網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

4
1

文字

分享

0
4
1

絕美保存的「竊蛋龍胚胎」化石問世:孵化姿勢與現代鳥類如出一轍!

TRY_96
・2021/12/28 ・3232字 ・閱讀時間約 6 分鐘

恐龍的生殖生物學

恐龍的生殖生物學一直是古生物學家研究的重點之一,不僅僅是因為大眾對於恐龍如何生小孩充滿了好奇外,也因為化石紀錄很難保存這些相關的行為或是軟組織,所以更顯得神秘。過去,古生物學家僅能仰賴與恐龍親緣關係最近、且還存活著的兩個類群——鱷類與鳥類,來推測恐龍的生殖生物學。

竊蛋龍:近70年的誤會

幸運的是,其中有一類恐龍,僅生活在白堊紀時期的東亞地區與北美洲,牠們頭上有冠、沒有牙齒,而且自從1920年代在蒙古被發現第一件標本後,因為在牠們旁邊也發現了一窩被認為是原角龍(Protoceratops)的蛋窩(圖一),因而被命名為竊蛋龍(Oviraptor)。這個名字一路被用到1994年,直到美國自然史博物館的古生物學家發表了一窩來自蒙古國的竊蛋龍胚胎蛋(圖二;參考文獻1),才發現事實上1920年代發現的蛋窩,其實是屬於竊蛋龍自己的,從此竊蛋龍搖身一變,從竊盜的蛋小偷變成呵護寶貝的母親。然而由於生物分類學上命名優先權的規定,竊蛋龍即使被證明不是小偷,牠的名字還是不能變。

圖一:美國自然史博物館前館長Roy Chapman Andrews發現的竊蛋龍骨骼與當時被認為是原角龍的蛋窩(編號AMNH FR 6508),現存於美國自然史博物館。圖/維基百科
圖二:Norell等人於1994年發表的竊蛋龍胚胎,因此古生物學家才認知到這一類長形蛋是屬於竊蛋龍的。(引用自美國自然史博物館蒐藏目錄網站)

竊蛋龍的生殖生物學,介於鱷類與鳥類之間

從上述的簡短歷史,各位讀者可能已經發現了:沒有發現帶胚胎的恐龍蛋之前,其實古生物學家是無法得知是什麼恐龍產下這類恐龍蛋的。當然,也有一些例外,例如在2005年,國立自然科學博物館的程延年博士等人,於 Science 期刊上發表了一件內含成對卵的竊蛋龍骨盆(圖三;參考文獻2),在蛋殼上面並沒有看到受酸侵蝕的痕跡,因此程延年博士等人推論,這兩顆蛋應該是還沒被生下來。

而且根據蛋的體積來看,他們也推論竊蛋龍可能跟鱷類相同,有成對的輸卵管(現生鳥類幾乎都只剩下單邊輸卵管);而一邊輸卵管中僅有一顆蛋,這點則與現生鳥類相同。這件珍貴的標本說明:竊蛋龍的生殖生物學是介於鱷類與鳥類之間的過渡型態。

然而,即使有如此漂亮的標本,胚胎蛋的發現,仍然是恐龍生殖生物學最直接的證據。過去也有許多胚胎蛋的發現,例如發現自中國河南省的「路易貝貝」(參考文獻 3)、又或者國立自然科學博物館的楊子睿博士曾在2020年發表的三顆呈現出不同的發育程度的竊蛋龍胚胎蛋(參考文獻 4)、以及一隻竊蛋龍成體趴伏於整窩胚胎蛋上(參考文獻5),說明了牠們不同步孵化的生殖行為策略,早在鳥類之前便開始使用了。

圖三:國立自然科學博物館程延年博士等人發表於Science上的一件竊蛋龍骨盆,內含一對蛋(NMNS-VPDINO-2002-0901)。

一件發現自江西的絕美胚胎

12月21日在 iScience 期刊上,國立自然科學博物館的楊子睿博士與多國的古生物學家合作,報導了一件發現自江西贛州,絕美保存的竊蛋龍胚胎(圖四;參考文獻4)該件標本是老鄉於江西贛州地區發現以後,輾轉到了中國福建省的英良石材自然歷史博物館,經過精細的清修才顯現出完美的胚胎骨骼。這件胚胎的保存狀態,遠比以前曾經報導過的所有竊蛋龍胚胎來得完整,且其發育階段更接近孵化的狀態。

