動你一直做下去。訓練人才時,除了培養技術,還要訓練 Art。

老師提到工作上需要 Art,科學家的 Art 是指哪些部分?可以說明得更詳細嗎?

「我想在科學裡面,Art 有很多面向。例如,你怎麼選擇一個問題,怎麼找切入點,如何把一個大問題拆成幾個可攻破的部分,一步步去解開,這是一種 Art。尤其在選擇問題和切入點上,要有獨特的見解或洞燭先機才能成功。」

科學家必須創造有用的知識。什麼叫有用的知識呢?就是聽到學到後,會改變你想事情的方向或做事的方法。很多東西都可以研究,只要科學方法夠嚴謹,都可以得到一些知識。但到底要選擇什麼題目呢?什麼叫做有趣的問題呢?評斷這些就是科學的 Art 。

如果說在人類前面是一個黑暗深淵,知識像光照亮我們前面的路,科學家就像站在最前面,要知道如何踏出那一步?怎麼踏出去?這是 Art。

當科學家看到一個問題、問題成形後,最重要的關鍵是如何選擇一個核心問題去解決。就像玩拼圖時,要放下去最核心、最重要的那塊拼圖。

我回到臺灣後,覺得這裡的研究環境很好,儀器不輸人家,老師很優秀。但可能我們多半只是關注自己的研究,沒有花時間認真去思考,最重要的一塊拼圖在哪裡?當我們有更深度的交流,才能找到最核心的那一塊,做出最重要的貢獻。

李奇鴻說,科學家必須創造有用的知識,也就是會改變做事和想事情方法的知識。至於要選擇創造什麼知識,需要用 Art 來判斷。圖/研之有物

老師在國外的實驗室時是如何帶領研究團隊呢?對年輕的科學家有什麼樣的期待嗎?

「在碩士、博士訓練中最重要的關鍵,是從「讀」科學變成真正「做」科學。我們攤開一本教科書,看到裡面講這個、那個,只是讀人家的科學。即使去念了原始文章,仍然是看著科學怎麼被別人做出來而已。」

自己真正做研究才知道,教科書上每一頁、每一句,背後都可能有數千篇文章支持,那時才知道自己很渺小,懂得謙虛,了解自己一生能做的有限。

所以,每次要跨出一小步,要想該怎麼跨最有效率、得到最大效果。我認為,在碩士班或博士班,最重要的就是了解這種感覺。

有些學生可能覺得,反正我很渺小,世界這麼大,即使做一輩子,即使最成功的科學家,也不過是得到教科書上面的一句話而已,我怎麼做都沒關係啊。 但我們必須帶領學生了解,這個計畫不是老師叫你做才做,而是讓學生覺得這個計畫是自己的,有前進和發展的空間,就像自己的小孩,必須負責。

以前在碩、博士班,剛開始學會技術、實驗做出結果,或能像人家一樣發表文章,會很高興,但這很短暫,真正的轉捩點是我知道有什麼事,是全世界任何人都不知道的那種驕傲,才是真的能支持很久的。我還記得在某一天做到早上五點,從實驗室走出來,知道有個東西全世界只有我知道的喜悅!

當學生曾感受這種發現真實的快樂,你不用規定他早上幾點來、晚上幾點走,他自己就有動機做。

當一個人想這東西應該是怎樣,想辦法做實驗證明出來時,那真的是一種快樂。我想,這是任何其他行業都沒辦法比較的!

學生是要培養成未來的科學家、獨當一面,應該讓他自己走。即使在你看得到的地方,也要讓他自己走出來,而且,他自己想到的,比你告訴他來的有用。

其實,我當老師最興奮時,是學生告訴我那些我不知道的事,會覺得很喜悅,學生想到我沒想到的東西,表示他們有進步,比我還厲害,這很棒!

延伸閱讀

 

國中生的科普素養閱讀平台: 《科學生》,素養強化訓練 今天就展開!

文章難易度
所有討論 2
研之有物│中央研究院_96
21 篇文章 ・ 8 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook