Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

年輕的狗兒能免疫於打哈欠的傳染

哇賽心理學_96
・2013/01/07 ・1028字 ・閱讀時間約 2 分鐘 ・SR值 457 ・五年級

credit: CC by toolmantim@flick

編譯 / 柯喬文

家中有養小狗的朋友們,當你們感到疲倦而打哈欠後,你們的狗兒也開始面露疲態,跟著打起哈欠來?究竟狗兒們是真的因為疲累而打哈欠,還是因為牠「感受你的感受」,疲憊也感染了牠們?根據先前發表在《施普林格動物認知期刊》(Springer’s journal Animal Cognition)的一則研究指出,狗兒與人類一樣,易受打哈欠的傳染。來自瑞典隆德大學(Lund University)的最新研究更進一步指出,「年輕」的狗兒卻對打哈欠免疫。而究竟「年輕」是有多年輕?那又是什麼原因使得牠們免疫於這種傳染性的行為呢?

瑞典隆德大學的佩爾松博士(Tomas Persson)和馬德森博士(Elainie Alenkær Madsen)為此做了一項研究,他們讓來自丹麥,齡期介於4~14個月間的35隻狗狗,分別與主人或陌生人一陣玩耍後,觀察當人們重複地打哈欠時,小狗們的反應為何。研究結果顯示,不管是與主人互動或與陌生人互動,只有年齡大於七個月的狗兒們有打哈欠的行為出現,而小於七個月的小狗們並未受到人們打哈欠行為的感染。

在此之前曾有研究表示,人類、成年黑猩猩、狒狒及狗皆有傳染性打呵欠的行為,且這種現象可用來衡量行為移情反應(同理心的一種)。 研究人員認為雖然同理及模仿他人的情緒反應這兩件事是難以直接測量,不過像是模仿打哈欠的這種行為可能就是同理他人情緒的一種反應。此外,之前的相關研究也指出,不管是人類還是其他靈長類動物,個體容易受到情感較為親近同伴傳染打哈欠。然而在這研究中,主人或陌生人對狗兒的傳染性打呵欠並無不同影響。

-----廣告,請繼續往下閱讀-----

馬德森博士和佩爾松博士認為,該結果反映了人類與其他動物(如猩猩、狒狒)隨著年齡漸長而發展出的同理及辨識他人情緒等較 高層次的認知能力,而此種能力在狗兒出生後的一年內發展緩慢,因此小於7個月大的幼狗之所以能免疫於傳染性打哈欠,可能是由於同理他人情緒這類較高層次的認知能力尚未發展而成。

常言說:狗兒是人類最好的朋友,各位愛狗人士不妨觀察一下自家的寶貝,在工作繁忙或課業忙碌回到家後,當你呵欠連連時,牠們是否也「步上你的後塵」,可愛地張起嘴巴打起哈欠來。如果有的話,牠們或許是在同理你的疲憊,如果沒有的話也別難過,牠們可能是年紀還太小,免疫了你的呵欠,或許年紀大了一點後,就懂主人心了喔!

文章出處:Puppies Don’t Pick Up On Yawns: Dogs, Like Humans, Show a Gradual Development of Susceptibility to Contagious Yawning. ScienceDaily [Oct. 23, 2012]

原始文獻:Madsen EA, Persson T. Contagious yawning in domestic dog puppies (Canis lupus familiaris): the effect of ontogeny and emotional closeness on low-level imitation in dogs. Animal Cognition; DOI 10.1007/s10071-012-0568-9

-----廣告,請繼續往下閱讀-----

轉載自 心理與睡眠教學網

-----廣告,請繼續往下閱讀-----
文章難易度
哇賽心理學_96
45 篇文章 ・ 11 位粉絲
希望能讓大眾看見心理學的有趣與美,期待有更多的交流與分享,讓心理學不只存在於精神疾患診療間或學校諮商室,更能擴及到生活使之融入每一刻。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
貓咪真的不愛你嗎?讀懂高冷主子的傲嬌告白
F 編_96
・2024/12/28 ・2729字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

身為貓奴應該都思考過這個問題:「我家貓到底愛不愛我?」(尤其是你怎麼叫牠都不理你的時候)

比起狗狗總是搖尾示好、恨不得時時刻刻陪伴主人,貓咪反而顯得疏離。這些獨立、冷淡的態度,是否代表牠們根本「不愛人類」?還是只是與我們表達情感的方式不同?現有的研究並未能給出單一「是」或「否」的答案,但科學界逐漸認為:貓的性格並非冷漠,而是有著自己獨特又多變的互動模式。

為何貓比狗看起來更不「熱情」?

談到「人與動物的愛」,第一個被拿來對照的對象往往就是狗。狗傾向於把人視為社群領袖或保護者,牠們會展現出明顯的依附行為,例如跟隨、舔舐、撒嬌等。這背後牽涉到狗的馴化史,科學家普遍認為,狗至少在 2.3 萬年前(亦有其他研究推至 3 萬年以上)就已開始與人類共同生活。人類在漫長世代裡,選擇性繁殖更順從、更依賴的犬隻,讓牠們不斷強化對主人的服從與感情表達。

相較之下,貓的馴化歷史要晚得多。大約在 1 萬年前,農耕社會出現,儲藏穀物吸引老鼠,貓因捕鼠能力而漸與人共生。牠們「半自願」式的走近人類聚落,並未經過大規模的繁殖選擇,以致貓咪的野性特質與獨立性一直保存到今天。

-----廣告,請繼續往下閱讀-----

由此可見,狗對人的依附,是經過長時間精心培育的結果,而貓雖然與人類同住,也享受人類提供的食物與安全環境,但牠們在某種程度上仍維持了更高的自主意識與獨立特質。

貓咪與狗狗的馴化過程不同,這也導致兩者在與人類互動上的不同。圖/envato

如何判斷貓咪是愛或不愛?

每個人對於「愛」的表現,判斷上還是很主觀的。因此有些研究嘗試用「科學指標」來測試貓對人的情感,如觀察荷爾蒙水平、或偵測貓在不同情境下的行為模式。

催產素俗稱「愛的荷爾蒙」,常在親密互動或撫摸時分泌。根據 2015 年的一項實驗(收錄於 BBC節目「Cats v Dogs」):在貓與狗都受到撫摸後,狗的催產素水平平均提升約 57.2%,但貓僅提升12%。這被部分人解讀為「貓對我們沒有那麼有愛」,但也要注意,這只是「平均值」,樣本量也僅 10 隻狗與貓,並不代表所有貓都只有「12%」的情感。此外,催產素本身也容易受其他因素干擾,例如環境壓力、個體差異等。

另外在 2021 年,英國林肯大學的研究團隊針對 3,994 位貓主做問卷調查,藉由「開放式關係、疏離關係、一般交情、相依關係、友誼」等五大類型,歸納出貓與主人的情感連結。結果顯示,約有一半的貓跟主人間呈現較緊密的情感投射,另一半則較疏離。由此可知,貓與人之間的情感並非「一面倒」的冷漠,也不見得如狗那樣強烈依附;而是要看飼主的參與度、貓的個性以及如何尊重牠們的獨立空間。

-----廣告,請繼續往下閱讀-----

有一項早期(2008年)的一項研究則觀察到,當貓遇到自己熟悉的人類時,血壓和心率會出現上升,顯示牠們對人產生情緒波動,可能是期待食物或獎勵,也可能是情緒上的激動。這說明貓對特定人確實有「在意」的表徵,只是表達方式或目的不一定和狗相同。

你越近,貓越逃?貓咪喜歡怎麼樣的互動?

要怎麼做才能獲得貓咪的抱抱?圖/envato

貓咪多半不喜歡被強迫互動,若人類持續不斷地撫摸、抱起貓而不顧牠們的意願,往往得到的反應是掙扎、攻擊或逃走。對貓來說,「選擇權」至關重要。若牠們能自在地決定互動距離、持續時間,以及撫摸的部位,牠們更可能接受、甚至主動親近主人。

2021 年的研究指出,若飼主能理解貓在肢體語言上的細微表達,例如耳朵朝後、尾巴抖動、身體僵硬或發出低鳴,代表牠們已有不適或抗拒;這時「收手」是上策。相反地,那些忽視貓表示不要的信號,堅持要撫摸或抱住貓的人,更容易被貓認定為「壓迫者」,長期下來貓會選擇逃避或變得易怒。

與狗一樣,每隻貓的個性也不盡相同。有些貓喜歡頻繁親密互動,也有貓更向往安靜獨處;基因、社交化過程、早期經驗都可能影響牠們長大後對人的友善度。此外,若飼主從貓幼齡期就常常輕柔地接觸牠們,並在牠們想脫離時尊重牠們,長大後通常會更願意與人類培養信任感。

-----廣告,請繼續往下閱讀-----

如何與貓建立更深的情感連結?