圖四:發現自中國江西省贛州市晚白堊世地層中的一件竊蛋龍胚胎蛋,現存於福建省南安市英良石材自然歷史博物館(YLSNHM01266)。暱稱為「英良貝貝」。

根據骨骼的接合程度(articulation),我們認為這件標本的狀態大約是發育了75%。最特別的是,隱隱約約地表現出將頭顱擺放在右前肢內(這樣的動作稱為 tucking,見圖五復原圖),有如鳥類睡覺姿態一般。這樣的胚胎姿態在主龍類中(Archosauria,包含翼龍、鱷類、恐龍以及鳥類),之前只有現生鳥類胚胎與中生代的反鳥類胚胎有相關的證據。而恐龍現生的另外一支親戚——鱷類,其胚胎在出生前僅會垂至胸前,與鳥類大不相同(見圖六),其中一個最大的原因就來自於鳥類可收可折的前肢結構,所以也不意外鳥類的祖先們——恐龍的胚胎會有類似的情況。

圖五:竊蛋龍胚胎蛋 「英良貝貝」 復原圖,由 Julius Csotonyi 繪製。

恐龍比鳥類更早知道:孵化前把頭埋進腋窩,順產率更高

鳥類學家研究發現,鳥胚胎在出生前若無法順利的將頭顱摺入右前肢當中,便有很高的機率孵化失敗,胎死「蛋」中。因此,將頭顱摺入右前肢當中的這個行為,是鳥類胚胎成功孵化的重要因素之一,同時也可能就是牠們能夠熬過白堊紀末的大滅絕事件且存活下來的其中一個優勢。

在Norell 等人1994年的首次報導竊蛋龍胚胎文章中,他們曾經提到過他認為他研究的胚胎姿勢比較像鱷類(圖七)。本次筆者參與的這篇文章便提出不同於 1994 的論點,我們認為其實竊蛋龍也不是那麼像鱷類,因為這件竊蛋龍胚胎的頭看起來幾乎都快要埋進去了。

然而,這同時也是這篇文章的一點缺憾,因為這個胚胎其實也沒有到真正「最後最後」的階段,所以我們很難證明這個胚胎是處在「準備完全把頭塞進去,跟鳥類胚胎一樣」或是「其實就是跟鱷類胚胎差不多」的情形。 不過如何,這樣的標本幫助我們更進一步了解竊蛋龍的胚胎生物學與發育生物學,是很有趣的發現,也期待未來有更多的恐龍胚胎的發現!

參考文獻

  1. Norell, M. A., Clark, J. M., Demberelyin, D., Rinchen, B., Chiappe, L. M., Davidson, A. R., McKenna, M. C., Altangerel, P., Novacek, M. J. 1994. A theropod dinosaur embryo and the affinities of the flaming cliffs dinosaur eggs. Science 266:779-782.
  2. Sato, T., Cheng, Y.-N., Wu, X., Zelenitsky, D. K., Hsiao, Y.-F. 2005. A pair of shelled eggs inside a female dinosaur. Science 308: 375.
  3. Pu, H., Zelenitsky, D. K., Lü, J., Currie, P, J., Carpenter, K., Xu, L., Koppelhus, E. B., Jia, S., Xiao, L., Chuang, H., Li, T., Kundrát, M., Shen, C. 2017. Perinate and eggs of a giant caenagnathid dinosaur from the Late Cretaceous of central China. Nature Communication 8:14952.
  4. Yang, T.-R., Engler, T., Lallensack, J. N., Samathi, A. Makowska, M., Schillinger, B. 2021. Hatching asynchrony in oviraptorid dinosaurs sheds light on their unique nesting biology. Integrative Organismal Biology 1:obz030.
  5. Bi, S., Amiot, R., de Fabrègues, C. P., Pittman, N., Lamanna, M. C., Yu, Y, Yu, C., Yang, T.-R., Zhang, S., Zhao, Q., Xu, X. 2021. An oviraptorid preserved atop an embryo-bearing egg clutch sheds light on the reproductive biology of non-avialan theropod dinosaurs. Science Bulletin 66:947-954.
  6. Xing, L., Niu, K., Ma, W., Zelenitsky, D. K., Yang, T.-R., Brusatte, S. L. 2021. An exquisitely preserved in-ovo theropod dinosaur embryo sheds light on avian-like prehatching postures. iScience (in press)

楊子睿博士於科博館的網站

文章難易度
TRY_96
2 篇文章 ・ 2 位粉絲
在中部某間有恐龍的博物館默默打雜的古生物學家 > <


0

1
0

文字

分享

0
1
0

隱翅蟲的毒液生化武器,演化上如何組裝而成?

寒波_96
・2022/01/17 ・3910字 ・閱讀時間約 8 分鐘

隱翅蟲是一群小型甲蟲的總稱;牠們以毒聞名,卻不見得都具有毒性。有些隱翅蟲會生產毒液儲存在身體裡,需要時噴射攻擊。毒液不只是嚇唬人的工具,像是跟螞蟻搶地盤這類場合,生化武器能發揮實在的優勢。

本文沒有真實隱翅蟲的圖像,閱讀時不用擔心。

隱翅蟲毒液的用途之一:攻擊螞蟻。圖/參考資料 1

隱翅蟲的毒液包含毒素和溶劑兩部分,有意思的是,兩者是獨立生產;溶劑本身沒有毒,毒素單獨存在也沒多少毒性。兩者極為依賴彼此,生產線卻是獨立運作,此一狀況是怎麼形成的?一項新研究投入大筆資源,便探討其演化過程。

「毒」加「液」才有毒液

這項研究探討的隱翅蟲叫作 Dalotia coriaria,為求簡化,本文之後稱之為「隱翅蟲」。它的毒素並非導致隱翅蟲皮膚炎的隱翅蟲素 (pederin) ,切莫混淆。

隱翅蟲的毒液發射器位於背上,體節的 A6、A7 之間,這兒有部分表皮細胞特化成儲存囊壁,並分泌脂肪酸衍生物作為溶劑。而毒素為配備苯環的化學物質 benzoquinone(苯醌),簡稱 BQ;另有一群細胞專門生產 BQ,再運送到儲存囊,和其中的脂肪酸衍生物混合後形成毒液。

生產毒素和溶劑的細胞,是兩類完全不一樣的細胞,各有不同的演化歷史。隱翅蟲的祖先,沒有毒素也沒有溶劑,兩者都可謂演化上的創新 (novelty) 。

一類細胞製毒,另一類細胞產液,兩者合作才有毒液。圖/參考資料 1

論文將生產溶劑的細胞稱為「溶劑細胞」;分析成分得知溶劑總共有 4 種,是碳數介於 10 到 12 的脂肪酸衍生物。合成脂肪酸,本來就是各種生物的必備技能,但是溶劑細胞製作的脂肪酸衍生物,原料並非一般常見的脂肪酸。

脂肪酸的合成,都是以 2 個碳的基礎材料開始,作為類似 PCR 中引子 (primer) 的角色,然後由 FAS(全名 fatty acid synthase)這類酵素一次加上 2 個碳,2、4、6、8 碳一直加上去。人類的 FAS 通常會製作長度為 16 碳的棕櫚酸,昆蟲則會造出 14、16、18 碳的最終產物。

隱翅蟲的溶劑細胞中,脂肪酸衍生物只有 10 到 12 個碳,比 FAS 一般的產物更短。奇妙的是,這兒的脂肪酸並非由 14 或 16 個碳縮短而來,而是溶劑細胞內 FAS 的最終產物直接就是 12 個碳。

隱翅蟲毒液的組成物,碳鏈長度介於 10 到 12 個碳,4 種脂肪酸加工而成的衍生物作為溶劑;3 種 BQ 作為毒素。圖/參考資料 1

改造脂肪酸合成線路,製作溶劑

要闡明其中奧妙,必需先稍微認識昆蟲的脂肪酸合成系統。昆蟲有一群特殊的脂肪酸衍生物,稱為「表皮碳氫化合物(cuticular hydrocarbon,簡稱 CHC)」,具有防止水分散失、費洛蒙等作用。

表皮碳氫化合物多半由 oenocyte 所製造(類似人類的肝細胞),在 FAS 酵素催化形成 14 到 18 個碳長的脂肪酸以後,繼續由延長酶 (elongase) 增加長度,去飽和酶 (desaturase) 加上雙鍵,最後經過兩道尾端的還原手續,分別由 FAR(全名 fatty acyl-CoA reductase)和 CYP4G(全名 cytochrome p450 family 4 subfamily G)兩類酵素執行,產生通常介於 20 到 40 個碳長的產物。

隱翅蟲溶劑細胞和 oenocyte 的脂肪酸生產線的比較,兩邊多數酵素種類是重複的,但是每一類酵素都有好幾個,兩邊各自使用的酵素不一樣。圖/參考資料 1

隱翅蟲和其他昆蟲一樣,oenocyte 細胞內有完整的表皮碳氫化合物生產線,每一步驟的酵素一應俱全。比對可知,溶劑細胞內也有一條脂肪酸衍生物的產線,顯然是由表皮碳氫化合物的生產線改版而成。

隱翅蟲至少有 4 個 FAS 基因,3 個負責製作一般的脂肪酸和表皮碳氫化合物,只有一個特定的 FAS 參與溶劑生產,專職在溶劑細胞中大量表現,製造 12 碳的脂肪酸,最後也由 FAR 和 CYP4G 收尾形成衍生物。值得一提,已知產物長度為 12 碳的 FAS 酵素相當罕見。