既然科學研究顯示貓的「情感投放」需要更精細的方式,那麼身為飼主或愛貓人士,該如何做才能拉近與主子的距離呢?

  1. 給予空間與選擇
    • 不要隨意抱起或撫摸正在休息、清潔毛髮、或顯露抗拒姿勢的貓。讓貓可以自由進出房間、躲進安全的角落,也能確保牠們在緊張或害怕時有地方可退。
  2. 正向回饋與獎勵
    • 若貓主動靠近、蹭你或發出呼嚕聲,這是牠願意互動的信號,可在牠舒服的情況下溫柔撫摸。可以搭配口頭稱讚或小零食,使貓把你聯想到「好事」。
    • 但記住,貓咪不喜歡被「過度餵食」,適度才是關鍵,否則容易讓牠們失去對零食的興趣或導致肥胖。
  3. 學習貓的身體語言
    • 觀察耳朵、尾巴與瞳孔的變化,若耳朵緊貼腦後、尾巴劇烈擺動或瞳孔放大並伴隨低鳴,表示貓正處於緊張或警戒狀態。此時停止撫摸、後退,給牠時間冷靜。
    • 如果貓慢慢走近你,尾巴微翹、耳朵稍微前傾,代表牠感到放鬆,可能願意互動。
  4. 尊重貓的作息特質
    • 貓是夜行性動物,白天或許大部分時間都在睡覺或懶洋洋地活動;若你在白天想和貓「猛玩」,牠可能沒有興趣。選在牠清醒或精神較好的時段進行互動或遊戲,更能提升彼此感受。

貓與人的緣分,在於理解與尊重

貓咪歷經數千年從田間捕鼠者,逐漸成為受全球喜愛的寵物,卻依然保留高度獨立、選擇權至上的「個人主義」風範。許多科學研究指出,貓雖沒有狗般明顯的熱情與依賴,但仍能與人產生深厚羈絆──關鍵就在於飼主是否願意花時間、心力,並遵循「了解貓貓、尊重貓貓」的原則與牠們相處。從理解貓的生活形態、情緒信號,到給予牠們適度的獨處與自由,若能做到這些,或許某天牠就會主動跳到你的腿上呼嚕,用專屬的方式告訴你:「莎朗嘿(사랑해)~

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

2
0

文字

分享

0
2
0
惱怒飛機上的哭聲和幫助脆弱的嬰兒,都是人類演化後的行為?——《利他衝動》
知田出版_96
・2024/12/09 ・3771字 ・閱讀時間約 7 分鐘

苦難與同理心:能激發出援助還是自我關注?

縱貫全文,我們持續主張,苦難演化得十分凸顯、讓我們不能不關注,而且它還得以在子代照護背景脈絡中激發行動。利他反應模型的這項原則,似乎與巴特森(Daniel Batson)和讓.德塞蒂(Jean Decety)以及其他人的普遍觀點互相衝突,後者主張苦難會阻礙援助。

根據同理心──利他行為假設,人們在感到溫暖、柔情、冷靜、關切和慈悲時,會專注關心他人的需求,並提供無私的援助;相反,當發愁、憂心、痛苦、不安和沮喪時,他們就會專注關切自己的需求,並只有在自己的苦難減輕時,才會提供幫助。舉個例子,當實驗室中的學生目睹某人受到痛苦的電擊時,表示感受同理心的觀察者,即便可以離開,也都會伸援,至於感到個人苦難的人,則較少提供幫助,除非他們被迫留下並繼續觀看痛苦的電擊。因此,人們有能力出於無私的原因提供幫助,但可以出於自私的動機行事,以緩解自己的苦難。

我們自己的研究有時確實會披露很棘手的苦難。例如,我們往往會複製出巴特森的發現,遭逢苦難的受害者有可能觸動觀察者的同理心以及負面反應。當人們觀看我們最悲苦醫院患者的錄影時,一部分參與者甚至還表示他們感到驚恐(亦即忐忑、憤怒、驚恐)。這種高度負面的反應還更加引人注目,因為參與者知道,這些是真正的重症病人或末期患者。