溶劑細胞和表皮碳氫化合物的生產線,兩者都有 FAS、FAR、CYP4G 三類酵素,但是在溶劑細胞作用的三種酵素,都不管其他細胞的脂肪酸合成。除此之外,有時候還有另一種酵素 α-esterase 的參與。依靠這些專門在溶劑細胞工作的酵素們,隱翅蟲能生成 4 種溶劑。

溶劑細胞內,4 種脂肪酸衍生物的合成過程。acetyl-CoA 作為引子,由 FAS 以 malonyl-CoA 為材料,一次加上 2 個碳,再分別經還原酶或 α-esterase 加工。圖/參考資料 1

演化上,隱翅蟲並沒有捨棄原本的脂肪酸生產線,整套都還存在;相對地,隱翅蟲在少數特定細胞新增一條產線,不影響原本的重要部門。這是隱翅蟲在遺傳和細胞層次的演化創新。

改造粒線體代謝線路,生產毒素

類似的狀況,也在毒素生產線觀察到。隱翅蟲的毒素,也是由原本有重要功能的古老生產線,調整再改版而成。

論文將生產毒素的細胞稱為「BQ 細胞」,這部分沒有溶劑細胞了解的那麼詳盡,不過經由碳的穩定同位素追蹤,還是得知毒素原料來自食物中的氨基酸:酪胺酸 (tyrosine) ,經過一系列加工後形成 BQ。

這條生產線上有個關鍵酵素叫作 laccase,它一般的功能是參與 Coenzyme Q10,也就是 ubiquinone 的合成。這是粒線體有氧代謝中的重要成分,對生存不可或缺。和其他甲蟲相比,隱翅蟲多出一個 laccase 酵素,專門在 BQ 細胞表現,將 HQ (hydroquinone) 催化成 BQ 作為毒素。

由此看來,隱翅蟲祖先演化出溶劑和毒素的道理是一樣的。

溶劑方面,以舊的表皮碳氫化合物生產線為基底,改用多個新酵素基因,形成新的生產線。毒素方面,源自古老的粒線體代謝線路,同樣加入新的酵素基因,改版後變成毒素產線。兩者各自皆為遺傳與細胞層次的新玩意,合在一起則衍生出功能上的演化創新。

由粒線體代謝線路改版而成的 BQ 毒素生產線,有一個專職生產毒素的 laccase(Dmd)酵素參與。圖/參考資料 1

組合新功能,一步一步累積有利變異

這項研究有許多潛在的討論方向,有興趣的讀者可以自行鑽研。像是生物學研究者能估計所有實驗耗資多少,感受自己的微渺(例如為了分辨不同細胞的作用,論文使用大量昂貴的「單細胞轉錄組 single cell transcriptome」進行分析)。這邊只提兩點。

第一點有趣的問題是:隱翅蟲的溶劑和毒素要同時存在才有效果,可是演化上是哪個先出現呢?論文推測是溶劑細胞先出現。

假如只有 BQ 這類毒素存在,殺傷效果非常差(論文用果蠅幼蟲做實驗),但是溶劑細胞的產物,即使不作為 BQ 的溶劑,脂肪酸衍生物也可以有其他用途,像是潤滑油之類的,或是扮演別種物質的溶劑。

想來新的脂肪酸生產線比較可能先出現,扮演某些不是太重要的角色,接著再加入 BQ;毒素加上溶劑,兩者合體產生新的強大功能,脂肪酸生產線又由於獲得新功能而調整優化,最終形成現在的樣貌。

替隱翅蟲帶來優勢的毒液,由兩個原本獨立的部門組合而成。圖/參考資料 1

第二點有趣的是,這回發現產物為 12 碳的 FAS 酵素。乍看沒什麼,影響卻很關鍵。

FAS 這類酵素的差異,在於催化生成的脂肪酸最終產物有幾個碳(或是說,可以加到幾個碳那麼長);已知幾乎皆為 14、16、18 個碳,隱翅蟲的溶劑細胞表現的 FAS 卻是 12 個碳。好像只差一點,然而實際測試發現,脂肪酸衍生物超過 13 個碳,作為 BQ 溶劑的效果便會差一大截。

也就是說,隱翅蟲倘若沒有脂肪酸產物僅 12 碳長的 FAS,儘管仍然可以生成溶劑,毒性將弱化不少。由此推想,隱翅蟲如今威力強大的毒液,並非透過少數變化一次到位,而是逐漸累積有利變異的結果。

想得更遠一點,由兩種細胞合作衍生而成的毒液,可以視為由多種細胞合夥,複雜器官的最簡單版本。原本不相關的各式細胞們,持續累積一個一個微小的改變,也有機會組合發展成複雜的組織或器官。

延伸閱讀

參考資料

  1. Evolutionary assembly of cooperating cell types in an animal chemical defense system.
  2. A beetle chemical defense gland offers clues about how complex organs evolve

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
84 篇文章 ・ 331 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。