因此,當他人表達的苦難會引發多餘的、會感染的負面感受之時,嫌惡反應也就可能因此發生──特別當他們的問題看來很沒有道理或者難以解決。(舉例來說,一位護理師表示,「嗯,對這個問題她打算怎麼辦?」)不過還不算滿盤皆輸,因為比起對快樂的患者,一般人對苦難的患者會看出更多需求、感受更多同理心,並提供更多幫助。不過這種慷慨精神是有侷限的。

-----廣告,請繼續往下閱讀-----

例如,倘若參與者必須坐下來陪伴患者,而不是只給他們幾塊錢並不做社交接觸,那麼他們就會提高協助快樂患者的相對偏好度。所以,即便苦難肯定帶來嫌惡的知覺和感受,它仍能成功傳達需求並激發反應,而這也正符合它的設計功能。

倘若我們思忖,在任意給定的情境中,利他反應模型的種種屬性如何權衡取捨,也就能預測這類複雜的關係。舉例來說,飛機上有小寶寶啼哭時,人們就會抱怨。這似乎自相矛盾,因為,我們理當演化來幫助那些身處苦難的寶寶。

利他反應受情境權衡影響,飛機上寶寶啼哭引抱怨反映其限制。圖/unsplash

啼哭的力量:無助者需求與觀察者情緒的博弈

然而,這種惱怒和模型相符,因為那些寶寶並不是其他乘客熟悉的或有感情紐帶的對象,他們多數人都相隔太遠,不會陶醉於寶寶的可愛模樣,也不知道是哪裡出了問題,所以幫不上忙。因此「飛機上有小寶寶啼哭」經典案例自然會惹人苦惱──這就證明了聲音很凸顯,激使我們去讓它平息──然而我們沒辦法產生同理心,也幫不上忙,因為欠缺界定親代照護的感情紐帶、熟悉度、專門知識和掌控權,況且社會規範告訴我們,不要去碰陌生人的寶寶,進一步約束自身的舉止。

碰到兒童虐待一類狀況時,這種衝突就變得更嚴重了,這時照護者會抽身或甚至攻擊、傷害他們應該保護的兒童。根據研究,由於苦難是如此明顯、有激勵性,而且不容忽視,於是當苦難或啼哭接連持續了好幾個小時或好幾天時,人們也就會變得非常煩躁,特別當沒有明確的解決方案之時(好比,由於寶寶罹患腹絞痛)。

-----廣告,請繼續往下閱讀-----

人們必須接受培訓,並在這種情況下獲得支持而非遭受懲罰;他們應該能夠讓自己置身激烈情境之外,好讓自己冷靜下來,而且我們需要提供幫助,好讓照護者能夠休息片刻。釀成這種情況的起因,是由於人類演化出的本性是在相互支持的社會性團體生活中養育兒童,然而如今我們多數人所體驗的西方式工業化獨自育兒方式,卻已經與此脫節所致。

與苦難不能激發援助的情況相反,只要觀察者理解狀況,能介入並對他們的反應抱持信心,那麼即便強烈的和嫌惡的苦難,也依然能夠促成援助。哺乳類動物的神經激素壓力反應之所以演化出現,並不是為了讓我們在工作壓力下能吃餅乾,這種反應的演化,是藉由調動交感和新陳代謝歷程,犧牲了消化和成長等較慢、長期的生理歷程所促成的即時行動。

人們在理解並有信心介入時,即便是巨大的苦難仍能激發援助行動。圖/unsplash

我們的壓力系統經過演化,能在脅迫下最有效地快速反應,好比當觀察者受了壓力驅使,必須迅速採取行動來幫助某人──假定他們知道該怎麼做,也知道分寸。所以,即便苦難線索啟動你的壓力和自主神經系統,當我們無法行動時──強烈激情和不安找不到明確的出口之時──它們就會產生冷漠、紛擾或攻擊行為,因為這些狀態本身就是演化來激發行動。

人們面臨苦難時,若認為自己有可能遭人操控,也會感到矛盾。由於苦難會激發援助行為,人們有時會偽裝陷入苦難來誘發支持,這有可能讓開始懷疑受害者的觀察者感到困窘、惱怒、生氣或反感。舉例來說,赫迪便曾描述,像狨猿和檉柳猴這類合作養育後代的新世界猴,通常會與無助的寶寶分享食物,特別是當牠們乞求食物之時。

-----廣告,請繼續往下閱讀-----

然而,當年輕個體年齡增長獨立生活,成年個體就比較不會與牠們分享食物,而這就會導致年輕個體以愈強烈並引人嫌惡的方式懇求乞討食物,有時訴諸偷竊。這種現象已經在著名的吸血蝠動物模型的利他行為研究中重複驗證,研究發現,成年蝙蝠較少與已經發育超越青少年階段,理當自給自足的蝙蝠分享血餐。

小寶寶確實很無助,起碼在嬰兒早期階段是如此,實在不能認為他們是藉由啼哭來「操控」照護者,起碼不像是幼童、較大兒童和成人那般以刻意的、邪惡的手法來操控。嬰兒有可能「使用」哭聲來激使照護者為他們提供食物、溫暖、撫慰或移除有害刺激物。這是他們溝通需求的僅有方式之一。這些需求有的並不是真的很緊急,不過即便是需求被動照護,好比身體撫慰,也可能影響嬰兒的長期健康和幸福。

例如,寶寶獨自被留在嬰兒床或汽車座椅時,通常就會放聲啼哭,因為他們喜歡照護者充滿愛心的溫暖擁抱。不過這些並不是必須立刻解決的急迫需求(而且就汽車座椅的情況,這說不定正是拯救他們的要素)。

嬰兒以啼哭表達需求,這也是他們唯一與外界的溝通方式。圖/unsplash

即便寶寶使用哭泣來激使我們幫助他們,我想我們都同意,他們並不是刻意密謀對付任何人,而且他們的要求也相當合理──特別是在面對相當惱人的現代裝置之時。因此,寶寶哭聲的真情實意、毫不誇張,未加操控的性質,提供了一種促成行動的誘發刺激,而且就算出自成年人,我們也依然遵從。

-----廣告,請繼續往下閱讀-----

苦難的演化功能:從激發行動到引發嫌惡

人們對於苦難哭聲的音質非常敏感,能區分反映出不同需求的哭聲,好比需要接觸、肚子餓了和疼痛。因此在醫院接受腿部注射的新生兒,所引發的同情比較多,超過在圖書館因無法帶回家的玩具,半哀鳴半啼哭的十八個月大的兒童。後面這樣的哀鳴和啼哭,會讓觀察者感到非常煩躁,他們甚至還可能覺得小孩是在操控而惱火,特別當目標是要取得玩具火車或更多金魚餅乾等獎賞時。然而,聽到新生兒為真正的需求而啼哭時,人們確實會心生同情,這樣的哭聲比較溫和、有規律,並暗示了脆弱的、幼態的、受苦受難和有援助需求的理想組合。

苦難不是單一事物。苦難有多樣化形式和背景脈絡,其中有些有激勵作用,另有些沒有。不過倘若我們從照護無助新生兒的背景脈絡來理解苦難,模式便自然浮現。真正的苦難,肇因於嚴重的急迫狀況,而需要觀察者提供力所能及之幫助的困境是有激勵作用的,而當觀察者不熟悉或沒有形成感情紐帶、不知道該怎麼辦、力有未逮,幫不上忙,或者感覺受了操控,這時苦難就可能引人嫌惡,也不太可能激發援助。

科學文獻有必要更明確地釐清,苦難何時會促使人們走向困難處境,何時則會讓他們遠離,並拿包含利他反應模型屬性的情境(好比受害者與觀察者存有感情紐帶、呈幼態模樣、明顯受苦受難,並需要觀察者力所能及的即時幫助)來與不包含這些屬性的情境進行比對。這些研究將能讓我們就現實世界對苦難之反應範圍方面達成更完整的認識,這類反應並不總是充滿同情,但確實會產生比自我關注更多的可能結果。

——本文摘自《利他衝動:驅策我們幫助他人的力量》,2024 年 11 月,知田出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

知田出版_96
5 篇文章 ・ 0 位粉絲
成為世界幸福、希望的緣起──知田出版「環境永續」、「心靈提升」、「自我成長」等類型圖書,探討由個體的轉變進而影響整個群體命運等議題,希望藉由閱讀,以更多元化的角度,讓每一位讀者的心跟著轉動,認識到我們生活在同一顆星球。 已出版:《回到地球》、《人類是五分之四的灰熊》、《利他衝動:驅策我們幫助他人的力量》等書。